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ABSTRACT  

Humpback whales produce collections of intricate patterns and unique calls known 

as songs. In order to study these complex songs, consistent classification and 

measurement of humpback whale song features are necessary. Currently, there is 

no standard classification to apply to humpback songs. A well-established lexicon, 

or terminology, of humpback calls will allow scientists to compare and share their 

work across the world which could open a window into the culture and 

communication of humpback whales. Topic modeling, an unsupervised machine 

learning technique, can be used to consistently and objectively automate the 

labeling of humpback units. This paper specifically explores coherence as an 

evaluation metric for topic modeling. Optimizing the topic model will allow for 

more consistent and reliable results, and coherence has the potential to further 

improve the topic model. 
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INTRODUCTION  

The broad and complex variety of vocalizations of the humpback song has 

continually captured the interest of researchers and scientists. With the expansion 

of acoustic technology, researchers have been able to further study the intricacies 

of the humpback song [1]. Figure 1 displays a spectrogram (a time, energy, and 

frequency plot) of a single male humpback whale song.  

 
Figure 1: A spectrogram of a single male humpback song demonstrates a 15 

minute long song that is repeated twice in this song session. A spectrogram is a 

time, frequency, and energy plot.  

 

The smallest distinguishable element of a humpback song is defined as a unit. 

Multiple units together create a phrase. The next level of categorization is a theme 

which consists of a sequence of phrases. Lastly, multiple themes describe an 

individual song [2]. Individual humpback songs can range from 7 minutes to 30 

minutes each, and songs can repeat multiple times to create a song session that can 

last up to 24 hours [3]. By studying years of recordings of humpback whales, 

researchers have discovered that humpback songs evolve over time as humpbacks 

change their own songs by introducing new song units or modifying the order and 

repetition of their own song [4].  

These discoveries have resulted in an interest in understanding how humpback 

songs have changed over time. In order to answer this question, humpback whale 

songs need to be analyzed and calls need to be classified in a consistent, well-
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established method. If we can learn how humpback songs have evolved over time, 

years’ worth of humpback song data could expand and further progress our 

understanding of humpback whale culture and communication. However, there is 

no universal method to systematically distinguish one call from another [1]. The 

current method of hand labeling and classifying data is time consuming and 

subjective. Scientists across the globe are using their own classification methods 

which have resulted in inconsistent identification of distinct calls [5]. The lack of a 

standard lexicon, or a catalog of unique call types, inhibits the comparison of 

humpback data across different studies and locations. Developing a way in which 

to consistently distinguish unique calls will allow humpback research to expand 

and flourish.  

Machine learning presents a solution to analyze humpback song in a more efficient 

and less subjective manner that will further the development of a common lexicon. 

There are two types of machine learning: supervised and unsupervised. Supervised 

machine learning requires labeled data to train and learn while unsupervised 

machine learning does not [6]. This paper focuses on topic modeling, a class of 

unsupervised machine learning, in order to help create an objective and efficient 

method to analyze humpback song. Specifically, this paper demonstrates how 

coherence can be a useful metric to optimize the topic model. 

 

DEFINITIONS AND METHODS 

TOPIC MODELING  

To increase both the efficiency and objectivity of labeling humpback data, topic 

modeling can be used. This unsupervised machine learning method analyzes data 

into clusters or patterns that can be more easily recognizable and interpreted. Topic 

modeling originated from natural language processing in the human language and 

is typically used to organize massive collections of textual data [7]. Specifically, a 

type of probabilistic topic modeling known as Latent Dirichlet Allocation (LDA) 

was used. This generative, imaginary random process assumes that documents 

contain multiple topics [8]. Figure 2 demonstrates the generative random process 
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of topic modeling through black and white images [9]. In this example, each image 

represents a document and each pixel represents a word. The intensity of the image 

is the frequency. Figure 2a displays the set of 10 defined topics, and Figure 2b 

consists of images created by randomly mixing the topics. The pixels in Figure 2c 

are constructed by sampling the LDA distribution of the topics for each pixel and 

assigning it a random pixel from the selected topic. Figure 2c also introduces the 

parameter of number of iterations. The clarity and distinguishability of the topics 

improve with a greater number of iterations, but levels out at approximately 50 

iterations.  

