
 1

Implementing Arrays and Macros for TethysL for a More

User-Friendly Mission Scripting Language

Riley Rettig, Wellesley College

Mentors: Carlos Rueda, Brett Hobson

Summer 2019

Keywords: Domain-Specific Language, Autonomous Underwater Vehicle, Tethys,

TethysL, Mission Scripting

ABSTRACT

TethysL is a Domain-Specific Language being developed at MBARI to promote

readability of mission scripts for the Tethys family of Long-Range Autonomous

Underwater Vehicles (LRAUV). TethysL is intended to be more user-friendly than XML,

which is the core language used by the overall LRAUV mission execution framework.

Along with a web-based editor, the TethysL system offers operators an integrated

environment for authoring LRAUV mission scripts even with little programming

experience. In order to continue the goal of improving readability and reducing repetition,

arrays and macros were decided to be helpful TethysL language extensions for mission

script authors. We describe the implementation and an evaluation of these extensions.

These additions not only have significantly decreased the length and complexity of a

number of LRAUV mission scripts, but also, based on user feedback, have been shown to

make the authoring process more user friendly and less error-prone.

 2

INTRODUCTION

A Domain-Specific Language (DSL) is a language specialized to a particular

domain (Fowler and Parsons, 2010). DSLs can be helpful for simplifying the definition of

complex tasks or making programs more readable and user-friendly. Mission scripting of

Long-Range Autonomous Underwater Vehicles (LRAUV) is an example of a concrete

domain that can be benefited by a DSL approach. Although XML has traditionally been

the general mechanism to define missions in the LRAUV framework, a new DSL, named

TethysL, is being developed at MBARI as an alternative to XML. The central motivation

for this effort has been to offer mission script writers and maintainers a friendlier and less

error-prone language. XML is a very powerful language for machine-based processing,

however, it is far from ideal at the user level in terms of readability and authoring especially

for users with little or no experience with XML.

Figure 1. The workflow to how mission scripts are created and stored, then deployed on the LRAUVs
(“Makai” used as an example), and accessed by the TethysDash coordination system for operators to
parameterize and submit during vehicle deployments.

 3

TethysL has significantly evolved since the project started in 2016, but it is still

considered under development. In this project, we focused on extending TethysL to include

features that, even with no direct correspondence in XML, would reduce boilerplate code

and ultimately create shorter, more readable mission scripts. The decision of what language

extensions we should implement was based on what was possible within the context of the

underlying framework and what would help make TethysL a successful DSL.

The overall flow for how mission scripts are deployed on the vehicle is shown in

Figure 1. Essentially, a mission script is a parameterized template for what the vehicle is

going to do. Specific parameter values can be changed later, but these scripts will tell the

vehicle what to do during a deployment. These scripts are traditionally written in XML,

using an XML or regular text editor according to user preferences, or generated through

the TethysL system (that is, initially written in the TethysL language). Regardless of the

source, the mission scripts in XML are maintained in a Bitbucket repository. From here,

all the XML files are downloaded to the vehicle before deployment. When the vehicle is

in the water, operators can choose which mission is run and set the parameters for the

mission script through the Dash3 User Interface1. If the vehicle is nearby, cell service can

be used to communicate to it, otherwise Iridium allows communication via satellite.

As already said, if using the TethysL editor, the TethysL file is translated to XML,

but nothing more (other than also storing it at Bitbucket for reference convenience) is

currently done with the TethysL file. This scheme mainly responds to a need to use the

existing LRAUV framework without changes. Even though we implemented arrays and

macros as the TethysL level, there is no direct concept of these extensions in the LRAUV

XML Schemas and, consequently, they are not reflected, for example, in the Dash3

interface. The features we chose must be able to be translated into an XML file that follows

the schemas in order to be a valid mission.

The LRAUV mission execution framework follows the State Configured Layered

Control approach described in Godin et al. 2010. The LRAUV XML Schemas determine

the formal structure of valid mission scripts, which can be very simple or complex

depending on the needed logic at the mission level. Figure 2 shows a few of the main

1 https://okeanids.mbari.org/dash3/

 4

elements of the LRAUV mission model originally described by Godin et al. 2010 that are

relevant to the implementation of arrays and macros. The mission element defines a

mission, whose body usually begins with some DefineArg elements (“arguments” in

TethysL). Here, variables can be declared with default values that can be changed later

when the mission is parametrized in Dash3. An aggregate is typically a group of behaviors

that the vehicle can run. These behaviors can be run in different ways, such as in sequence

or in parallel to other behaviors. The behaviors themselves are what makes the XML

schemas a useful scripting language in that they don’t have to be defined in the mission

script, but are actually like something you can pull from a library of common behaviors

that allows you to control the vehicle. The behavior you will see as an example in this paper

is Guidance:Waypoint, which allows the vehicle to move to different coordinates using

longitude and latitude arguments. TethysL follows this framework but eliminates

boilerplate code to make it more readable. Our features must also follow this framework.

