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ABSTRACT

This paper discusses strategies for object detection in marine images from a

practitioner's perspective working with real-world long-tail distributed datasets with a

large amount of additional unlabeled data on hand. The paper discusses the benefits of

separating the localization and classification stages, making the case for robustness in

localization through the amalgamation of additional datasets inspired by a widely

used approach by practitioners in the camera-trap literature. For the classification

stage, the paper compares strategies to use additional unlabeled data, comparing

supervised, supervised iteratively, self-supervised, and semi-supervised pre-training

approaches. Our findings reveal that semi-supervised pre-training, followed by

supervised fine-tuning, yields a significantly improved balanced performance across

the long-tail distribution, albeit occasionally with a trade-off in overall accuracy.

These insights are validated through experiments on two real-world long-tailed

underwater datasets collected by the Monterey Bay Aquarium Research Institute.



INTRODUCTION

With the rise of the blue economy, studying ocean community composition and their

ecosystems is essential to understanding the ecological impact activities like offshore energy

and deep sea mining will have on them. Oceanographic institutes have been surveying parts

of the deep oceans using underwater vehicles fitted with video monitoring capabilities for

many years now, resulting in a data deluge. Automating the analysis of this video data for

biodiversity monitoring using supervised computer vision techniques like object detection

has been successful in both ocean and land realms (Tuia et al. 2022; Ditria et al. 2020). This

approach however requires expensive manual data annotations by taxonomists, localizing and

categorizing every animal in a frame. While these annotations are crucial for our ability to

automate video analysis to any extent, this results in the bulk of collected data, the unlabeled

data, being completely unused for model training. Moreover, supervised computer vision

models exhibit suboptimal performance on imbalanced datasets, particularly struggling with

the accurate classification of rare entities. Given that datasets procured from natural

environments invariably exhibit a long-tailed distribution, the shortcomings of these models

become more pronounced. The erroneous identification of rare species during investigations

assessing the ecological impact on oceanic communities holds the potential for significant

repercussions. Consequently, an optimal objective entails achieving a balanced performance

across all classes within the model's purview.

Self-supervised learning, a machine learning paradigm where a model is trained using

implicit labels arising from inherent structures or relationships within the input data alone as

a supervisory signal as opposed to relying on human annotations, has emerged as a viable

strategy for leveraging unlabeled data, demonstrating superior performance in certain

instances compared to their supervised pre-training counterparts across various downstream

tasks (He et al. 2020; Goyal et al. 2019). The scalability of self-supervised learning methods

with respect to both data and model size has been substantiated (Goyal et al., 2019), and their

proficiency as few-shot learners has been established, particularly when trained with

extensive corpora of unlabeled data (Goyal et al. 2021). Notably, these methods are more

robust toward unbalanced datasets (Liu et al. 2022), hypothesized to result from a more
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uniform representation space (Kang et al. 2020). The efficacy of self-supervised learning is

most pronounced when unlabeled data originates from the same domain, the availability of

supervised data is limited, and the task granularity is relatively coarse (Cole et al. 2022). In

the context of automated analysis of deep-sea video footage, this methodology aligns with at

least two of these criteria.

Self-supervised learning can be broadly categorized into two main types, task-based methods

and contrastive methods (Balestriero et al. 2023). Task-based methodologies involve models

predicting various aspects, such as masked-out regions of an image, the color composition of

an image (Zhang, Isola, and Efros 2016), or the sequential order of image components

(Noroozi and Favaro 2016). Contrastive learning methods minimize the distance in the

representation space between two semantically similar images, forming a positive pair, while

maximizing the distance between two semantically dissimilar images, forming a negative

pair. In the absence of explicit labels, positive pairs often consist of two augmented versions

of the same image. One prominent instance of contrastive learning is SimCLR (Chen et al.

2020), where the authors show that the type of data augmentations used is a crucial factor

affecting performance. Semi-supervised learning encompasses approaches to train models

using a combination of labeled and unlabeled data. A typical semi-supervised strategy is to

perform contrastive learning on unlabeled data, also called pre-training, followed by

end-to-end supervised fine-tuning using labeled data or exclusively fine-tuning the last few

layers. Recent advances in semi-supervised learning have demonstrated enhanced

performance and computational efficiency by using a small subset of labeled data during

contrastive pre-training, by the addition of an extra term in the loss function such as the

SuNCEt loss (Assran et al. 2020). This can also be achieved by minimizing the cross-entropy

loss between pseudo labels, assigned based on a small set of supervised support samples, for

the positive pair, as demonstrated by the PAWS method (Assran et al. 2021).