 

 

 

 

Topics used to create image mixtures

A subset of images created by mixing topics

A 

B 
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Figure 2: Images created by the generative random process of topic modeling in 

which an image is a document, a pixel is a word, and the intensity is the frequency. 

(a) The horizonal and vertical lines in the images represent the 10 defined topics. 

(b) A set of images that were created by randomly mixing the topics. (c) Topics, 

or pixels, were randomly selected for each document. Iterations of this random 

sampling demonstrate how the clarity can improve with a greater number of 

iterations, but only up to 50 iterations at which time the clarity seems to remain 

constant [9]. 

 

The input for a probabilistic topic model is a set of documents with multiple topics 

in each. The output consists of two probability distributions. The first output is a 

probability distribution of words over topic which is the probability that a specific 

word is in a particular topic. The second output of the topic model is the probability 

distribution of topics over documents which is the probability that a particular topic 

is in a document. This paper focuses on the second probability distribution 

comprised of topics over documents. The inputs and outputs of the topic modeling 

process are shown in Figure 3. 

Topics after 0 iterations

Topics after 1 iterations

Topics after 5 iterations

Topics after 10 iterations

Topics after 50 iterations

Topics after 100 iterations

C 



 

 6 

 

Figure 3: A diagram of the process of topic modeling. The input is a set of 

documents with different topics. The output is two probability distributions. The 

first (1), represented by f, is the probability that a word is in a specific topic. The 

second (2), represented by q, is the probability that a topic is in a specific 

document. 

 

In LDA, there are two important variables that describe the outputs as shown in 

Figure 3. f is the distribution of words in the vocabulary and q is the distribution 

of topics in the documents. To obtain these outputs, the Dirichlet hyperparameters, 

a and b, are critical in the following equation: 

 

In this equation, a and b regulate the sparsity, or the infrequency, of q and f 

respectively. A small a will yield an output of a sparser q in which documents that 

have fewer topics, and a small b will yield an output of f that characterizes topics 

with fewer words, a sparser f [7]. The parameters used for the topic modeling in 

this paper were defined as a = 0.01 and b = 0.1. In addition, the output of q was 

most important in calculating coherence.  

For the goal of this topic model, the terms document, topic, and word represent 

different components of humpback song classification. A document is a humpback 
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song. A topic is a label. Lastly, a word is now a slice of time of the spectrogram. 

Figure 4 displays an example of the input and output of the topic model we used 

for humpback whale song. The input is a spectrogram of an 18 second clip of 

humpback song recorded in 2016. The output is a plot that represents the topic 

distribution over the entire 18 second clip – it is the probability that a time slice of 

the spectrogram is a specific topic. The different colors in Figure 4b represent the 

different potential topics. 

 

 

Figure 4: (a) A spectrogram of an 18 second clip of a humpback song recorded 

in 2016. This was the input into the topic model used. (b) A topic probability plot 

in which the colors represent different topics. Specifically, Topic 0 (blue) and 

Topic 2 (green) are the humpback whale calls and Topic 2 (orange) is background 

noise. The plot represents the probability that the specific time slice of the 

spectrogram is the designated topic. 

 

This example clip of a humpback whale song contained the phrase “AAB” and was 

repeated twice. The topic probability output found the 4 “A” calls as Topic 0 (blue) 

and the 2 “B” calls as Topic 2 (green). Topic 1 (orange) is the background noise. 

By finding the different calls originally labeled as “AABAAB,” the topic model for 

this example song clip performed as expected. 

A 

B 
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PERPLEXITY 

To evaluate the performance of topic modeling, the metric perplexity was used. 

Perplexity is a predictive likelihood that specifically measures the probability that 

new data occurs given what was already learned by the model. In other words, 

perplexity characterizes how surprised a model is with new, unseen data [10]. 

Perplexity is calculated as: 

 

In which D is the number of documents and Wd is the number of words in the 

specific document d [7]. However, perplexity does not depict the consistency of the 

topics but rather describes the presence of a new topic. This paper focuses on a 

different optimization metric to see if it can help improve the topic model.  

