Acoustic Community Ecology

Acoustical Ocean Ecology Group

A Risso’s dolphin swims at the surface near the scientific research vessel used to study deep scattering layers. Image courtesy Kelly Benoit Bird

Why do sonar-sensitive beaked whales continue to hunt near naval test ranges?

Beaked whales dive up to depths of 3,000 meters several times a day in order to catch deep-sea squids, but little is understood about where they decide to dive. Although they appear to be sensitive to mid-frequency sound waves, operational Navy sonars, beaked whales continue to hunt within naval sonar ranges. The Acoustical Ocean Ecology Group sought to understand why these areas, rather than areas with less mid-frequency Navy sonar activity, were uniquely valuable to the beaked whales. We also wanted to determine whether or not their responses to the presence of sonar in these areas could be detrimental to their population.

What we discovered is that while areas in and adjacent to the range were geographically similar, the presence of deep-sea squid was drastically different. Not only did the sonar-heavy areas that beaked whales consistently inhabit contain higher concentrations of squid, but the squid were also much larger. Most importantly, the squid in these preferred areas were much more clustered, resulting in squid being close to each other—and thus making it easy for a whale holding its breath to capture more than one on each of its 10 daily dives. Because each dive made by a beaked whale is energetically costly and time limited, these squid-rich areas remain important habitat for beaked whales, despite naval activities. This surprising “patchiness,” in which certain parts of seemingly indistinguishable ocean are actually quite different biologically, indicates that the deep sea is much less homogeneous than scientists first believed.

Midwater animals get a little help from their friends

Another area of patchiness we’ve investigated is how squid, fish, and crustaceans like krill and shrimp organize within layers. Throughout the world’s oceans, animals in the relatively featureless midwater will group together into layers that can cover tens or even hundreds of kilometers. This area is collectively referred to as the “deep scattering layer” because of the reflective characteristics of the collective group. In fact, the deep scattering layer’s strong response to sonar led the layer to be incorrectly interpreted as the ocean floor by early sonar.

Acoustic analysis of the internal organization of different layers of animals off southern California revealed that animals of the same kind and size grouped together to form small schools inside the layers, something that was a surprise. Traditionally, schooling was believed to be a behavior mostly found closer to the ocean surface.

Our analysis also revealed that these individual aggregations are responsive to changes in neighboring aggregations, showing that they are organized at multiple levels. As Risso’s dolphins dove to hunt within an aggregation of deep-sea squid, the squid would form a closer group. The open space left by the consolidating squid was quickly absorbed by neighboring groups of organisms, whether crustaceans or fish. Rather than a response from just the aggregation of targeted prey, this response from non-prey animals that seemed to fill in the gaps indicates a larger, community-wide benefit to keeping an unbroken horizontal layer as well as an important anti-predator benefit from schooling.


Upper-ocean systems
Acoustical ocean ecology
Acoustic instruments
Acoustic fingerprinting
Acoustic community ecology
Acoustics in the news
Biological oceanography
Global modes of sea surface temperature
Krill hotspots in the California Current
Nitrate supply estimates in upwelling systems
Chemical sensors
Chemical data
Land/Ocean Biogeochemical Observatory in Elkhorn Slough
Listing of floats
SOCCOM float visualization
Periodic table of elements in the ocean
Biogeochemical-Argo Report
Profiling float
Interdisciplinary field experiments
Ecogenomic Sensing
Genomic sensors
Field experiments
Harmful algal blooms (HABs)
Water quality
Environmental Sample Processor (ESP)
ESP Web Portal
In the news
Ocean observing system
Midwater research
Midwater ecology
Deep-sea squids and octopuses
Food web dynamics
Midwater time series
Respiration studies
Zooplankton biodiversity
Seafloor processes
Revealing the secrets of Sur Ridge
Exploring Sur Ridge’s coral gardens
Life at Sur Ridge
Mapping Sur Ridge
Biology and ecology
Effects of humans
Ocean acidification, warming, deoxygenation
Lost shipping container study
Effects of upwelling
Faunal patterns
Previous research
Technology development
High-CO2 / low-pH ocean
Benthic respirometer system
Climate change in extreme environments
Station M: A long-term observatory on the abyssal seafloor
Station M long-term time series
Monitoring instrumentation suite
Sargasso Sea research
Antarctic research
Geological changes
Arctic Shelf Edge
Continental Margins and Canyon Dynamics
Coordinated Canyon Experiment
CCE instruments
CCE repeat mapping data
Monterey Canyon: A Grand Canyon beneath the waves
Submarine volcanoes
Mid-ocean ridges
Magmatic processes
Volcanic processes
Explosive eruptions
Hydrothermal systems
Back arc spreading ridges
Near-ridge seamounts
Continental margin seamounts
Non-hot-spot linear chains
Eclectic seamounts topics
Margin processes
Hydrates and seeps
California borderland
Hot spot research
Hot-spot plumes
Magmatic processes
Volcanic processes
Explosive eruptions
Volcanic hazards
Hydrothermal systems
Flexural arch
Coral reefs
ReefGrow software
Eclectic topics
Submarine volcanism cruises
Volcanoes resources
Areas of study
Bioluminescence: Living light in the deep sea
Microscopic biology research
Open ocean biology research
Seafloor biology research
Automated chemical sensors
Methane in the seafloor
Volcanoes and seamounts
Hydrothermal vents
Methane in the seafloor
Submarine canyons
Earthquakes and landslides
Ocean acidification
Physical oceanography and climate change
Ocean circulation and algal blooms
Ocean cycles and climate change
Past research
Molecular ecology
Molecular systematics
SIMZ Project
Bone-eating worms
Gene flow and dispersal
Molecular-ecology expeditions
Ocean chemistry of greenhouse gases
Emerging science of a high CO2/low pH ocean