Strategies for leveraging unlabeled data to enhance biodiversity monitoring include

task-based approaches, like ranking pairs (original image and a crop from the image) of

unlabeled noisy sonar images based on the number of fish in them while simultaneously

predicting the density maps of fish in a supervised manner using a subset of labeled images

(Tarling et al. 2022), pseudo labeling of unlabeled data using a supervised model (Noman et
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al. 2021), and contrastive learning approaches, like selecting positive pairs of images based

on temporal or contextual relatedness from camera trap data as opposed to the standard

approach of using two augmented versions of the same image (Pantazis et al. 2021). Most

contrastive or task-based pre-training approaches are focused on improving classification

performance. Self-supervised object detection pre-training methods, wherein both the region

proposal and classification heads are pre-trained, result in only limited enhancements

compared to traditional object detection (Huang et al. 2022), often demand substantial

computational resources, and do not effectively address the open-world problem. Conversely,

a more straightforward localization approach, exemplified by the MegaDetector (Beery,

Morris, and Yang 2019), a standard object detector model trained for animal localization in

camera trap images, proves robust to unseen data and finds widespread use among

non-profits and ecologists globally (“Who Is Using MegaDetector?,” n.d.). The

MegaDetector's robustness and practical utility stem from its training on multiple datasets,

reducing all classes into three overarching categories: 'animal,' 'vehicle,' and 'human.' This

model, characterized by its simplicity, low computational cost, ease of fine-tuning, and adept

handling of the open-world problem, successfully localizes previously unseen animals in

novel backgrounds. Inspired by the effectiveness of this approach, we further fine-tuned a

similar single-class detection model for fish, the MegaFishDetector (Yang et al. 2023), which

has been trained using a combination of six underwater datasets.

The Monterey Bay Aquarium Research Institute (MBARI) has been collecting video data

from the deep oceans for over 30 years using a suite of autonomous and robotically

controlled underwater vehicles. Since 1988, the institute has archived more than 23,000 hours

of video footage derived from numerous research expeditions in the Monterey Bay Canyon

and other areas including the Pacific Northwest, Northern California, Hawaii, and the Gulf of

California, all meticulously organized within MBARI’s in-house Video Annotation and

Reference System (“MBARI VARS,” n.d.). As there are often multiple animals in a frame,

localization plus classification is essential to determine counts and community composition

across varying environmental conditions. A subset of the collected data is fully annotated for

the task of object detection with bounding box coordinates and assigned classes (at various

taxonomic levels).
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In this paper, we compare strategies for making use of unlabeled data, in addition to a subset

of labeled data, for biodiversity monitoring in two real-world underwater datasets collected

by MBARI exhibiting long-tail distributions. We discuss the benefits of separating the

localization and classification stages, training a single-class object detector for the

localization step taking inspiration from a widely used and successful study on camera trap

images. For the subsequent classification of the localized crops, we compare supervised,

supervised iteratively, and semi-supervised approaches, showing that self-supervised and

semi-supervised pre-training using unlabeled images followed by supervised fine-tuning

results in a more balanced performance across all classes. For both datasets, contrastive

methods that use a combination of unlabeled and labeled data for pretraining, such as PAWS

and SimCLR with SuNCEt loss, resulted in significantly higher balanced accuracy scores in

comparison to contrastive pretraining using unlabeled data alone as is the case with standard

SimCLR. On both datasets we achieved the highest balanced accuracy scores using

semi-supervised pre-training using PAWS followed by supervised fine-tuning, however, the

significant increase in balanced accuracy score comes at a cost of decreased overall accuracy.

By proposing a pipeline consisting of a localization approach that is being widely used in

practice, along with comparing classification approaches to make use of unlabeled data

ranging from straightforward iterative supervision to newer methods such as semi-supervised

pre-training, we hope that our results on two noisy real-world long-tailed datasets can serve

as a practical guide for practitioners working on similar problems.



Figure 1. Training data distribution and example images from two different underwater datasets
collected by MBARI. (1A and 1B) Number of instances per class (class indices shown in place of taxonomic
assignments for data embargo reasons) sorted from highest to lowest number of instances in the training splits of
the ROV and i2MAP datasets respectively. These are the extracted crops from both datasets for classification.
Data from both datasets follows a long-tailed distribution. (1C and 1D) Example images from the ROV dataset.
Overlaid red boxes are localization predictions with confidence scores from our trained single-class animal
detection model. (1E) Example image from the i2MAP dataset. Overlaid red boxes are localization predictions
with confidence scores from our trained single-class animal detection model. As the i2MAP dataset was
collected by an autonomous vehicle, images generally contain multiple animals at greater distances away.

MATERIALS AND METHODS

2.1 DATASETS USED



Two separate datasets were used for these experiments henceforth referred to as ROV

(remotely operated vehicle) and i2MAP datasets. The ROV dataset consists of ~27,000

images collected from multiple ROV transects by MBARI. The dataset contains a mix of

images taken in the benthic and midwater zones and was partially annotated with bounding

box coordinates and label assignments (varying degrees of taxonomic assignment level). The

ROV dataset contained 100 different animal labels with a subset of animals in every image

annotated. This resulted in a total of ~41,000 localizations. Annotations were done by the

video lab at MBARI. The images were of varying resolution and consisted of animals of

different sizes, ranging from small views of animals in the distance, to zoomed-in close-up

shots of animals.