 

COHERENCE  

Coherence is an evaluation metric that can be used to assess the performance of the 

topic model. Coherence is typically used to analyze the relationship between two 

sets of data or the similarity between data sets. In topic modeling, topic coherence 

measures the quality of the data by comparing the semantic similarity between 

highly repetitive words in a topic [10]. Coherence score is a scale from 0 to 1 in 

which a good coherence (high similarity) has a score of 1, and a bad coherence (low 

similarity) has a score of 0 [11]. In other words, a good coherence is when two 

signals or data sets are perfectly related and identical, whereas a bad coherence is 

defined as having no association between data sets.  

The MATLAB function mscohere was used to calculate coherence. mscohere 

calculates the magnitude squared coherence using the power spectral densities and 

the cross power spectral density of the input [12]. The coherence output of 

MATLAB function uses the coherence scale in which a score close to 1 
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demonstrates that the x and y (rows and columns of the input matrix) correspond to 

each other at the respective time value. The mscohere function is defined as: 

 

Here, Pxy is the m-dimensional vector of cross power spectral densities between the 

inputs and y. Pxx is the m-by-m matrix of power spectral densities and cross power 

spectral densities of the input. Pyy is the power spectral density of the output [12]. 

The coherence function has many parameters that affect the outcome of the 

coherence calculations. The two most important parameters for topic coherence are 

window and overlap. The window divides the input into segments of the specified 

length. The default window, Hamming window, was found to output a smoother 

plot than the Blackman window, so the Hamming default window was selected. 

The overlap parameter defines the number of overlaps in the input. Ultimately, a 

window of 4 and an overlap of 3 led to the best results for the shorter humpback 

clips between 9 seconds and 18 seconds. However, these are important parameters 

to modify depending on the length of the clips.  

 

TESTING COHERENCE  

By creating and utilizing two simple .wav files, the application of coherence could 

be assessed and tested. Each file consists of 3 different tones. As demonstrated in 

Figure 5a and 5b, the first tones in both files are exactly the same. The third tones 

in each file are also the same. However, note that the middle tone is different 

between the two files.  
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Figure 5: Simple .wav files each with 3 tones were created to test coherence. (a) The 

first file with 3 different tones, and the topic probability output displays 3 different 

topics. (b) The second file with 3 tones. The first tone and third tone are the same to 

their respective tones in the first file, but the second tone is different. The topic 

probability output displays the same results. (c) The coherence calculation between 

both .wav files. A high coherence of 1 for the first and third tones and a lower 

coherence for the second tone as expected.  

A 

B 

C 
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The topic probability for both .wav files captured the different tones and 

represented the differences in the topics. Topic 1 (orange) is the first call in both 

files. Topic 2 (green) is only the second call in the second file, and Topic 0 (blue) 

is only the second call in the first file. Lastly, Topic 3 (red) is the third tone in both 

files. Using both topic probability outputs, coherence was calculated as shown in 

the bottom plot in Figure 5c. For the first set of tones in both files (same tones and 

same topics) the coherence score is 1. For the second set of tones (different tones 

and different topics) the coherence drops to 0.7 as there is a lack in similarity in the 

tones. Lastly, the third set of tones has a high coherence of 1 because they are the 

same tones and same topics. The calculation of coherence clearly demonstrates the 

similarities and differences between the topic probability of both files. 

 

PROCESS  

In order to calculate coherence, a number of steps must be completed. The entire 

process is illustrated in Figure 6. The input is a .wav file of a humpback song. The 

topic model then performs a few processes which includes: Gaussian filter, 

normalization, preprocessing of the spectrogram, and discretization [7]. Each of 

these steps have their own parameters that must be modified and optimized for best 

results. Then the data proceeds through topic modeling. The output of the topic 

model is q: the topic probability distribution plot over the length of the document 

(time). After obtaining the q values of one .wav file and the q values of another 

.wav file (or from different clips of the same file), coherence can be calculated. 
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Figure 6: This flow chart represents the process of topic modeling that was used. 

The input into the topic model is a humpback whale song .wav file. The output is 

the topic probability distribution. To calculate coherence, two sets of data are 

required. The final outcome is a coherence score over time. 

 

RESULTS  

COHERENCE OF HUMPBACK SONG  

With the deeper understanding of coherence from testing with the tone files, the 

metric was then applied to humpback whale song data. Two different portions of 

the humpback whale song recorded off Monterey Bay in 2016 were used. Each clip 

of the humpback whale song had 3 different units, or calls, which were previously 

labeled as “AAC” and “AAB” phrases as shown in Figure 7.  
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Figure 7: Two spectrograms from a humpback whale song. The two clips are 

different as they contain the phrases “AAC” and “AAB” respectively. 

