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ABSTRACT

Exploring midwater ecosystems with autonomous underwater vehicles is constrained by

the need to preprogram the vehicle’s trajectory and having limited control once the mis-

sion has started. Because ocean conditions are constantly changing, the vehicle’s con-

trol system must be able to adapt to its surroundings in real time. This project aimed

to use wide-view imaging on MBARI’s LRAUV to inform adaptive targeted sampling of

Nanomia septata. A YOLOv11-based detection model ran onboard a Jetson Orin, sending

detection rates to the vehicle controller. There, the rates were used to stay within a high-

density zone by detecting peaks and adapting the YoYo depth limits accordingly. Three

field trials in Monterey Bay were conducted to test system performance and validate the

adaptive behavior. There was a clear correlation between depth and detection rate, and

the system successfully adjusted dive limits in response to detections of Nanomia septata

on several occasions, which confirmed proof of concept. On the other hand, the sparse dis-

tributions also sometimes caused minor fluctuations to be interpreted as peaks, triggering

frequent unnecessary direction changes. This highlights the need for further finetuning of

the signal processing to improve robustness. Overall, this work demonstrated a first step

toward autonomous, visually driven sampling strategies for studying sparse midwater

organisms.
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INTRODUCTION

The deep sea is a challenging operating environment that is still largely unexplored. MBARI

has been developing a number of vehicles that allow us to venture into the deep. The remotely

operated vehicles (ROV) enable a variety of benthic and midwater missions, but their need for a

skilled pilot and a ship limit their scalability. The long-range autonomous underwater vehicles

(LRAUV) offer a solution to tackle this challenge of covering a large space and time period, as

they can go out for several weeks at a time. Their downside is that they lack the maneuverability

of ROVs and that we can only communicate with them during the planned surface pop-ups

unless they go out in combination with, for example, a wave glider. That means the missions

are preprogrammed using specific waypoints, but since the ocean ecosystems are dynamic and

unpredictable, you never know where and when you will find certain things. This calls for

the need for real-time adaptive control to ensure the vehicle finds and stays within regions of

interest.

In the past, MBARI has conducted several experiments with autonomous adaptive vehicle

control. In studies of harmful algae blooms (HABs) [1], LRAUVs equipped with real-time

chlorophyll sensors were used to detect and track bloom structures both vertically and hor-

izontally. The vehicle executed a combined behavior: vertically it performed YoYo profiles

to locate the chlorophyll peak, and horizontally it searched for and remained within the patch

center by following chlorophyll gradients. This allowed the LRAUV to autonomously maintain

position in the bloom without requiring constant operator input. Zhang et al. [2] further devel-

oped an adaptive YoYo algorithm developed for LRAUVs equipped with the “Planktivore” in

situ microscopy system. Here, real-time counts of plankton detections from the microscope’s

low-magnification camera were used to dynamically set the yo-yo depth limits based on peak

and edge detection. This approach concentrated sampling effort within layers of high particle

concentration, increasing the efficiency of data collection.

The Bio-inspiration Lab has also experimented with using wide-view lenses to run detection

algorithms that enable autonomous detection, classification, and tracking of specific animals

using the miniROV [3]. Building on this work, we propose to integrate wide-view imaging

into the LRAUV platform, combining it with the adaptive YoYo approach to detect and follow

sparse, vertically migrating organisms. In this project, Nanomia will serve as a case study.

These siphonophores are abundant in Monterey Bay and are key predators in the local food web.

Some open questions regarding their behaviour, like the details of their diurnal migration, could
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be addressed through adaptive sampling. However, the primary objective of this work is to

demonstrate the feasibility of using wide-view lenses to dynamically adapt LRAUV behaviour

for targeted sampling of specific animals.

