Monterey Bay Aquarium Research Institute
Coastal Processes

Investigating Biological Conditions

In-water fluorescence data

Deep waters tend to be richer in the nutrients that support plant growth. When transported to the surface by upwelling, these waters warm up and algal growth is stimulated. Rapid growth rates of phytoplankton — i.e., microscopic algae at the base of the food web — cause upwelled waters to be heavily populated by many forms of marine life.

 

The amount of chlorophyll in the water column is measured using a fluorometer, which hits seawater with blue light, causing the chlorophyll (a common plant pigment) within phytoplankton to glow red. The resulting red fluorescence is used to quantify chlorophyll concentration. The graphs at right show summer fluorescence data through the water column at the M1 and M2 moorings.

Satellites, such as NASA's SeaWiFS satellite, are also used to gather information about ocean primary production. Subtle changes in ocean color signify various kinds and quantities of phytoplankton. Thus, ocean color data can help determine whether upwelling occurred during the spring months.

 

The ocean color patterns above indicate that strong upwelling occurred during the spring months. How does this compare with California's Pacific Sardine landings during spring? Is there a clear seasonal correlation between upwelling and Pacific Sardine landings? If not, what other factors may influence landings?

Before answering, you might wish to investigate data from other seasons:

Additional Resources:


Last updated: Jul. 16, 2013