The i2MAP is an autonomous underwater vehicle used by MBARI for running

midwater transects. It consists of a high-resolution (2k) camera and moves at a speed of about

10 m/s underwater. The i2MAP dataset consisted of ~11,000 fully annotated images and

~75000 localizations. The i2MAP dataset contained 70 different label assignments at

different taxonomic levels. Annotations were done by Danelle E. Cline using a combination

of manual labeling, heuristic methods such as blob detection and unsupervised methods such

as clustering and manual verification of low-confidence assignments. The higher speed of the

i2MAP vehicle and its low-power electric motor versus a slew of loud hydraulic systems on

the ROV, resulted in many more animal captures per frame, including those that are fast

enough to escape the ROV. The large number of animals per frame along with the typically

small size of localizations in this dataset made the annotation task very laborious.

For both datasets only the first 50 animal labels, sorted from highest to lowest number

of instances in the training split (discussed below), were retained and the remaining labels

were grouped together as the ‘unknown’ class, resulting in 51 classes. This was done to study

the effect of including examples from novel classes in our unlabeled split.

2.2 DATASET SPLITS AND UNLABELED DATA



In order to simulate the availability of additional unlabeled data, annotations (bounding box

coordinates plus assigned labels) from 75% of the data from each dataset were removed and

these images were treated as the unlabeled split. The remaining 25% of each dataset was split

into train-val-test splits as 10-5-10%. All training was done on the train splits of each dataset

and metrics were reported on their respective test split. For a fair comparison, the supervised

approach was also trained and evaluated on the same train-val-test splits.

2.3 EVALUATION METRICS

For evaluating object detection, the standard metric of mAP50 was used. For evaluating

classification performance, overall accuracy (OA) and balanced accuracy score (BA) (from

sklearn) were used. As both datasets were unbalanced and followed a long tail distribution,

overall accuracy did not give us a good estimate of performance across all classes. Balanced

accuracy score, the macro average of recall per class ranging from 0 to 1, is a better metric

giving equal importance to performance on all classes irrespective of the number of instances

per class. This is particularly advantageous in the context of unbalanced datasets where the

overall accuracy may be skewed by the dominance of the majority class.

2.4 OBJECT DETECTION

We trained a YOLOv5 (Jocher et al. 2022) object detector model to predict bounding boxes

around objects of interest in a class-agnostic manner by collapsing all classes into a general

‘animal’ class. We initialized this model with YOLOv5 parameters from a previously

generalized fish detector called MegaFishDetector (Yang et al. 2023), fine-tuned on the

training splits, and evaluated on respective test splits of both datasets. Once training and

evaluation were complete, we were able to use the final model to extract crops of animals for

the downstream classification task. Crops were extracted from images in the unlabeled splits

only of both datasets as we already had annotated bounding box coordinates for train, val,

and test splits. We evaluated the generalized object detector on its ability to correctly localize

animals as measured by the mAP50 metric. A YOLOv5 medium model was used with the

long edge of the image being 1280 pixels. A confidence threshold of 0.2 and an IoU threshold

of 0.1 was used for predictions.

2.5 CLASSIFICATION
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The localizations from our class agnostic animal detector on the unlabeled splits of both

datasets were cropped out, resulting in ~31000 and ~56000 extracted crops for the unlabeled

splits in the case of the ROV and i2MAP datasets respectively. Annotated bounding box

coordinates were cropped out from the train, val, and test splits of both datasets resulting in

~4000, ~2000, ~4000 and ~7500, ~3750, ~7500 extracted crops for the train, val, and test sets

of ROV and i2MAP datasets respectively. Crops were resized to a size of 224 x 224 and fed

into different classification models. For a fair comparison of the advantages of incorporating

unlabeled data, baring small modifications (see section 4.3), the same model architecture,

Resnet50 (He et al. 2016) was used to compare approaches and was trained for 200 epochs

and a batch size of 128 with weighted cross-entropy loss for all supervised components.

Models were initialized either from Imagenet weights or weights after contrastive

pre-training on unlabeled splits.

2.5.1 SUPERVISED (LABELLED DATA ONLY)

The baseline for comparison is training a Resnet50 following the standard supervised

learning approach on the training split for each dataset. Models were initialized using

Imagenet weights and were trained for 200 epochs using weighted cross-entropy loss, with

weighting based on the number of instances of each class in the training split. The loss was

monitored on the training and validation splits. Final evaluation metrics were calculated on

the test split for each dataset.