MATERIALS AND METHODS

Case Study Species: Nanomia septata

Nanomia septata is a physonect siphonophore in the family Agalmatidae. It is a colonial hy-

drozoan composed of specialized zooids for feeding, reproduction, and movement. They can

be up to 30 centimeter in length and occur widely in Monterey Bay between 0 and 700 meter

depth. Nanomia are suspected to consume more krill than the local whale population, making

them an important component of the midwater food web [4], which means sudden changes in

their abundance may influence ecosystem structure. While the hypothesis is that they under-

take diurnal vertical migration, direct evidence is limited. Since tagging these animals is not

feasible, performing adaptive sampling with the LRAUV could help solidify this claim.

The Nanomia are well-suited for demonstrating adaptive target sampling using wide-angle

lenses. They are much sparser than the plankton species previously analyzed with an in situ

microscopy system for adaptive YoYo operations [2], but still sufficiently abundant. Visiting

researcher Marc Allentoft-Larsen studied the Nanomia septata in spring 2025 by conducting

box searches between 150 and 380 meters at the M1 location in Monterey Bay using an LRAUV

equipped with the Optim camera payload. Marc recorded up to 280 observations within a single

hour (at a cruising speed of 0.5 m/s) and up to 8 individuals in a single image. In addition, he

manually labeled Nanomia instances in many of these images, thereby expanding MBARI’s

existing dataset of the species that can be used for training detection algorithms. Figure 1

presents two example images.

Hardware

Long-Range Autonomous Underwater Vehicle (LRAUV): The LRAUV was designed by MBARI

engineers in 2012. The goal was to bridge the endurance gap between buoyancy-driven gliders

and regular AUVs [5]. A summary of its specifications can be found in Table 1. The vehicle

is designed to accommodate different payloads in its nose, which will be the Triton Imaging

System in our case.
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Figure 1: Example images of Nanomia septata captured during pre-programmed box searches

at M1 in Monterey Bay.

Table 1: LRAUV specifications.

Parameter Specification

Length / Diameter 3.2 m / 0.3 m

Speed 0.5–1.2 m/s

Range (primary battery) ∼1800 km over 3 weeks at 1 m/s

Range (rechargeable) ∼800 km over 12 days at 0.8 m/s

Control State-configured layered control

Navigation DVL-aided dead reckoning (+ GPS fixes via USBL/LBL)

Actuators Elevators, moving internal mass, variable buoyancy

Triton Imaging Payload: The Triton payload was developed by the Bioinspiration Lab at

MBARI. It has three forward looking, wide-lens cameras and includes a dedicated onboard

processing unit that operates independently from the vehicle’s main computer. This separation

is important in case of software or hardware errors, because it makes sure that any issues with

the payload do not interfere with the vehicle’s core control or navigation systems. Table 2 gives

a detailed overview of the payload’s specifications and Figure 2 shows the entire hardware

setup.

Table 2: Triton Imaging Payload specifications.

Parameter Specification

Cameras 3 × Sony IMX546 sensors

Interface CSI-2 (MIPI)

Resolution (used) 2160 × 1440 px

Shutter type Global

Frame rate (operational) 5–10 fps

Horizontal Field of Viewc ca. 90°

Processing unit NVIDIA Jetson AGX Orin
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Figure 2: Left: LRAUV equipped with the Triton Imaging Payload. Right: Close-up view of

the Triton payload (by Paul Roberts).

Software Architecture

The software architecture consists of two main flows. The vision pipeline runs on the pay-

load’s processing unit and is responsible for performing inference on incoming images. It uses

Lightweight Communications and Marshalling (LCM) channels to communicate the detection

rates of the targeted organism to the vehicle computer. The vehicle computer then smooths this

spiky signal and uses it for adaptive control of the vehicle.

Vision Pipeline:

1. Image acquisition: Three synchronized camera streams operating at 10 fps.

2. Preprocessing: Gain adjustment to normalize image brightness.

3. Inference: Object detection with YOLOv11 model trained on siphonophore imagery.

4. Output: Per-class detection counts, inference speed, and timestamps are published to an

LCM channel, which the LRAUV backseat controller subscribes to.