 

Both clips of the song were entered into the topic model. The topic probability 

output recognized the similar “A” calls and the difference in the “B” and “C” calls 

as shown in the topic probability plots in Figure 8. The “A” calls were labeled as 

Topic 2 (green), and the “B” call became Topic 0 (blue) and the “C” call was 

labeled as Topic 3 (red). Topic 1 (orange) represents the background noise.  

         

 

Figure 8: The topic probability output of the two humpback clips demonstrates 

the “AAB” and “AAC” phrases. The call “A” is represented by Topic 2 (green), 

the call “B” is Topic 0 (blue), and the call “C” is represented by Topic 3 (red). 

Topic 1 (orange) is background noise. 
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Using both topic probability outputs, coherence was calculated using a window of 

4 and an overlap of 3. As highlighted in Figure 9, the first and second set of “A” 

calls resulted in a high coherence of nearly 1. As for the “B” and “C” comparison, 

the coherence score was practically 0 as expected because they are different calls 

and different topics. 

 
 

Figure 9: Plot of coherence between the two humpback clips. The sets of similar 
“A” calls (green Topic 2) scored high coherence of nearly 1 proving a high 

similarity. The set of different “B” and “C” calls (blue Topic 0 and red Topic 3) 

scored a low coherence of nearly 0 demonstrating the lack of similarity in the 

calls. 

 

 

COHERENCE OF EMBEDDING FEATURES 

Instead of using the topic probability output from the topic model to calculate 

coherence, the .wav file itself was used to calculate coherence. Audio files consist 

of layers of embedding features that represent or describe the file. The code utilized 

was developed by Google and it extracts the embedding features by using a VGGish 

convolutional neural network. The feature representation output is a matrix in 

which the columns display topics and rows portray the layers of the representation 

at each time frame. Figure 10 displays the output from calculating coherence using 

the embedding features rather than the topic probability distribution.  

A A 

B/C 
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Figure 10: Plot of coherence using the embedding features from the original 

practice tone files displayed in Figure 5. The coherence calculated from the 

embedding features is very similar to the coherence calculated from the tone files’ 

topic probability output in Figure 5c. There is a high coherence of 1 when the 

tones are the same for the first and third tones, and there is a low coherence for 

the middle tone when the tones were different.  

 

DISCUSSION 

The coherence calculations of the embedding features are similar to the coherence 

output of the topic probabilities. However, the embedding features have more 

points, so the coherence plot using the embedding features is noisier. The 

embedding features directly describe the .wav file itself and have more data which 

means the coherence calculation is more precise. Nonetheless, the embedding 

features coherence calculation skips the topic model step; therefore, it is not 

contributing to the optimization of the topic model. To continue to evaluate the 

topic model process, coherence needs to be calculated using the topic probability 

output. However, the embedding features can be a way to verify the calculations of 

coherence and check the topic probability output as well.  

 

CONCLUSIONS 

The findings presented in this paper demonstrate how coherence can be utilized to 

evaluate and optimize topic modeling for humpback whale song. By calculating the 

similarity between topics, coherence can be a valuable metric to filter the good and 
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bad topics or the consistency between frequent humpback whale songs. Overall, the 

use of coherence can improve the optimization of topic modeling. However, further 

exploration is necessary to better optimize topic modeling for humpback whale 

song.  

 

FUTURE WORK  

The most immediate next step is to calculate coherence of a humpback whale song 

using the embedding features to ensure a resemblance between both coherence 

calculations. More research needs to be conducted on how to utilize both methods 

– using topic probability distribution output or using the embedding features – to 

calculate coherence and evaluate the topic model. In addition, coherence needs to 

be calculated on longer songs that might not show distinguishable topics in the topic 

probability output. This would test how mscohere as a function can handle larger 

sets of data. Another future step is to calculate the coherence of each of the labeled 

calls. For example, calculating the coherence between all of the labeled “A” calls 

could lead to the discovery of consistency between labels. Lastly, it would be 

interesting to cross correlate a single call across the rest of the song to find similar 

calls and their coherence. Ideally, coherence would be integrated into our current 

topic model such that the model can optimize itself based on the coherence outputs.  
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