2.5.2 SUPERVISED ITERATIVELY

An approach that is not commonly compared to in the semi-supervised learning papers, is the

simple approach of using a trained model (supervised model from 2.5.1), to generate

predictions on the unlabeled data, thresholding these predictions based on confidence treating

them as pseudo labels, and subsequently training a new model with a combination of the

known labels plus pseudo labels on training split + unlabeled split that has been assigned a

pseudo label (depends on threshold chosen). This iterative supervised approach, although

simple, is a fair comparison for approaches making use of additional unlabeled data. Whereas

ideally a confidence threshold for assigning pseudo labels would be picked based on a

precision recall curve, in this limited study we compared thresholds at two ends, 0.1 and 0.7.

https://www.zotero.org/google-docs/?TRIUID


2.5.3 SELF-SUPERVISED PRE-TRAINING: SIMCLR

The first approach explored for incorporating additional unlabeled data was a contrastive

learning approach, SimCLR. SimCLR has been shown to benefit from large models and large

batch sizes. We compared batch sizes 256 and 1024, using a Resnet50 backbone with a

prediction head (original model using in the SimCLR paper). Contrastive pre-training using

unlabeled data was followed by supervised fine-tuning using the labeled data. The

pre-training using contrastive NT-XENT loss was done for 100 epochs on unlabeled crops

only using 4 GPUs (a ml.p3.8xlarge AWS instance)  in the case of batch size 256 and 8 GPUs

(a ml.p3.16xlarge AWS instance)  in the case of batch size 1028. We only ran this model for

100 epochs as compared to 200 epochs due to the high financial cost associated with high

GPU memory demands originating from the requirement of this method to have a large batch

size. Augmentations used for pre-training were the same as in the original paper, random crop

and color distortion. Pre-trained weights were then used as an initialization for supervised

fine-tuning on the training split, for the same number of epochs (200) as in the supervised

case.

2.5.4 SEMI-SUPERVISED PRE-TRAINING: PAWS AND SIMCLR WITH SUNCET LOSS

The inclusion of a subset of labeled data during the contrastive pre-training step has been

shown to result in faster convergence without the need to have a very large batch size, hence

allowing cheaper GPU instances to be used. We explored two approaches that fall in this

category, PAWS and SimCLR with SuNCEt loss. For both approaches, we used a relatively

small unsupervised batch size of 64 and pre-trained for 200 epochs using 3 GPUs (a

ml.g4dn.12xlarge AWS instance; there was a weird bug when trying to use 4 GPUs).

Pre-trained weights were then used as an initialization for supervised fine-tuning on the

training split, for the same number of epochs (200) as in the supervised case.

PAWS is based on assigning soft pseudo-labels to unlabeled images based on their distances

in feature space from a support set of labeled examples per class. The approach minimizes the

cross entropy loss between pseudo-labels assigned to two transformed versions of the same

image. The support set of labeled examples is only used for pseudo-label assignment in the

pre-training step. We tested the PAWS approach on both the ROV and i2MAP datasets. We

tested SuNCEt loss, a semi-supervised loss that combines the SimCLR contrastive loss with



an additional term aiming to distinguish labeled examples of different classes, only on the

i2MAP dataset.

2.5.5 CODE AND PARAMETER FILES USED

The code repository for supervised fine-tuning, including supervised fine-tuning after

contrastive pre-training can be found here. The parameter yaml file used for the ROV dataset

is here and the yaml for the i2MAP dataset can be found here.

The code repository for multi-GPU implementation of standard SimCLR can be found here

and the config file used for the ROV dataset can be found here.

The code repository for PAWS and SimCLR with SuNCEt loss can be found here.

For PAWS, the config file used for either dataset can be found here and the config file used

for SimCLR with SuNCEt loss can be found here.

RESULTS

3.0 DATASET DISTRIBUTION

Fig 1A and 1B plot the number of images per class in sorted order from highest to lowest

for the ROV and i2MAP train splits respectively. The actual class names (taxonomic

assignments at various levels) are omitted for data embargo reasons. The top 50 classes in

either dataset were retained and the rest were clubbed into a collective “unknown” class with

an assigned index of -1 resulting in a total of 51 classes per dataset. Both datasets, like most

datasets collected in the wild, exhibit a long tail distribution with many instances of common

classes and some rare classes consisting of 2 or 3 images only. Although not shown, the

validation and test sets also exhibit long-tail distributions.

