Mini remotely operated vehicle

MiniROV recovery
The MiniROV is used to conduct shallow water transects and make in situ observations. The vehicle is electrically powered, so it is much quieter than a normal-sized ROV.

Team

Technology

Solving challenges
Taking the laboratory into the ocean
In Situ Ultraviolet Spectrophotometer
Midwater Respirometer System
Mobile flow cytometer
Enabling targeted sampling
Automated Video Event Detection
Gulper autonomous underwater vehicle
Advancing a persistent presence
Aerostat hotspot
Benthic Event Detectors
Benthic rover
Long-range autonomous underwater vehicle Tethys
Marine “soundscape” for passive acoustic monitoring
Monterey Ocean-Bottom Broadband Seismometer
Shark Café camera
Wave Glider-based communications hotspot
Emerging and current tools
Communications
Aerostat hotspot
Wave Glider-based communications hotspot
Wet WiFi
Data management
Oceanographic Decision Support System
Spatial Temporal Oceanographic Query System (STOQS) Data
Video Annotation and Reference System
Instruments
Apex profiling floats
Benthic Event Detectors
Deep particle image velocimetry
Environmental Sample Processor (ESP)
How the ESP Works
Genomic sensors
ESP Web Portal
The ESP in the news
Investigations of imaging for midwater autonomous platforms
Lagrangian sediment traps
Laser Raman Spectroscopy
Midwater Respirometer System
Mobile flow cytometer
Smart underwater connector
OGC PUCK Reference Design Kit
Discussion
Promoters and manufacturers
Implementation
Manufacturer ID
Power
Wave-Power Buoy
Vehicle technology
Benthic Rover
Gulper autonomous underwater vehicle
Imaging autonomous underwater vehicle
In Situ Ultraviolet Spectrophotometer
Seafloor mapping AUV
Long-range autonomous underwater vehicle Tethys
Mini remotely operated vehicle
ROV Doc Ricketts
ROV Ventana
Video
Automated Video Event Detection
Machine learning
SeeStar Imaging System
Shark Café camera
Video Annotation and Reference System
Engineering Research
Bioinspiration Lab
Bringing the laboratory to the ocean
Bringing the ocean to the laboratory
Bio-inspired ocean exploration technologies
FathomNet
Seafloor mapping
Ocean imaging
MB-System seafloor mapping software
Seafloor mapping AUV
Publications
Technology publications
Technology transfer
Publications
Vieira, R.P., Bett, B.J., Jones, D.O.B., Durden, J.M., Morris, K.J., Cunha, M.R., Trueman, C.N., Ruhl, H.A., (2019). Deep-sea sponge aggregations (Pheronema carpenteri) in the Porcupine Seabight (NE Atlantic) potentially degraded by demersal fishing. Progress in Oceanography : . https://doi.org/10.1016/j.pocean.2019.102189
Todd, R.E., Chavez, F.P., Clayton, S., Cravatte, S., Goes, M., Graco, M., Lin, X., Sprintall, J., Zilberman, N.V., Archer, M., Arístegui, J., Balmaseda, M., Bane, J.M., Baringer, M.O., Barth, J.A., Beal, L.M., Brandt, P., Calil, P.H.R., Campos, E., Centurioni, L.R., Chidichimo, M.P., Cirano, M., Cronin, M.F., Curchitser, E.N., Davis, R.E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A.J., Fawcett, S. E., Feng, M., Goni, G.J., Gray, A. R., Gutiérrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C.M., Lengaigne, M., Levine, N.M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Pavelsky, H.I., Palter, J.B., Phillips, H.E., Piola, A., Plueddemann, A.J., Qiu, B., Rodrigues, R.R., Roughan, M., Rudnick, D.L., Rykaczewski, R.R., Saraceno, M., Seim, H., Gupta, A.S., Shannon, L., Sloyan, B.M., Sutton, A.J., Thompson, L., van der Plas, A.K., Volkov, D., Wilkin, J., Zhang, D., Zhang, L., (2019). Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6: 1-38. https://doi.org/10.3389/fmars.2019.00423
Stark, J. S., Peltzer, E.T., Kline, D.I., Queiros, A.M., Cox, E.T., Headley, K., Barry, J., Gazeau, F., Runcie, J.W., Widdicombe, S., Milnes, M., Roden, N. P., Black, J., Whiteside, S., Johnstone, G. , Ingels, J., Shaw, E., Bodrossy, L., Gaitan-Espitia, J.D., Kirkwood, W., Gattuso, J.P., (2019). Free Ocean CO2 Enrichment (FOCE) experiments: Scientific and technical recommendations for future in situ ocean acidification projects. Progress in Oceanography, 172: 89-107. https://doi.org/10.1016/j.pocean.2019.01.006
Snowden, J., Hernandez, D., Quintrell, J., Harper, A., Morrison, R., Morell, J., Leonard, L., (2019). The U.S. integrated ocean observing system: Governance milestones and lessons from two decades of growth. Frontiers in Marine Science, 6: 1-21. https://doi.org/10.3389/fmars.2019.00242
Rennie, J., Bell, J.E., Kunkel, K.E., Herring, S., Cullen, H., Abadi, A.M., (2019). Development of a submonthly temperature product to monitor near-real-time climate conditions and assess long-term heat events in the United States. Journal of Applied Meteorology and Climatology, 58: 2653-2674. https://doi.org/10.1175/JAMC-D-19-0076.1