Vehicle Control Logic: The incoming detection signal is smoothed before being used for con-

trol. Several smoothing methods are evaluated. Zhang et al. [2] previously applied a 5-point

median filter (for outlier rejection) followed by an 8-s moving-average window (for low-pass

filtering). Here, alternative approaches such as the Exponential Moving Average (EMA) and

Kernel Density Estimation (KDE) are also tested. The EMA provides a weighted average that

emphasizes recent detections, while KDE estimates the underlying probability distribution of

detections. After smoothing, the signal can be used for vehicle control. Three control logics

are proposed and visualized in Figure 3:
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• Fixed YoYo: The baseline method, with preprogrammed upper and lower depth bounds.

The vehicle follows a predetermined trajectory without adaptation to sensor inputs.

• Adaptive YoYo: The algorithm by Yanwu [2] is implemented here to work with the

irregular and sparser input signal. The depth bounds are continuously adjusted based on

detection peaks.

• Informed Adaptive YoYo: A proposed hybrid method combining exploratory and adap-

tive behaviors. An initial exploration phase builds a broad environmental profile, and the

vehicle then switches to adaptive sampling in target-rich layers. As confidence in the en-

vironmental model decays over time, the system re-enters exploratory mode to refresh its

understanding of the environment. This can, for example, help identify multiple layers

of high organism presence and provide more ecological context for later analysis.

Figure 3: Three control logics, with the white bands representing the zones of interest and the

red line the LRAUV path (Left: Fixed YoYo - Middle: Adaptive YoYo - Right: Informed Adaptive

YoYo)

Simulation

Before deployment, a set of simulations was created to evaluate the three control logics. The

simulations were run in a simplified 2D world where each spawned dot represents an organism.

To loosely simulate the dynamics of the ocean, all organisms were assigned varying speeds

and directions based on a Perlin force field (a technique commonly used in gaming to simu-

late natural flows) capped at a maximum speed. In this world, an LRAUV could be spawned

with a cone-shaped field of view that followed one of the control logics, documenting how

many organisms appeared within the field and reacting accordingly. To test performance un-

der different conditions, three distinct Nanomia distributions were used: homogeneous, single

Gaussian layer, and double Gaussian layer (see Figure 4).

6



Figure 4: Three simulation scenarios with different Nanomia distributions

The initial comparison metric was the number of detections per unit of time, but this turned

out to be too much of a simplification and can also be statistically estimated without simulation,

as discussed in the results section. Instead, the goal here was to identify relevant parameters

that need fine-tuning for the adaptive algorithm to function effectively at sea.

Deployments

Three at-sea deployments that were conducted in Monterey Bay between June and July 2025

are discussed in this report. The goal was to test and refine the adaptive sampling algorithm

progressively. Each deployment was built upon the outcomes of the previous one, starting

with basic system validation and leading to real-time adaptive control of the vehicle. Imagery

and vehicle data were archived in MBARI’s Video and Annotation Reference System (VARS)

and Thalassa servers. The data from these dives is later used to analyze the effect of signal

smoothing methods and the effectiveness of the adaptive sampling.

For all three deployments, the vehicle was deployed from the R/V Paragon in the Monterey

Bay and operated near the C1 field site along the upper Monterey Canyon. Figure 5 shows the

transects of the vehicle for each deployment. Table 3 summarizes their specifications.

RESULTS & DISCUSSION

The results in this section were generated with the triton-detection repository that can be found

in the MBARI GitHub.
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Figure 5: Map of LRAUV Triton deployment sites in Monterey Bay during summer 2025. All

three missions were conducted near the C1 field site along the upper Monterey Canyon and

launched from the R/V Paragon.

Table 3: Summary of LRAUV Triton deployments in Monterey Bay during summer 2025.

# Date Duration

(h)

Depth Range

(m)

Objective

1 Jun 16–19, 2025 48 0–70 Validate Triton system setup

2 Jul 7–10, 2025 69 0–159 Validate setup; perform regular YoYo

dives

3 Jul 16–18, 2025 64 0–250 Perform adaptive YoYo sampling

System Preparation

Before deployment, the detection model must be fine-tuned on the target class, which is Nanomia

septata in our case. Marc Allentoft-Larsen and Kevin Bernard fine-tuned the YOLOv11 detec-

tion model from Ultralytics with labeled Nanomia imagery from various ROV and LRAUV

missions. This was done for all model sizes, allowing them to be compared in terms of perfor-

mance and inference speed, which is the trade-off that must be made when deploying detection

models in real-time.