3.1 DETECTION RESULTS

Table 1 shows the mAP50 scores of single-class (animal) detection starting from

MegaFishDetector weights found online. Training on even a subset of data within the

distribution of either dataset greatly increases performance. This is not surprising as deep

networks struggle with out-of-distribution data. We use our final model to extract crops from

https://github.com/tarunsharma1/ct_classifier
https://github.com/tarunsharma1/ct_classifier/blob/master/configs/ROV_resnet50.yaml
https://github.com/tarunsharma1/ct_classifier/blob/master/configs/midwater_i2map.yaml
https://github.com/tarunsharma1/simclr-pytorch
https://github.com/tarunsharma1/simclr-pytorch/blob/master/configs/ROV_train_epochs100_bs512.yaml
https://github.com/tarunsharma1/suncet
https://github.com/tarunsharma1/suncet/blob/main/configs/paws/ROV_train.yaml
https://github.com/tarunsharma1/suncet/blob/main/configs/suncet/i2map_train.yaml


unlabeled images in either dataset. Fig 1C and 1D show examples of predicted bounding

boxes on images in the ROV dataset test split and Fig 1E shows the same on an image from

the i2MAP dataset test split.

Model Tested on Precision Recall mAP50

YOLOv5m Megafishdetector
weights

ROV dataset test split 0.541 0.445 0.39

YOLOv5m model finetuned
on ROV train split initialized
from Megafishdetector

ROV dataset test split 0.74 0.74 0.783

YOLOv5m model finetuned
on ROV train split initialized
from Megafishdetector

i2MAP dataset test split 0.719 0.512 0.647

YOLOv5m model finetuned
on i2MAP train split
initialized from model above

i2MAP dataset test split 0.689 0.687 0.739

Table 1. Comparison of localization performance of single-class animal detection models on ROV and
i2MAP test sets showing that initialization from Megafishdetector weights followed by fine-tuning on the
respective training sets yields the best results.



Figure 2. Comparison of supervised and semi-supervised approaches for classification on ROV and
i2MAP datasets. (2A and 2B) Per-class recall scores on the test sets of ROV and i2MAP datasets respectively
using standard supervised learning (fine-tuning on Imagenet weights). No unlabeled data was used. Classes are
sorted in the same order (highest to lowest instances in the training set) as Fig. 1A and Fig. 1B except the
unknown (-1) class which is at the end. The dotted line reflects the balanced accuracy score for each dataset.
Supervised performance follows a long-tailed distribution. (2C) Per-class recall scores on the test set of the
ROV dataset comparing supervised and two semi-supervised approaches, standard SimCLR pre-training on
unlabeled split followed by supervised fine-tuning on the training set, and PAWS pseudo label assignment of
unlabeled data using labeled examples followed by student-teacher training. (2D) Per-class recall scores on the
test set of the i2MAP dataset comparing supervised and two semi-supervised approaches, SimCLR pre-training
with SuNCEt loss on a combination of labeled and unlabeled data followed by supervised fine-tuning on the
training set, and PAWS pseudo label assignment of unlabeled data using labeled examples followed by
student-teacher training.

3.2 CLASSIFICATION RESULTS

Once crops of animals are extracted either from our generalized animal detector in the case

of unlabeled splits, or annotated coordinates in cases of the train, val, and test splits, they are

resized to 224 x 224 and fed into a classification model to assign to one of the 51 classes (50

animal taxonomic assignments plus 1 catch-all unknown class). We compared supervised,

supervised iteratively, and self and semi-supervised classification approaches incorporating



additional unlabeled data (unlabeled split) on two real-world datasets exhibiting a long tail

distribution (Fig 1A, B).

3.2.1 SUPERVISED ONLY

To ascertain the upper limit of classification performance for the ROV dataset, we

conducted an experiment retaining labels for the unlabeled split. We trained a supervised

model on a combination of the training split (10% of the dataset) plus the unlabeled split

(75% of the dataset). Tables 2 and 3 present a comprehensive comparison of various

classification approaches, encompassing both supervised and semi-supervised learning

methods applied to the ROV and i2MAP datasets respectively. The evaluation metrics

used were the overall accuracy and the balanced accuracy score. Fig 2A, 2B show the

per-class recall scores on the ROV and i2MAP test splits respectively obtained from a

supervised Resnet50 model fine-tuned on the training split only, initialized from Imagenet

weights. The class indices are sorted in the same order as Fig 1A, 1B, i.e from highest to

lowest number of instances in the training split. It is not surprising to see that the per-class

performance also follows a long tail, as we know that deep networks perform poorly given a

lower number of training examples. The dotted line shows the balanced accuracy score in

either case.

3.2.2 SUPERVISED ITERATIVELY

To ensure a fair comparison with semi-supervised methodologies utilizing additional

unlabeled data, we leveraged the trained supervised model from section 3.2.1 to generate

predictions on images from the unlabeled split. This assessment was exclusively conducted

for the ROV dataset. Predictions were subjected to a thresholding process based on

confidence, with predictions surpassing the threshold considered as pseudo labels. While the

optimal threshold selection typically involves a meticulous precision-recall curve analysis on

the val set, we pragmatically assessed only two thresholds—0.7 and 0.1—for the sake of

expediency. As shown in Table 2, this iterative supervised approach exhibits a modest

enhancement in performance when incorporating additional data from the unlabeled split

along with their corresponding pseudo labels. However, it is imperative to acknowledge the

inherent risk of perpetuating biases learned during the initial supervised stage. Furthermore,



any bias associated with the long-tailed nature of the dataset will be further emphasized, as

only predictions with confidence exceeding the chosen threshold, usually the head classes,

will contribute to additional pseudo labels.

