
 1

Developing benchmarks for performance evaluation of

tracking algorithms for use in deep-sea creature detection and

tracking.

Lee, Peyton, University of Washington

Mentors: Danelle Cline & Duane Edgington

Summer 2020

Keywords: multiple object tracking, computer vision, underwater computer vision,

machine learning

1. ABSTRACT

The Monterey Bay Aquarium Research Institute (MBARI) maintains a database of over

25,000 hours of deep-sea video footage, representing a considerable commitment of time,

energy, and expertise in order to analyze. Advances in machine learning and computer

vision have enabled the exploration of an annotation assistance workflow, utilizing a

detection model and tracking algorithm in tandem to annotate and classify deep-sea

creatures automatically. To determine the optimal configuration of tracking algorithms for

deep-sea applications, three trackers from the OpenCV library (Median Flow, Kernelized

Correlation Filters, and Tracking, Learning, and Detection) were tested on a novel video

benchmark consisting of deep-sea benthic transect footage. Performance metrics were

calculated using CLEAR MOT metrics. Overall, Median Flow had the most consistent

performance across the tested trackers and performed positively with both varying stride

and resolution. Operating Median Flow at a decreased resolution of 240 x 135 and a stride

of between 1 to 10 frames yields an efficient and performant tracking system.

 2

2. INTRODUCTION

The Monterey Bay Aquarium Research Institute (MBARI) has been actively

collecting video footage of deep-sea environments for 32 years. This collection consists of

over 25,000 hours of deep-sea benthic and midwater footage and is accessed and annotated

through the Video Annotation Reference System (VARS) (Video Annotation and

Reference System, 2015). This video footage is used to quantify species composition at a

given site and estimate biodiversity and abundance. Currently, video is annotated by

members of the video annotation lab at MBARI, and processing through MBARI’s video

archive represents an immense challenge in time investment.

The VARS Annotation Assistance (VAA) project emerged in recent years to assist

the annotation process using computer vision and machine learning. Initial efforts by Yee

et al. (2017) led to the use of a Faster R-CNN model for deep-sea creature detection and

the development of a training dataset of benthic annotations (Ren et al. 2016).

While our detection model can

effectively predict species that appear in a

given video frame, it cannot count unique

instances of creatures across an entire video

sequence. To do so, we require a tracking

algorithm that matches detections across

frames to a unique ID (Fig. 1). Modern

tracking algorithms are typically much faster

than detection models (Luo et al. 2018). Many

open-source video trackers are available

through libraries like OpenCV, which

provides implementations of trackers like Median Flow, Kernelized Correlation Filters,

and the Tracking, Learning, and Detection tracker.

Due to the abundance of tracking algorithms, several tracking benchmarks have

gained popularity in recent years. One of the most notable is the MOTChallenge, which

tests trackers using pedestrian and crowd footage (Milan et al. 2016). However, marine

Figure 1: An example frame of benthic footage with

bounding boxes (localizations) drawn for detected

creatures. A unique identifier is given to each object by

the tracking algorithm.

 3

environments offer significant challenges that are not adequately addressed by existing

tracking benchmarks. Ocean environments can vary widely in lighting, background, and

optical clarity. Species may be only briefly visible, partially or wholly transparent, and

often deform when exposed to backwash from observation platforms. These problems are

exacerbated in deep-sea environments, where light is scarce and creatures are often darkly-

colored or transparent for camouflage. While there are existing underwater benchmarks,

these datasets are either not publicly available, are biased towards well-lit, shallow

environments, or include footage from artificial settings (such as pools or video games)

(Kezebou et al. 2019).

This study developed a novel computer vision benchmark to evaluate the

performance and runtime cost of three different tracking algorithms in deep-sea benthic

environments. We utilized benthic transect footage to generate performance metrics on

different trackers across varying tracker configurations.

3. MATERIALS AND METHODS

3.1 DETECTOR TRAINING

A Faster R-CNN detection model was chosen for the annotation process, as initially

described by Ren et al. (2016). The model was trained on an AWS SageMaker instance for

50,000 epochs. The training data consisted of eight hours of pre-annotated, benthic transect

frames captured by ROV at Station M off the coast of Monterey, CA, as described by Yee

et al. (2017). The training dataset included annotations for 17 common benthic species

(Table 1).

 4

 The trained model was then used to generate inferences for a 15-minute segment of

full-resolution (1920x1080, 30fps) benthic transect footage. The model-generated

inferences were processed by a Median Flow (MF) tracker and verified to ensure accuracy

using the open-source Computer Vision Annotation Tool (CVAT). False positives were

removed, missed objects were localized, and bounding boxes were redrawn to fit identified

species’ central mass. Fragmented tracks were joined, and misidentified species were

corrected. This curated footage served as our ground-truth benchmark data.

