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ABSTRACT 

Each population of humpback whales produces a complex and unique pattern of calls 

known as song, of which components can be shared between populations via cultural 

transmission. Connectivity between populations can be quantified by cataloguing the 

song of each population over a number of years and looking for shared components, 

though this work requires individuals to extract, classify, and compare song components, 

and is therefore both subjective and extremely time-intensive. Topic modeling is an 

unsupervised machine learning technique which, when applied to whale song, is able to 

consistently delineate song units - this paper describes both efforts to coerce topic 

modeling into classification at the more commonly-used phrase level and to evaluate 

Adjusted Rand Index as a metric for model optimization. The findings presented here 

indicate the potential capability of the model to delineate song phrases, though presently 

with a lack of accuracy, and the subsequent need for more exploration of alternative 

clustering and discretization techniques. 
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1. INTRODUCTION 

Male humpback whales are known to sing complex songs at both their low-latitude 

breeding areas and their high-latitude feeding grounds [1], [2], which are hypothesized 

and widely accepted to be a form of lekking behavior, as juvenile males do not begin to 

sing until they reach reproductive maturity [3]. There are 14 distinct population segments 

of humpback whales worldwide, each of which sings its own unique song [4]. These 

songs are known to change over time, a process known as cultural transmission, both via 

slow-growing “evolutionary” change thought to be caused by individual variation 

becoming incorporated into the group’s repertoire, and via quick “revolutionary” change 

thought to be caused by interaction between populations and adoption of song fragments 

of the other population’s song [5], [6]. This revolutionary change, involving huge 

amounts of song being replaced over short periods of time, can potentially be used to 

track the predicted climate-induced increase in migration route overlap and subsequently 

increased population connectivity, particularly between populations within the same 

ocean basin [6], [1]. 

There has been much work done in efforts to categorize and track song change within and 

between populations of humpback whales, to examine both connectivity between 

populations and the response of singers to environmental change (e.g. [5], [1]). Song has 

historically been split into groups of repeating patterns, with an entire song cycle made 

up of repeating themes, themes made up of repeating phrases, and phrases made up of 

repeating units [7]. Because units lack standardized labeling across studies but are 

encapsulated within phrase designations and themes typically consist of a single 

repeating phrase [6], most comparison between and within populations is done at the 

phrase level. There is currently a large-scale effort being made by the WhaleTrust 

organization to categorize the phrase repertoire of all humpback populations within the 

North Pacific basin, deemed the North Pacific Songs Project (NPSP). As part of the 

NPSP, recordings from Monterey Bay have been parsed through for phrase identification, 

and a particular phrase of some interest has been identified. Known as Olive, this phrase 

first emerged in the Hawaiian population during the 2022 season, and has since been 

recorded from the 2023 season in sites to the east, including Monterey Bay [Oppenheimer 

pers. comm . 2025]. This supports some degree of connectivity across the populations of 
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the North Pacific, but raises questions regarding both the origin of this specific phrase, 

and the unique qualities that have allowed for its rapid transmission. 

 

 

Figure 1. Spectrogram of Olive as it appeared in a recording from November 28, 2023 from the 

MARS cabled observatory in Monterey, California (original image courtesy of Jim Darling). 

 

In order to address the questions around Olive, and for the NPSP as a whole to be 

completed, researchers have to sift through hundreds of hours of sound files and identify 

phrases by hand. This involves not only a significant level of subjectivity in the 

classification itself, but also a vast energy and time cost. Though efforts have been made 

to reduce subjectivity (e.g. [8], [9]) and to automate song detection (e.g. [10]), the need 

for an automated method of classification when it comes to long-term studies with high 

volumes of data has become apparent. Probabilistic topic modeling, a form of 

unsupervised natural language processing (NLP) used to identify and assign underlying 

topics in suites of textual data [11], is a promising frontier in the field of automated 

classification. By depending solely on a model for data processing and grouping, one 

eliminates both human subjectivity in situations of ambiguity and the extensive time 

input requirement associated. The application of topic modeling to humpback whale song 

has been explored in the past, at the level of unit classification [13], but has not yet been 

applied to the more pressing matter of phrase classification. This paper describes an 
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attempt at modeling at the phrase level, including the integration of two metrics for 

parameter optimization and the eventual application of the model to data recorded in 

Monterey Bay, California. 