3.2.3 SELF-SUPERVISED PRE-TRAINING: STANDARD SIMCLR

For self-supervised contrastive pre-training approaches, we tested SimCLR using the

original NT-Xent loss function. This assessment was exclusively conducted for the ROV

dataset. Contrastive pretraining was performed using the unlabeled split of the ROV dataset

followed by supervised fine-tuning on the ROV training split and evaluation using the ROV

test split. As we can see from Table 2 and Fig 1C, this approach yielded only a modest

improvement on the balanced accuracy score in comparison to the supervised only approach,

improving balanced accuracy score from 0.443 to 0.485 while leading to a decrease in overall

accuracy from 64.97 to 56.67 when using a batch size of 256. Increasing the batch size from

256 to 1024 did not result in significant gains. Pre-training was done for 100 epochs as

opposed to 200 because of the limited improvements going from batch size 256 to 1024,

along with the high financial cost associated with GPU memory requirements for this method

that requires large batch sizes.

3.2.4 SEMI-SUPERVISED PRE-TRAINING: SIMCLR WITH SUNCET LOSS AND PAWS

To test semi-supervised contrastive learning approaches, we compared two approaches,

SimCLR using SuNCEt loss, and PAWS on both the ROV and i2MAP datasets. Both these

approaches use a combination of unlabeled data (from unlabeled split) and a subset of labeled

data (from training split) for the pre-training step. Pre-training was followed by supervised

fine-tuning as in 3.2.3. As we can see from Tables 2 and 3, performing semi-supervised

contrastive pre-training on the unlabeled split, followed by supervised fine-tuning on the

training split results in a significantly higher balanced accuracy score sometimes at a cost of

lower overall accuracy for either dataset. This is also evident from the per-class performance

of these models in Fig 2C and 2D. We see a much more balanced performance, higher

performance on rare classes plus slightly lower or the same performance on majority classes.

In the case of the ROV dataset, PAWS resulted in a significantly higher balanced accuracy

score of 0.587 in comparison to standard SimCLR with NT-XENT loss and supervised only

methods yielding balanced accuracy scores of 0.485 and 0.443 respectively. In the case of the



i2MAP dataset, we observe a similar significant gain in balanced accuracy score, nearly

doubling the balanced accuracy score of supervised only approaches from 0.217 to 0.375 and

0.393 for SimCLR with SuNCEt loss and PAWS respectively, emphasizing the efficacy of

these methods in handling dataset imbalances. SimCLR with SuNCEt loss resulted in much

closer performance gains to those obtained using PAWS. In summary, for both the ROV and

i2MAP long-tailed datasets, PAWS pre-training followed by supervised fine-tuning resulted

in the highest balanced accuracy scores sometimes at the cost of a decrease in overall

accuracy (i2MAP dataset only and not ROV) compared to supervised fine-tuning only.

Classification approach ROV dataset Overall
accuracy
(%)

Balanced
accuracy
score
(0-1)

Supervised only - fine-tuning using training split + retaining labels
of unlabeled split (max upper limit possible).

79.8 0.684

Supervised only - fine-tuning using training split starting from
Imagenet.

64.97 0.443

Supervised iteratively - fine-tuning using training split + pseudo
labels on unlabeled split thresholded at 0.1 confidence.

64.40 0.483

Supervised iteratively - fine-tuning using training split + pseudo
labels on unlabeled split thresholded at 0.7 confidence.

68.78 0.472

SimCLR - Contrastive pre-training with NTXent loss on unlabeled
split with batch size 256 for 100 epochs, followed by supervised
fine-tuning using training split.

56.67 0.485

SimCLR - Contrastive pre-training with NTXent loss on unlabeled
split with batch size 1028 for 100 epochs followed by supervised
fine-tuning using training split.

53.03 0.473

PAWS - Contrastive pre-training on unlabeled split with
unsupervised batch size 64 for 200 epochs followed by supervised
fine-tuning using training split.

66.04 0.587

Table 2. Comparison of supervised and semi-supervised classification performance on the ROV test set. As the
data, including the test set, follows a long-tailed distribution, a balanced accuracy score, the macro average of
recall scores per class, is a better metric than overall accuracy. As additional unlabeled data was used for the
semi-supervised approaches, for fair comparison, we use pseudo labels on unlabeled data obtained by
thresholding predictions from a supervised model trained on the training split and retrain a model in a
supervised manner using both labeled and pseudo-labeled data. PAWS on unlabeled data followed by supervised



fine-tuning gives us the best performance. Although the overall accuracy of PAWS is similar to the
supervised-only approach, we see a significantly higher balanced accuracy score.