3.2 TRACKER CONFIGURATION

For this experiment, we used five visual tracking algorithms that were publicly

available through the OpenCV library; Median Flow (MF), Kernelized Correlation Filters

(KCF), and Tracking, Learning, and Detection (TLD).

Table 1: The complete list of all creature concepts that were present in the training dataset. The counts

of their appearances in the training dataset and in the benchmark video (by frame) are listed, as

well as the number of unique individuals present in the benchmark video.

Classification Appearances

(by frame) in

training set

Appearances in

benchmark (by

frame)

Appearances

(by individual)

in benchmark

Benthocodon 569 214 5

Cystechinus loveni 174 1104 8

Echinocrepis rostrata 82 452 5

Elpidia 493 224 2

Fungiacyathus (Bathyactis)

marenzelleri

64 1448 7

Oneirophanta mutabilis complex 6 431 2

Peniagone papillata 14 588 4

Peniagone sp. 1 14 36 1

Peniagone sp. 2 12 108 1

Peniagone sp. A 1108 6629 48

Peniagone vitrea 360 2725 23

Scotoplanes globosa 365 193 2

Tjalfiella 230 968 9

Synallactidae 30 0 0

Hexactinellida sp. 1 0 0

Coryphaenoides 8 0 0

 5

Each tracker was run times on the 15-minute, model-generated inference data with

varying span (how often, in frames, the tracker was seeded with detections) and resolution

(Table 2). The span was varied to simulate running the trackers on real-time detections, as

the detection model can process approximately three frames per second. A stride of 10 was

used to approximate real-time requirements. The time

required for each tracker to complete the inference job

was timed and recorded.

3.3 EVALUATION

The tracker’s performance was calculated as

multiple object tracking precision (MOTP) and

accuracy (MOTA), as defined by the CLEAR MOT

metrics (Milan et al. 2016; Bernardin & Stiefelhagen

2008). We leveraged the py-motmetrics library, a

CLEAR MOT metrics library developed in Python, to

aid in the matching and metrics-generation process

(Heindl et al. 2020).

For each tracker run, the tracker’s XML output

for each frame was converted into a single XML document (hypothesis). It was then

compared against the ground-truth tracks. In each frame, the cost to match each truth object

to each hypothesis object was calculated as intersection over union, or 𝑐𝑜𝑠𝑡(𝐻, 𝑇) = 1 −𝐴𝑟𝑒𝑎(𝐻∩𝑇)𝐴𝑟𝑒𝑎(𝐻∪𝑇) . Matches were made to minimize the total cost within the frame.

Hypothesis objects that did not have a matched truth object were considered false

positives (FP), while truth objects that did not have a matched hypothesis object were

considered misses. ID switches (IDSW) were counted for the sequence, incremented once

each time a different matching between a truth and hypothesis object was observed than

was previously made.

Multiple Object Tracking Precision (MOTP) was calculated as one minus the sum

cost of all matches made, averaged by the number of matches made.

Table 2: The stride and resolution

used for each tracker run.

Stride Time between

detections(s)

1 0.033

10 0.33

20 0.66

Resolution

Factor

Video

Dimensions

0.5 960 x 540

0.25 480 x 270

0.125 240 x 135

 6

𝑀𝑂𝑇𝑃 = 1 − 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

Multiple Object Tracking Accuracy (MOTA) was calculated as one minus the

sum of the total false positives, misses, and ID switches for the entire sequence averaged

over the total number of frames. 𝑀𝑂𝑇𝐴 = 1 − 𝐹𝑃 + 𝑀𝐼𝑆𝑆 + 𝐼𝐷𝑆𝑊𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑚𝑒𝑠 𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

4. RESULTS (Normal, Times New Roman, 12 pt, bold)

4.1 COMPUTATION TIME

There was some minor variation in computation time across stride for the same

resolution, but across different resolutions, the change in performance was more

pronounced (Fig. 2). Tracking for lower resolutions was overall much faster to compute

(around 2-3 minutes per minute of footage) than tracking for half or full-resolution video

footage, which took up to 23 minutes to process per minute of footage. MF took the least

computation time across most trials, while KCF took slightly longer but achieved similar

performance. TLD was generally slower than both MF and KCF at higher strides, which

was especially visible at full resolutions.

Figure 2: The average computation time for a minute of benthic transect footage for each of the three trackers.

Bars are grouped by resolution and ascending stride.

 7

4.2 MULTIPLE OBJECT TRACKING PRECISION & ACCURACY

For lower resolutions, both MF and KCF improved in precision with a longer stride

(Fig. 3). However, KCF decreased in precision at higher (full) resolutions,

underperforming when compared to both TLD and MF. TLD generally decreased in

precision as stride increased. Overall, MF seemed to be the most versatile, maintaining a

consistent precision across resolutions.