 In their paper on Domain-Specific Languages in

Practice, Hermans F. et al. identify six factors which lead to a

successful DSL and conduct a survey to measure the success

of their own DSL, ACA.NET. These factors are learnability,

usability, expressiveness, reusability, development costs, and

reliability. These could be used to measure the success of

TethysL features and, while TethysL is in development,

answer the question of whether it will be a successful DSL.

An initial prototype of the TethysL language was

developed by Eli Meckler as an MBARI Summer Internship project in 2016. The

translation from TethysL to XML is made up of parsing (including Abstract Syntax Tree

generation), semantic validation, and translation (Meckler, 2016). The syntax and parsing

of TethysL is done using the FastParse library (Haoyi, 2019). During parsing, an Abstract

Syntax Tree (AST) is created, which captures each syntactic structure as a node in memory.

In AST validation, the AST is traversed to ensure that the script makes semantic sense; this

includes type checking, resolving names, and more. Finally, once it is ensured that the

mission script is valid TethysL, it is translated to an equivalent XML file which can be

uploaded to the Bitbucket repository and deployed on the vehicle. After deciding on arrays

Element

Mission

DefineArg

Aggregate

Behavior

Figure 2. A few important
elements in the LRAUV
framework, adapted from
Godin et al. 2010.

 5

and macros through user feedback and discussions, these features were implemented

following this same workflow.

MATERIALS AND METHODS

TethysL intends to offer a simpler, more readable syntax compared to XML.

However, at the semantic level, this goal is ultimately restricted by the existing LRAUV

XML schemas. Although these schemas allow for complex mission scripts, it, at the same

time, limits what types of language extensions can be added to TethysL. In particular, when

considering what general purpose programming languages typically provide (for example,

in terms of control structures), we cannot simply pretend to be able to add any such features

in TethysL without taking into account the actual capabilities supported by the XML

schemas in the LRAUV execution framework. Some desirable features can be incorporated

only at the TethysL level, while others would also require modifications in the LRAUV

framework itself, both to the XML schemas and the corresponding support in the execution

logic.

While choosing the most useful extensions for TethysL, discussions with the

mission script authors were critical. Features that theoretically could be eloquent would not

be useful if they were superfluous to the mission script authors, in which case, they would

only make the language needlessly more complex, going against the original goal of

TethysL. Arrays could be useful because a number of missions involve cycling through

waypoints made up of latitudes and longitudes. All of the latitudes, for example, could be

stored in one variable, rather than multiple variables for each waypoint. This prevents many

variables with similar names (latitude1, latitude2, etc.). Additionally, in talking with

mission scripts authors, it was realized that arrays could be even more helpful. One author

in particular has run missions that would collect many scientific ESP2 samples and

therefore had up to 60 variables that had the same name root. This mission, named

isotherm_depth_sampling, has 7 sets of information that are required for each of these

samples. That means there are 420 variables created which could be reduced to 7 arrays.

2 The Environmental Sample Processor - https://www.mbari.org/technology/emerging-

current-tools/instruments/environmental-sample-processor-esp/

 6

During user testing for arrays, we realized that macros would be a natural extension for the

project. In this same mission, there was an aggregate for every sample. These aggregates

were identical other than the variables or array access indices that varied with each sample,

so the user had to copy the first aggregate and paste it 59 times, changing the variable

names or array access indices manually each time. If we just created a special variable that

kept track of the current sample number, we could access the array at the correct index for

each sample and reduce the number of aggregates per sample to a single generalized one.

This would save rewriting 59 aggregates and many lines of code.

DESIGN

Experienced programmers and mission authors can learn essentially any syntax for

the arrays and macros; however, we wanted to create something that would be very familiar

Figure 3. An example of a simple mission using arrays shows the two types of array declarations as well as
array accesses.

Figure 4. An example of a simple mission using arrays and macros shows the syntax for a macro header
and block.