 

2. MATERIALS AND METHODS 

 
2.1 METRICS 

Previous work has introduced perplexity, a measure of model confidence, and coherence, 

a measure of intra-topic similarity as potential metrics for quantifying the efficacy of 

topic modeling for whale song (e.g. [13], [14]) . While these techniques are valuable in 

evaluating model function, they do not assess the accuracy of the model in assigning the 

correct topic groupings in the widely-accepted format of song structure (i.e. at the cycle, 

theme, and phrase levels). The Adjusted Rand Index (ARI), utilized in this study to 

provide a metric for model accuracy against a groundtruth, is a modification of the Rand 

Index, which was developed in 1971 for cluster validation [15]. ARI allows for the 

comparison of two sets of clusters (in this case one experimental and one groundtruth) 

without requiring the same number of clusters, and without the need for the values within 

the clusters to match [16]. ARI ranges between -1 and 1, with anything below 0 

indicating a worse-than-random performance, and 0 as the expected value (random) [16]. 

ARI can be calculated using the following equation: 

 

 𝐴𝑅𝐼 = ( 𝑛2 ) (𝑎 + 𝑑) − [(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑏 + 𝑑)]( 𝑛2 )2 − [(𝑎 + 𝑏)(𝑎 + 𝑐) + (𝑐 + 𝑑)(𝑏 + 𝑑)]
Where  is the total number of possible combinations in pairs, and a - d are 𝑛2
combinations of objects in all possible paired formations (within or between clusters) 

[16]. 

We also continued to use perplexity as a metric of model performance in conjunction 

with ARI, opting for a per-word perplexity score averaged over all documents (D), for 
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each file in each run where Wa is the number of words in document d [15]. As used here, 

perplexity can be defined as: 

 

 𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =   Σ𝑑 ϵ 𝐷 𝑒𝑥𝑝(− Σ𝑤 ϵ 𝑑𝑙𝑜𝑔𝑃(𝑤|𝑑)𝑊𝑑 ) 𝐷
 

2.2 PREPROCESSING 

A high-quality recording from November 28, 2023 containing the olive phrase was 

identified from a dataset recorded by the hydrophone mounted on the MARS cabled 

observatory, stationed 900m deep in Monterey Bay. The recording was decimated from 

its original 256 kHz sampling rate to 16 kHz, given the sampling rate of the eventual 

target WhaleTrust files. Each file was converted to spectrogram form using 50%-overlap 

fast Fourier transforms (FFTs), and each spectrogram was then truncated to a frequency 

subset of 50-8000 Hz. Because we believed it necessary for the model to be able to 

differentiate between various units in order to correctly group phrases, parameters related 

to spectrogram preprocessing and discretization were not changed from the optimized 

(lowest perplexity) values presented in Bergamaschi (2018), with the notable exception 

of the replacement of a Gaussian filter with per-channel energy normalization (PCEN) for 

better noise suppression and cleaner spectrogram quality [17]. The spectrogram was then 

normalized in time and frequency by subtracting the mean and dividing by the standard 

deviation. The output FFT frames from preprocessing were then clustered using the 

mini-batch k-means algorithm [18] with the value of k determined in Bergamaschi 2018. 

The topic model itself utilized latent Dirichlet allocation (LDA), which assumes each 

document (d ∈ D) to be composed of words (wi ∈ d) which themselves belong to a 

mixture of topics (zi) from a distribution thereof (θd). This can be represented by the 

following equation, where ɑ controls the sparsity of topics per document and β controls 

the sparsity of words per document [20]: 
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 𝑃(𝑤,  𝑧,  θ,  ϕ | 𝑎,  β) =  𝑃(ϕ|β)𝑃(θ|𝑎)𝑃(𝑧|θ)𝑃(𝑤|ϕ𝑧
 

A temporally smoothed variant of this method was used to include consideration of a 

temporal neighborhood to account for the continuous time-series nature of the data [20], 

and a collapsed Gibbs sampler was used to approximate the end of the file, which is 

difficult to compute directly [19]. 

 

2.3 PARAMETER SWEEPS 

Groundtruths were created by splitting up the recording of interest by song cycle in 

RavenPro 1.6 (with each sub-file containing one song cycle) [21], creating a dataset of 

five files for the model to run on, and manually assigning phrase and background 

identifications. An initial sweep of Dirischlet parameters, including the words per 

document (ɑ), words per topic (β), topic growth parameter (ɣ), and the depth of the 

temporal neighborhood in cells (g time) were performed to isolate the optimal ranges of 

each parameter (0-0.2 for alpha, beta, and gamma, and 1-20 for g time), and then another 

sweep of 30 values for each parameter within its optimal range with three trials per 

parameter set was performed on the five dataset files. ARI was calculated for each file in 

each parameter set and averaged across the three trials, using the associated groundtruth 

file. Perplexity was also recorded for each parameter set, averaged across each trial and 

each file. 