In terms of MOTA, MF scored consistently across varying strides and varying resolutions,

while KCF’s performance varied widely across resolutions (Fig. 4). At lower resolutions,

its performance exceeded that of MF, but at higher resolutions, it scored a negative MOTA.

Figure 3: The calculated multiple object tracking precision (MOTP) as a percentage. Runs are grouped by

resolution and ordered by ascending stride.

 8

Closer investigation revealed that the low MOTA score was caused by the tens of

thousands of false positives generated by the KCF tracker when running at higher

resolutions (Fig. 4b). These false positives were correlated disproportionately with the

classifications for Peniagone vitrea. For example, P. vitrea represented approximately

18.02% of the detections in the benchmark but represented 65.66% of false positives for

the full resolution, stride-10 KCF tracker output. TLD achieved a similar or worse score

than MF, which became more pronounced as stride increased.

Figure 4: The calculated multiple object tracking accuracy (MOTA) as a percentage for a) all resolutions and c)

lower resolutions (0.25 and 0.5) in order to better show differences in accuracy. False positives for run

configurations where resolution was 1.0 are shown by b). Runs are grouped by resolution and ordered by

ascending stride.

a)

b) c)

 9

Figure 5: The tracking coverage for the three trackers. Objects that were tracked for more than 80% of the sequence

were considered Mostly Tracked, between 20-80% were considered Partially Tracked, and less than 20% were

considered Mostly Lost.

 10

4.3 OBJECT TRACKING COVERAGE

An additional metric was calculated for each tracker configuration, measuring how long

the tracker tracked a given truth object. Objects tracked for over 80% of their lifetime were

labeled mostly tracked, while objects tracked less than 20% of their lifetime were labeled

mostly lost. Any objects that fell between 20% and 80% coverage were labeled partially

tracked (Fig. 5). All three trackers had a higher proportion of lost objects as stride

increased, and a corresponding decrease in mostly and partially tracked objects. However,

TLD and MF were reasonably consistent across resolutions, while both KCF had a higher

proportion of mostly tracked objects when processing full-resolution footage.

5. DISCUSSION

The difference in runtime between resolutions is consistent with the amount of

additional data that the trackers must process, which increases exponentially with

resolution. The high time cost required to process high-resolution footage suggests that it

would not be cost-effective to process footage at full resolution. While KCF had a greater

coverage at higher resolutions, the significant computation time associated with that

performance renders it impractical for use. Thus, trackers should be run at a lower

resolution whenever possible. Additionally, the decrease in tracking coverage with

increasing stride suggests that trackers should be given the smallest stride feasible for the

application. Operating at a lower stride should also not impact runtime, as at lower

resolutions, there was no significant difference in runtime across strides.

 Overall, MF performed relatively consistently across various resolutions, varying

only slightly in MOTP and MOTA. While other trackers (KCF) outperformed it in certain

situations, Median Flow features a slightly faster computation time and similar MOTA,

MOTP, and tracking coverage across resolution variance. This result diverges from the

findings of a study by Lehtola et al. (2017) on the performance of visual tracking algorithms

on embedded systems. This study did confirm that the KCF tracker was marginally slower

than MF, but KCF outperformed MF in terms of the Jaccard Index, which is analogous to

MOTP. However, the substantial improvement in precision KCF gave over MF that

Lehtola et al. (2017) described was not present in our analysis. This may be due to our

 11

dataset, where objects move linearly with the transect, a task which Median Flow is

designed for (Kalal et al. 2010).

Our study also suggests that MOTP is a less useful metric than MOTA, as it only

describes how well objects were localized when matched. Especially for MBARI’s deep-

sea footage analysis, accurately counting and tracking creatures is more critical than the

system’s ability to localize creatures precisely.

However, MOTA also suffers from a lack of transparency; because it is the

aggregate of several other metrics, it may hide other patterns in tracker performance. The

MOTA stayed relatively constant for MF over different strides (Fig. 4c), but a closer

analysis of tracking coverage shows that MF had a decreased ability to track objects at

higher strides (Fig. 5). However, a decreasing number of false positives counterbalanced

the missed objects at higher strides (Fig. 4b). Thus, MOTA cannot fully capture the nuances

of a tracker’s behavior, and other base metrics (such as coverage and false positives) may

yield more detailed comparisons.

6. RECOMMENDATIONS

For analyzing benthic transect footage, Median Flow seems to be the strongest

candidate, as has a fast runtime and generally stable and positive performance in both

MOTP and MOTA across varying strides and resolutions. Its flexibility means that it can

be deployed in a broader range of configurations than KCF or TLD, and can be run at lower

resolutions and longer strides while still achieving similar results to processing full-

resolution footage. However, as Median Flow still takes roughly 2 minutes to compute per

minute of footage, it may be advisable to test the tracker at lower resolutions (such as 1/8)

if applied to real-time applications.