Classification approach i2MAP dataset Overall
accuracy
(%)

Balanced
accuracy
score
(0-1)

Supervised only - Fine-tuning using training split starting from
Imagenet

62.74 0.217

SimCLR - Contrastive pre-training using SuNCEt loss on unlabeled
split followed by supervised fine-tuning using training split,
unsupervised batch size: 64

52.56 0.375

PAWS - Contrastive pre-training on unlabeled split followed by
supervised fine-tuning using training split, unsupervised batch size:
64

49.58 0.393

Table 3. Comparison of supervised and semi-supervised classification performance on the i2MAP test set. As
the data, including the test set, follows a long-tailed distribution, a balanced accuracy score, the macro average
of recall scores per class, is a better metric than overall accuracy. PAWS on unlabeled data followed by
supervised fine-tuning gives us the best performance. Although the overall accuracy of PAWS is lower than the
supervised-only approach, we see a significantly higher balanced accuracy score, almost double of the
supervised-only model. In comparison to the results on the ROV dataset, we see that SimCLR with a SuNCEt
loss performs much better than the standard SimCLR with a NT-XENT loss.

DISCUSSION

We demonstrate that in the case of classification in large underwater datasets consisting of a

subset of labeled data and a large amount of unlabeled data, semi-supervised pre-training

methods such as SimCLR with SuNCEt loss and PAWS, followed by supervised fine-tuning

using the labeled data, results in a significantly more balanced performance across classes

(Fig. 2C, 2D and Table 2 and 3) when compared to supervised only baselines. This is

especially apparent in cases of real-world datasets exhibiting a long-tailed distribution (Fig.

1A, 1B) as is most often the case with datasets collected in the wild. We demonstrate that

splitting the localization and classification steps allows for training a robust generalized

single-class detector (Fig. 1C-E and Table 1) which helps address the open-world problem for

localization. This subsequently allows training a suite of different classifiers depending on

the task at hand, either supervised only for the best results on common classes,



semi-supervised for the most balanced performance, classifiers focusing on few-shot learning

for rare classes or classifiers addressing the open-world problem for classification.

4.1 ADVANTAGES OF SEPARATING DETECTION AND CLASSIFICATION STAGES

The deliberate separation of the localization step from the classification step presents

several advantages compared to the conventional integration of these stages in standard

object detectors, whether single-stage or two-stage. Training a single-class detector enables

the amalgamation of data from diverse datasets by consolidating labels into a singular

'animal' class. This approach substantially enhances the model's generalizability and

robustness. The widespread adoption of Megadetector, a generalized animal detector for

camera-trap data on land, underscores the efficacy of this methodology. Beyond facilitating

the integration of multiple datasets, this approach proves advantageous in the context of

open-world detection. In scenarios involving previously unidentified species, a plausible

occurrence in deep ocean exploration, our generalized detection model exhibits a higher

likelihood of localizing the animal, having encountered diverse animal types from different

backgrounds. Subsequently, the classification model can address the open-world scenario for

classification, employing anomaly detection methods. In contrast, standard multi-class object

detectors may entirely miss the animal due to a lack of resemblance to a limited training set

of animal classes. Unlike self-supervised object detection approaches, which can be

computationally intensive and offer marginal improvements over standard object detectors

(Huang et al., 2022), the segregation of localization and classification steps not only

capitalizes on the robustness of a single-class detector but also enables the exploration of

self-supervised and semi-supervised learning strategies for utilizing unlabeled data in

classification. These approaches are typically less computationally demanding and have

demonstrated promising results. An additional benefit arising from the use of a single-class

detector is the potential improvement in downstream tasks such as tracking, attributed to the

absence of label switches from a multi-class object detector.

4.2 A MORE ROBUST AND BALANCED PERFORMANCE FROM PRE-TRAINING

The utilization of unlabeled data for pre-training exposes models to the specific imaging

domains they are intended to be trained on, enabling the acquisition of general features

unique to marine imaging and marine animals. Incorporating random crop augmentation



further facilitates the association of disparate segments of animals, even those that may

exhibit gelatinous and structureless characteristics. In contrast to learning exclusively with

labeled data, as observed in supervised cases, which compels the model to focus on features

for maximal class distinction, incorporating unlabeled data is more likely to foster the

learning of more general and robust features. Notably, prior studies have demonstrated that

off-the-shelf semi-supervised models exhibit enhanced robustness to class imbalance

compared to their fully supervised counterparts (Liu et al., 2022). These models also

demonstrate improved performance in out-of-distribution scenarios, cross-task settings, and

rare class identification, and exhibit a balanced feature space equidistant from all classes and

not dominated by the majority class as in supervised learning (Kang et al., 2020). Our

findings, based on two real-world underwater imaging datasets characterized by long-tail

distributions, align with these observations. Specifically, our approach involves decoupling

localization from classification and subsequently employing semi-supervised learning

methods for the classification component. This strategy proves effective in leveraging

additional unlabeled data to enhance overall performance. Notably, our results indicate a

doubling of balanced accuracy in the case of the i2MAP dataset, which, despite its relatively

small size and the small, blob-like appearance of individual animals due to their distance

from the vehicle, underscores the efficacy of our approach. Our approach yields balanced

results compared to a supervised approach that perpetuates biases, particularly beneficial in

low-data scenarios. This is attributed to its capability to extract more instances of rare classes

from unlabeled data, thereby addressing the challenges associated with limited data

availability.