 7

and easy to learn for new operators. TethysL is meant to be readable so that anybody with

a little programming experience could look at the mission scripts and get an idea of what

they do. For this reason, we chose the syntaxes shown in Figure 3 and 4 for arrays and

macros respectively.

For arrays, we decided to allow the user to pick their own range to allow flexibility

according to what the user prefers. For example, programmers tend to zero-index their

arrays, but scientists start their samples at 1 and may prefer that the arrays reflect this. We

also limited the size of arrays to 100 elements, to prevent the accidental declaration of large

amounts of variables. Arrays can be declared in two ways. The author can use a simple

expression on the right-hand side as shown in line 3. This creates an array where every

element is set to that default value. Alternatively, the author can write out explicitly what

each value in the array is, as shown in line 4. Array accesses are designed as expected,

simply with brackets and the index of the element desired. My mentor, Carlos Rueda, also

added the option of declaring sub-ranges, as shown in Figure 5. This came after a

discussion that an operator may want to specify the first few values for testing purposes

but have the rest of the values be a default value. The elements can then be accessed at any

index of those ranges.

Figure 5. An adjustment was made to array declarations to allow for declaring subranges of an array.

In designing the macros, we wanted something that was fairly simple, so that those

who don’t know what macros are could easily learn to read and write them. Aggregates are

the most common element of mission scripts which would benefit from the macro addition

because there is often an aggregate for each element in an array. For this reason, we decided

to implement macros such that the body of the macro block is only ever an aggregate. The

header itself declares the macro variable, whose name must be prefixed with a “$” to

highlight its special meaning, as well as the range of numbers which will be substituted

 8

into each aggregate. In the translation to XML, the aggregate will then be repeated through

that range, substituting in each number within that range where the macro variable is found.

IMPLEMENTATION

Implementing the arrays and macros applies the same workflow followed by

Meckler when TethysL was first created, that is, parsing, AST validation, and translation.

The new consideration in our case, however, is that during translation there is no direct

equivalent of the array and macro constructs in the XML schemas; instead, as already

explained, we expand these constructs into variables and aggregates in XML accordingly.

As part of this workflow, we also included helpful and relevant error messages as

appropriate.

Arrays

The parsing had to be

expanded for arrays to recognize

declarations (“Lat[1..2]”), add

array declaration expressions (“[1

degree, 2 degree]”) as a valid

expression, and allow for array

accesses (“Lat[1]”). This was

done using FastParse (Haoyi,

2019) and converted into an

Abstract Syntax Tree. Semantic

checks that have to be done

included units, size, and bounds

checks. All elements of an array

must have the same units, arrays

cannot be assigned to non-array

type variable, arrays must not be

greater than 100 elements large3,

3 Limit determined from user feedback.

Figure 6a. An array declaration using a default value is
expanded to XML during translation.

Figure 6b. An array declaration using explicit values is
expanded to XML during translation.

Figure 6c. An array access is translated to XML.

 9

the lower bound must be less that the upper bound during array declarations, and array

accesses must be within the bounds of the arrays. These are done by keeping the info for

an array’s bounds attached to the symbol table entry which keeps track of variable names

and types. If any of these rules are broken, an appropriate error is reported to the user after

compilation failure, giving the expected result, found result, as well as location of the error.

When arrays are translated into XML, each element is treated like a unique variable whose

name is the root of the array plus its index in the array. This expansion from TethysL to

XML is shown in Figure 6a and 6b. This creates an issue if a user declares a variable that

ends in a number and an array where the translation to XML would create a variable with

the same name. For example, a user declares someVar1 as well as the array someVar[1..2].

The variable someVar1 would be overwritten in XML by the first element in the array. For

this reason, we added another check to AST validation that would review the names of

arrays and return an error if they would overwrite existing variables in the mission. This is

also done the other way around, so all variables are checked to see if they would overwrite

any of the variables that will be created in XML by an array. Array accesses are similarly

translated so that the variable used in XML is the root of the array plus the index that is

being accessed as shown in figure 6c.4

Macros

For macros, we stepped all the way back to the lexer and the grammar definition.

We introduced “macro” as a new keyword to be used in the parser to initiate a macro block,

consisting of the header and an aggregate within the block. A TethysL file can define either

a mission or an aggregate. In the latter case, the aggregate is referred to as top-level;

however, aggregates can also be defined and used as an element within a mission or top-

level aggregate. These non-top-level aggregates are the only construct that is allowed

within a macro block. During AST validation, this aggregate is essentially validated the

same way as other non-top-level aggregates just taking into account any replacements of

the macro variable. Additionally, the bounds specified in the heading of the macro are

checked, both ensuring that the upper bound is greater than the lower bound and that if

4 This compilation was then further expanded on by my mentor to allow setting particular
sub-ranges in an array declaration.

