schlining_brian-180

Brian Schlining

Software Engineer

Monterey Bay Aquarium Research Institute

7700 Sandholdt Road

Moss Landing, CA 95039

Phone: (831) 775-1855

email: brian@mbari.org

Brian is a Software Engineer at MBARI working in the Information Engineering group of the Research and Development division. He has a bachelor’s degree in Biology from the University of Maryland, College Park and a master’s degree in Marine Science/Physical Oceanography from Moss Landing Marine Laboratories.

Brian has developed software systems supporting science at Moss Landing Marine Laboratories, the Naval Post-graduate School and at MBARI. Employed at MBARI since 1998, he has worked on numerous projects involving video and image analysis, video annotation, numerical analysis, user-interface development, and data-management systems.

Bintray | Bitbucket | GitHub | JIRA

2020 Projects

Video Annotation Data Management (500055)

MBARI has collected over 27,000 hours of underwater video since 1984. Working alongside the research and video staff, Brian develops systems for assisting MBARI staff with managing and analyzing this video data. MBARI’s video management and annotation tools are open-source and freely available to other researchers.

MBARI provides a Deep-Sea Guide for identifying and characterizing deep-sea organisms. As the lead engineer, Brian provides support, development and updates to the Deep-Sea Guide.

Midwater Time Series (901221)

Between the surface of the sea and the ocean floor lies a vast fluid universe, Earth’s least-known environment. MBARI has sophisticated systems that have spent thousands of hours surveying and describing the deep waters of the ocean. In support of MBARI’s Midwater lab, Brian develops tools, technology, and analytical techniques for working with this large collection of data.

Data Technical Advisory Group (901602)

Along with other members of the information engineering group, Brian is involved with coordinating data management across MBARI’s numerous projects.

Video Technical Advisory Group (901603)

This group researches and evaluates new developments and innovations in deep learning and machine vision as applied to underwater image and video analysis.

Pelagic-Benthic Coupling (901618)

This project studies ecological responses of marine communities in extreme environments to changes in climate and carbon cycling. Brian provides tools for managing and analyzing the large amounts of imaging data collected for this research.

FathomNet (902002)

As the volume and velocity of ocean data increases, new tools and techniques need to be established to process and integrate this data. For image and video, the volume of data captured can quickly outpace researchers’ abilities to process and analyze them. Machine learning holds the promise of enabling fast sophisticated analysis of this data. However, a lack of high quality, well-curated imagery of deep-sea organisms limits the usefulness of current machine-learning techniques. To address this need, MBARI is building a FathomNet, a database of expertly curated imagery that can be used for training machine learning systems.

VARS Annotation Assistance (902005)

MBARI has robust and sophisticated systems for managing and annotation video and imagery. However, analyzing video by hand is time-consuming and requires expertise in deep-sea animal identification. In 2020, we will begin using machine learning to assist our researchers with their video analysis. The machine learning pipelines will be integrated with our existing annotation systems, allowing researchers to rapidly search, correct, and enhance the results.