4.3 MODEL ARCHITECTURES DIFFER SLIGHTLY

As detailed in the methods section, it is crucial to note that the original models employed

in the SimCLR and PAWS studies, as well as the models utilized for our semi-supervised

pre-training, deviate from the standard Resnet50 configuration. Specifically, they feature a

Resnet50 architecture augmented with an additional prediction head. While the ideal

comparison involves assessing identical architectures across both supervised and

semi-supervised approaches, it is improbable that the observed improvement in balanced

accuracy scores can be solely attributed to the presence of the supplementary prediction head

layer in these models. The exploration of a direct comparison using identical architectures is

an ongoing aspect of our research.



4.4 SEMI-SUPERVISED PRE-TRAINING WORKS BETTER THAN SELF-SUPERVISED

PRE-TRAINING FOR IMBALANCED DATASETS

From section 3.2.4, it is clear that semi-supervised pretraining approaches that use a

combination of unlabeled and labeled data for pretraining, such as SimCLR with SuNCEt

loss and PAWS, result in significantly higher balanced accuracy scores on the long-tailed

distributed test sets for both the ROV and i2MAP datasets. These approaches also require

significantly lower compute cost and time in comparison to self-supervised pretraining

approaches like SimCLR. One can see how providing some supervisory signal by using a

subset of labeled data, can result in faster convergence. We have shown that the weights

converged onto by using the additional supervisory signal, result in a greater robustness to

dataset imbalance, leading to significantly higher balanced accuracy scores after supervised

fine-tuning in comparison to self-supervised pre-training approaches, supervised only and

supervised iteratively on two real-world long-tailed underwater datasets.

4.5 UNANSWERED QUESTIONS AND FUTURE WORK

An intriguing avenue for exploration is whether semi-supervised pre-training yields a more

advantageous starting point for fine-tuning when the unlabeled set encompasses images from

classes distinct from those under consideration for classification. To investigate this, we

amalgamated classes outside the top 50 classes from the training splits into a unified

'unknown' class. The hypothesis posits that pre-training with other animals from the same

domain might yield more favorable initial parameters for fine-tuning compared to entirely

dissimilar parameters, such as those derived from Imagenet weights. The forthcoming

research will involve experiments with and without the 'unknown' class, probing into the

efficacy of more relevant starting points for fine-tuning, such as employing weights from

supervised training on the ROV dataset for subsequent fine-tuning on the i2MAP dataset.

Another dimension for exploration involves assessing how the performance disparity between

supervised-only models and semi-supervised models evolves with the scaling of labeled data.

Previous research indicates that selecting positive pairs for contrastive learning based on

temporal and contextual similarities, rather than augmenting the same image twice to form

the positive pair, leads to superior performance across various contrastive loss functions



(Pantazis et al., 2021). Given the availability of video data, we contemplate incorporating a

similar strategy for positive pair selection to investigate its potential to further enhance

balanced performance. These areas of inquiry contribute to our ongoing efforts in refining

and advancing the understanding of self-supervised and semi-supervised learning methods

applied to the context of underwater image classification.

CONCLUSIONS/RECOMMENDATIONS

In this paper, we have demonstrated a pipeline for object detection in cases of large

underwater datasets exhibiting a long tail distribution. We list the benefits of splitting object

detection into its components: single-class localization followed by classification of extracted

crops. We showed that we were able to achieve a significantly higher balanced performance

across classes when using semi-supervised pre-training on unlabeled data followed by

supervised fine-tuning in comparison to supervised fine-tuning only. This method allows the

usage of unlabeled data along with a subset of labeled to improve balanced classification

performance. This is especially useful for improving rare class classification performance in

the cases of underwater datasets where good performance on all classes might be desired,

unlabeled data is relatively easy to obtain, and data annotation can be tedious. We

demonstrate that our approach works using two real-world underwater datasets. We also show

that the semi-supervised pre-training approach PAWS, resulted in doubling the balanced

accuracy score of the supervised-only model in the case of the i2MAP dataset, a relatively

small dataset wherein individual animals were quite small and blob-like. These results are

quite promising and with some additional exploration of scaling up labeled datasets, could be

useful to incorporate into the classification models used at MBARI.
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