 10

there are array accesses within the macro, the bounds of the macro are within the bounds

of the array. The macro variable that is declared in the header is saved in a name resolver

object to indicate when the program is within a macro block and what the current macro

variable is. This information is an optional non-sequence variable, so either the program is

in a single macro or it is not, but as of now, no nested macros are allowed. An error will be

thrown if a user tries to nest them. Within a macro block, macro variables can be used in

array accesses, names of aggregates, and in simple number expressions. Each of these must

be identical to the macro variable declared in the header and if used in the name of an

aggregate, must only appear at the end of the name (macro variables as a prefix or in the

middle of the name are not supported yet). Like the arrays, macros must also not exceed

100 iterations. Translation from TethysL to XML for macros is shown in Figure 7. For

each number in the range of the bounds described in the header, the aggregate within the

macro block is translated to XML with each macro variable occurrence being replaced by

the number. This expands the macro into multiple aggregates and substitutes in the correct

value for each variable.

Figure 7. A TethysL macro block and its translation to XML.

 11

RESULTS AND USER FEEDBACK

After implementing arrays and macros, discussions with Yanwu Zhang, one of the

mission script authors, were used to gain feedback as well as qualify our results. We also

used mission script length to quantify our results, as fewer lines is an indication that the

scripts will be more readable and allow users to more easily understand what the vehicle is

doing. It is important to remember that improvements to TethysL will not impact the actual

execution speed of missions on the LRAUV because all TethysL files are compiled into

XML files. The readability of TethysL and any following language extensions are syntactic

sugar meant to improve user experience. Therefore, results are dependent on this user

experience and what is most readable for the operators. A few of the success factors for

DSLs include Learnability and Usability (Hermans F et al.). Through user feedback, we

can begin to speculate whether arrays and macros increase these factors for TethysL,

making it more likely to be a successful DSL.

Three mission scripts were chosen based on frequency of use and potential impact

by arrays and macros. We then edited these to use arrays and macros and recorded the new

mission script lengths shown in Figure 8; Figure 9 shows these numbers as graphs.

The mission isotherm_depth_sampling was chosen due to the large number of

scientific ESP samples involved. For this reason, the length of the mission was the most

impacted by macros and arrays of all three missions chosen. The other two were sci2 and,

the more recently created, sci2_flat_and_level. These both saw improvement by the array

and macro extensions, although it was less dramatic as there were only 14 variables (7

longitude and 7 latitude) and 7 aggregates used as waypoints which could be condensed

into 2 arrays and 1 macro. This contrasts the 420 variables and 60 aggregates in

isotherm_depth_sampling which were reduced to 7 arrays and 1 macro. However,

including comments and white space, there was still a noticeable difference in readability,

Mission XML TethysL TethysL+arrays TethysL+arrays+macros

isotherm_depth_sampling 7623 6220 4131 1277

sci2 286 311 251 208

sci2_flat_and_level 454 449 382 330

Figure 8. Three mission scripts were chosen and edited to use macros and arrays; the length of the scripts in
number of lines was recorded.

 12

even with these smaller scripts. A number of mission scripts use ESP samples or waypoints,

therefore the potential to reduce the number of lines in LRAUV missions is high.

Through discussions with Zhang, we received feedback that array and macros

would help operators save time and make less errors that often come from having to copy

and paste code. This turns TethysL into a more reliable language, as it limits potential user

errors.

Macros and arrays are the first language extensions in TethysL which deviates from

to original XML schemas. Until now, each element in TethysL had an equivalent one in

XML. Operators who are accustomed to using XML have even more incentive to switch

to using TethysL because there are now tools for them not available in XML and they can

express what they want to vehicle to do in fewer lines of code. Explicitly, they no longer

have to copy and paste aggregates or variables in order to just change one number.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

isotherm_depth_sampling

XML

TethysL

TethysL+arrays

TethysL+arrays+macros

0

50

100

150

200

250

300

350

sci2

0

100

200

300

400

500

sci2_flat_and_level

Figure 9. The number of lines in each mission decreased with the addition of arrays and with the addition
of macros.

 13

The extra features make TethysL more readable, and therefore more learnable to

those who do not know the LRAUV mission framework. Operators who already understand

the ideas of arrays and macros will be able to more quickly get the idea of what a vehicle

is doing given a macro or array, rather than a whole bunch of aggregates or variables.