 

RESULTS 

The sweeps of alpha, beta, gamma, and g time yielded an ARI range of 0.0474 to 0.0817 

and a perplexity range of 7.7877 to 20.3599. There was no significant relationship 

between ARI and perplexity (Spearman’s p-value 0.12379) (Figure 2), nor significant 

difference in average ARI between individual files across all trials of all runs (Figure 3). 

The maximized ARI resulted from an alpha value of  0.0012106, a beta value of 

0.0130550464885756, a gamma value of 0.01539759656, and a g time value of 4 (Figure 
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4). The minimized perplexity results resulted from an alpha value of 0.03832093, a beta 

value of 0.00111734, a gamma value of 0.00240823, and a g time value of 4 (Figure 5). 

The only parameter with a significant relationship to ARI was beta, with a Spearman’s 

rho of -0.42334 and a p-value of 0.02056 (Figure 6). 

 

 
Figure 2. Plotted relationship between Adjusted Rand Index (ARI) and perplexity. No significant 

relationship was observed, with a Spearman’s rho of -0.28 and a Spearman’s p of 0.1238. 

 

7 
 



 
Figure 3. Adjusted Rand Index (ARI) distribution across the five files tested, averaged across 30 

runs of varying parameter values with 3 trials per run. All files had an ARI above 0, with a 

maximum of 0.0817. No significant difference in ARI distribution was noted between the files. 

 

 
Figure 4. Visualization of one target file created from a run of the parameters demonstrating the 

maximum Adjusted Rand Index value (alpha value of  0.0012106, beta value of 

0.0130550464885756, gamma value of 0.01539759656, g time value of 4). 
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Figure 5. Visualization of one target file created from a run of the parameters demonstrating the 

minimum perplexity value (alpha value of 0.03832093, beta value of 0.00111734, gamma value of 

0.00240823, g time value of 4). 
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Figure 6. Words per document (alpha), words per topic (beta), topic growth parameter (gamma), 

and the depth of the temporal neighborhood in cells (g time) plotted against Adjusted Rand Index 

(ARI). No significant relationship was observed in any parameter except beta, with a Spearman’s 

p-value of 0.02056. 

 
 
DISCUSSION 

The results of the Dirichlet parameter sweeps indicate that beta was the only parameter 

with a significant relationship to ARI, displaying a correlation of -0.42334 (Figure 5). 

Because beta represents words per document, this suggests an issue with the initial 

clustering. Work on this project was completed under the assumption that the clustering 

parameters from the lowest-perplexity parameter sweep (as generated in [16]) were 

optimal. This may not, in fact, be the case, and further work involving testing of different 

methods is warranted. 

G time was consistent for both the maximized ARI parameter sweep and the minimized 

perplexity parameter sweep (value of 4), potentially indicating an optimized value for 

that parameter - however, with no significant relationship between g time and ARI, this is 

difficult to say with certainty. The visualization of the parameter set for maximized ARI 
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displays some recognition of multiple different units (both flat contours and upsweeps) 

within the same ground truth phrase as the same topic (Figure 4), though with high levels 

of uncertainty indicated by the sheer number of possible topic assignments, and some 

conflation with units assigned to different ground truth phrases. While this demonstrates 

potential for the model to begin clustering at the phrase level, it also indicates that topic 

designations are still not consistently or concretely recognizing ground truth phrases as 

topics. 

 

CONCLUSIONS 

While we began to see clustering at the desired hierarchical level, further work is 

necessary to achieve confidence in the model’s ability. Due to the fact that there appeared 

to be no significant relationship between ARI and perplexity (further evidenced the high 

perplexity on the maximized ARI parameter sweep and the low ARI on the minimized 

perplexity parameter sweep), it will likely prove difficult to optimize both in future. 

Creating a weighted metric that encompasses both will be crucial to our understanding of 

model function. Additionally, the initial clustering parameters used in this study were 

assumed to be optimal due to their minimized perplexity score and visually-confirmed 

accuracy against ground truth unit selections. However, these parameters were not swept 

and compared using ARI as the key metric given the groundtruth unit designations, which 

would be a logical next step in the case that further work maintains the assumption that 

units must be recognized before phrases can be precisely delineated. 

Because the Dirichlet parameters largely appeared to have insignificant effects on the 

ARI score of the model, another next step is to test the clustering parameters, including 

the vocabulary size for clustering and the clustering type - we are beginning to see some 

preliminary results with differing numbers of Mel bins [Oppenheimer pers. comm.]. We 

are also hoping to explore the use of other types of audio-recognition models, such as the 

Google multi-species model and/or the OpenAI Whisper model, to create clustered input 

for discretization.  
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