For performance evaluation, we used the F1 score of the best-trained weights. The F1 score

balances precision and recall, providing a meaningful indication of overall detection reliability.

The results are summarized in Table 4. As can be seen, larger models perform slightly better,

though the differences are small. It is important to note that the training dataset was collected

over several missions and with different cameras, but it does not yet include data from the

Triton cameras. For future work, a labelled test set from Triton imagery would be valuable to

assess the detection performance of this payload more accurately.

While performance should be maximized, inference speed has a strict lower bound, as

we want each image to be processed in real time. Because the vehicle moves relatively fast,

individual Nanomia colonies may only appear in one image. That is especially true for those

that are observed at edge regions of the frame. The camera operates at 10 fps, so the inference
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Table 4: Performance comparison of different YOLO models trained for Nanomia septata

detection. The nano model is trained a second time with a high number of epochs.

Model F1 Score Confidence Threshold

sipho_v4_yolo11n 0.70 0.318

sipho_v4_yolo11n_ep213 0.72 0.294

sipho_v4_yolo11s 0.73 0.364

sipho_v4_yolo11m 0.74 0.355

sipho_v4_yolo11l 0.74 0.364

rate must meet or exceed this to avoid frame loss.

Inference benchmarking was performed on a Jetson AGX Orin that was set up to be iden-

tical to the onboard system in the Triton imagery payload (see the triton-detection repository

for setup instructions). Both the regular YOLO weights and the TensorRT-optimized engine

versions of the models were tested. The resulting trade-off between inference speed and model

accuracy is shown in Figure 6, with a dotted red line to show the required minimum inference

speed. This shows that only the nano and small models are candidates for deployment.

Figure 6: Inference speed vs. model performance on the Jetson AGX Orin shown as a violin

plot. Dotted red line shows the 10 Hz threshold which is the speed at which the detection model

should operate.
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Simulation

The simulations assumed Gaussian depth distributions and a functioning adaptive algorithm.

While the number of detections per unit of time can indicate whether the vehicle spends more

time in hotspots, this metric alone adds little beyond confirming expected behavior. In the

homogeneous case, all control logics resulted in similar detection rates, as any path statistically

encounters the same number of targets. With single or double layers, the adaptive and informed-

adaptive YoYos get more because they focus on the denser regions. Of course, since some

time is spent exploring, the informed-adaptive has fewer detections, but that trade-off between

quantity and adding a broader context shows that detections per unit time alone are insufficient

for evaluation.

The simulations did help to explore the main parameters to tune, which are those that de-

termine when the vehicle thinks it has passed a detection peak and should reverse direction.

This is controlled by a percentage drop threshold, which is basically how much the detection

rate must fall before the system considers it has left a dense region. Because detections can

fluctuate a lot and often drop to zero when organisms are sparse, the signal must be smoothed

appropriately. Depending on the chosen smoothing technique different parameters have to be

finetuned, for example for KDE the bandwith is most critical. In the end, the gap between sim-

ulation and reality was too large to carry the exact numbers for these thresholds reliably into

deployment, so finetuning the parameters at sea will be an important part of future work.

Deployments

Deployment 1

Following test-tank validation, the Triton payload was deployed at sea for the first time. This

initial run was primarily done to validate the payload in the field and collect test footage for

inspection. The captured images were generally underexposed, needing gain adjustments after

the mission. This improved brightness, but it also compressed the dynamic range and resulted in

highlight clipping as shown in Figure 7. Finetuning was done by Paul Roberts, which included

fixing focusing issues and fully opening the sensor aperture to increase baseline exposure and

brightness. These adjustments resulted in higher-quality imagery in the following deployment.
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Figure 7: Frames taken by the Triton payload during Deployment 1 with post-processed in-

creased gain

Deployment 2

The second mission aimed to perform standard (non-adaptive) YoYo profiles. Figure 9 shows

snapshots of the deployment from the R/V Paragon. The vehicle collected clear imagery of

Nanomia and several other species with an improved image quality compared to the first de-

ployment. Some examples are shown in Figure 9. One remaining issue is the lack of illumina-

tion around the edges of the frame.