DISCUSSION

The reason we chose to implement what we did and where we did it, depended on

several factors and could have been done differently if we were not limited by the

framework for LRAUV missions. One example of this is the reason we chose macros rather

than implementing something more powerful like functions like you would see in a

general-purpose programming language. Functions are not supported in the XML schemas

and there would be no way to implement them in TethysL so that it is equivalent to the

XML. Additionally, functions would not even be able to be implemented according to the

underlying LRAUV mission script format described in Godin’s paper. This model can be

seen as a state machine, which calls behaviors, but there is no real concept of functions in

a state machine. Since macros are simpler and can be expanded to XML, this was a

reasonable alternative. The macros were also a natural continuation of arrays, in fact, since

the benefits of macros are almost completely dependent on arrays and vice versa, the two

features could be considered a single array-macro feature. It would be a common workflow

for similar variables to be added to an array and then have a macro that does something

with each of these elements, so the two really go hand in hand. This is also part of the

reason we stuck to only allowing aggregates in macros, as this would be the most

commonly-used feature.

As an alternative to implementing arrays and macros in TethysL, they possibly

could have been added to the XML schemas instead and then implemented in TethysL.

Arrays would be possible, but macros may not be possible at that level. If they were

implemented in the XML schemas, this would have kept XML and TethysL more directly

comparable. However, given the longer-term goal of getting rid of the XML step and

translating directly to the C++ framework, there would be no use in continuing support for

the XML schemas. Furthermore, if new features were implemented on both ends, operators

that are used to XML would not have as much incentive to switch over to TethysL, instead

 14

just learning the new features in XML. This would make the transition to TethysL as the

default scripting environment more difficult.

CONCLUSIONS/FUTURE WORK

Overall, the array-macro extension has worked to give more usability to TethysL

and hopefully in the future will be used by mission script authors to write simpler and

more readable missions scripts. Building on the codebase that has been in development

since 2016, starting with the initial prototype put together by Meckler (2016), we were

able to build new features to increase the usability and learnability of TethysL. These two

are both important factors to a DSLs success according to Hermans F. et al. and will

contribute to encouraging operators to switch to TethysL from the currently used XML.

Although XML allows for the required functionality, its usability from the user point of

view is far from ideal and TethysL aims to solve this. The array-macro extension has

helped to work towards this goal by allowing for shorter, more readable mission scripts.

There are still many ideas to explore to continue the development of TethysL. One

of the larger, long-term goals for TethysL is to cut out the XML stage and translate directly

to the C++ framework. In this case, new modules would be required in the LRAUV

framework to directly process the TethysL format. Before this is done, it would be a good

idea to include further testing to ensure the equivalence between TethysL and XML.

Currently operator precedence and expression evaluation is being looked into and further

developed to match the underlying LRAUV framework, but still has to be finished. On top

of these more fundamental projects, it would be helpful for mission script authors to have

even more tools. This could be more language extensions; for example, structs for

composite data elements would be helpful in storing latitude and longitude variables in a

single variable entity. More discussions with users would be helpful in facilitating this to

choose more useful extensions.

ACKNOWLEDGEMENTS

Firstly, I would like to thank Carlos Rueda for all of the support in this project and

teaching me about the many facets of the TethysL translator. His passion and patience

helped to make this project possible. I would also like to thank Brett Hobson for welcoming

 15

me to MBARI and into the LRAUV team for the summer. A big thanks to George

Matsumoto and MBARI for making this internship program possible.

References:

Godin, M. A., Bellingham, J. G., Kieft, B., McEwen, R. (2010). Scripting
language for state configured layer control of the Tethys autonomous
underwater vehicle. Presented at the OCEANS, 2010 MTS/IEEE, Seattle,

OR.

Haoyi, L. (2019). Scala FastParse API. lihaoyi.com/fastparse . Last accessed:
August 12, 2019

Hermans F., Pinzger M., van Deursen A. (2009) Domain-Specific Languages in
Practice: A User Study on the Success Factors. In: Schürr A., Selic B.
(eds) Model Driven Engineering Languages and Systems. MODELS 2009.
Lecture Notes in Computer Science, vol 5795. Springer, Berlin,

Heidelberg

Martin Fowler, Rebecca Parsons. (2010) Domain-Specific Languages. Addison-
Wesley, 2010.

Meckler, Eli. (2016). TethysL: A Domain-Specific Language for LRAUV

Mission Scripts.