However, to confirm these results, expanding the scale of the benchmark and

running multiple trials is necessary. Increasing the number of benthic transect benchmark

videos available to test with would decrease the chance that random factors in the single

video influenced our results. Using more videos would also allow us to test our trackers in

a broader range of scenarios. Additionally, due to the shared nature of the systems used to

 12

run the trackers, the time cost may have been artificially increased or decreased due to

system load. Running additional trials for each benchmark video would decrease the

associated random error. However, this would also take a great deal of computation time.

Additional trackers could be viable candidates for further exploration. Two more

trackers that are provided by OpenCV are the Minimum Output Sum of Squared Error

(MOSSE) and the Discriminative Correlation Filter with Channel and Spatial Reliability

(CSRT) trackers.

Finally, we expect that the trackers that performed well on the benthic transect will

differ from the trackers that perform well on midwater footage. This is due to several

factors— shorter intervals of appearance for creatures, limited or inconsistent lighting, the

large number of particles present in the water column, and transparent, darkly-colored, or

minute creatures—all of which act as additional challenges to tracking and detection

systems aimed at midwater environments.

7. ACKNOWLEDGEMENTS

I would like to thank my mentors, Danelle Cline and Duane Edgington, for their incredible

support and encouragement during this internship. Thank you to George Matsumoto,

Megan Bassett, and Tatjana Ellis for their flexibility and mentorship within the internship

program, and Larissa Lemon and the MBARI Video Lab for their assistance in the

annotation process.

8. REFERENCES

Bernardin, K., & Stiefelhagen, R. (2008). Evaluating Multiple Object Tracking

Performance: The CLEAR MOT Metrics. EURASIP Journal on Image and Video

Processing, 2008, 1–10. https://doi.org/10.1155/2008/246309

Heindl, C., Valmadre, J., & Toka. (2020). Cheind/py-motmetrics [Python].

https://github.com/cheind/py-motmetrics

https://doi.org/10.1155/2008/246309
https://github.com/cheind/py-motmetrics

 13

Kalal, Z., Mikolajczyk, K., & Matas, J. (2010). Forward-Backward Error: Automatic

Detection of Tracking Failures. 2010 20th International Conference on Pattern

Recognition, 2756–2759. https://doi.org/10.1109/ICPR.2010.675

Kezebou, L., Oludare, V., Panetta, K., & Agaian, S. S. (2019). Underwater Object Tracking

Benchmark and Dataset. 2019 IEEE International Symposium on Technologies for

Homeland Security (HST), 1–6. https://doi.org/10.1109/HST47167.2019.9032954

Lehtola, V., Huttunen, H., Christophe, F., & Mikkonen, T. (2017). Evaluation of Visual

Tracking Algorithms for Embedded Devices. 88–97. https://doi.org/10.1007/978-

3-319-59126-1_8

Luo, H., Xie, W., Wang, X., & Zeng, W. (2018). Detect or Track: Towards Cost-Effective

Video Object Detection/Tracking. ArXiv:1811.05340 [Cs].

http://arxiv.org/abs/1811.05340

Milan, A., Leal-Taixe, L., Reid, I., Roth, S., & Schindler, K. (2016). MOT16: A

Benchmark for Multi-Object Tracking. ArXiv:1603.00831 [Cs].

http://arxiv.org/abs/1603.00831

Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. ArXiv:1506.01497 [Cs].

http://arxiv.org/abs/1506.01497

Video Annotation and Reference System. (2015, April 24). MBARI.

https://www.mbari.org/products/research-software/video-annotation-and-

reference-system-vars/

Yee, N., Cline, D., & Edgington, D. (2017). Workflows for Automated Detection and

Classification of Unlabeled Deep Sea Imagery. https://www.mbari.org/2017-

intern-papers/

9. ADDITIONAL RESOURCES

https://github.com/plee-mbari/cv-evaluator

https://doi.org/10.1109/ICPR.2010.675
https://doi.org/10.1109/HST47167.2019.9032954
https://doi.org/10.1007/978-3-319-59126-1_8
https://doi.org/10.1007/978-3-319-59126-1_8
http://arxiv.org/abs/1811.05340
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1506.01497
https://www.mbari.org/products/research-software/video-annotation-and-reference-system-vars/
https://www.mbari.org/products/research-software/video-annotation-and-reference-system-vars/
https://www.mbari.org/2017-intern-papers/
https://www.mbari.org/2017-intern-papers/
https://github.com/plee-mbari/cv-evaluator

 14

Code written to convert and evaluate tracker output using the cheind/py-motmetrics

library.

https://bitbucket.org/plee-mbari/deepsea-track-notebook/src/master/

A series of Python notebooks that run the trackers and displays the metrics evaluation.

https://bitbucket.org/plee-mbari/deepsea-track-notebook/src/master/