Figure 8: Deployment 2 from R/V Paragon

Figure 9: Frames taken by the Triton payload during Deployment 2
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Even though the vehicle control was not yet determined by the detection rate, we ran the

detection algorithm to evaluate the output of the vision pipeline. Figure 10 shows both the depth

(in red) and the Nanomia detection rate (in blue) over time. In the top graph, the detection rate

is shown as a binned signal, where each data point represents the number of detections per

second calculated over the last ten seconds. Even here, it becomes apparent that the detection

rate increases with depth. This trend is even clearer in the bottom graph, where the raw, spiky

signal, that often drops to zero when no detections occur, is smoothed using kernel density

estimation (KDE). As an alternative, the exponential moving average (EMA) was also tested,

but that introduced a slight phase shift by delaying the peaks, which is less favorable when

aiming to react as instantaneously as possible to the incoming signal.

Figure 10: Top: Raw binned detection rate over time and depth. Bottom: Smoothed detection

rate using KDE over time and depth
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The detection–depth relationship indicates the zones where most Nanomia are present at a

given time, which can help with figuring out the details of their diurnal migration. However,

since the YoYo profiles were preprogrammed, the vehicle could not adjust its trajectory in real

time. This highlights the need for adaptive YoYo’s in future deployments, allowing the vehicle

to autonomously search for and remain in regions that maximize detections, rather than being

constrained by fixed mission boundaries or requiring human intervention.

Deployment 3

The third deployment introduced adaptive targeted sampling, where the YoYo depth limits were

dynamically adjusted based on the observed detection density. Again, the vehicle was deployed

from the R/V Paragon (see Figure 11), but this time the vision pipeline output was connected

to the control logic of the vehicle. Figure 12 shows some example detections. For operational

safety, the maximum depth was set to 250 m. That is needed for the case where no detection

peak is found and ensures that the vehicle goes beyond 150 m, but remains well within its

maximum operational depth.

Figure 11: Deployment 3 from R/V Paragon

Figure 12: Example frames from Deployment 3 showing in-situ detections of Nanomia
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Several examples demonstrate that the system successfully adjusted its YoYo depth bound-

aries according to the real-time detection rate, demonstrating proof of concept for adaptive

control. Figure 13 shows a graph where the YoYo direction reverses when there is a clear

drop in detection rate. However, on various occasions the system did not behave as expected,

stressing the need for further parameter tuning.

For example, in the upper layer (approximately the first 50 meters) the vehicle appears to

get stuck, likely because of the large amount of particles that interfere with the detection signal,

causing the control logic to keep changing direction. Overall, the system seemed too sensitive.

It often interpreted minor fluctuations as peaks, which triggered frequent direction changes. To

mitigate these issues, it is important to set the upper boundary for the adaptive YoYo at about 50

meters and to reduce the aggressiveness of the peak detection by incorporating more detection

history during smoothing.

Figure 13: Example of adaptive YoYo depth adjustments during Deployment 3

Limitations

The field deployments demonstrated the feasibility of onboard adaptive control driven by in-

situ visual detections. However, several limitations and challenges open the way for further

research to make this approach truly robust. These can be grouped into detection and control

limitations.

Detection Limitations: Marine snow and other particles in the water affected the reliability

of the detection signal in both directions. In some cases, dense particle layers caused false
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positives and produced an untrustworthy signal. In other cases, the particles mask the tail of

Nanomia, which is mostly transparent but has colored dots. When visually inspecting the de-

tection results, you see that as the tail starts to blend into the background, detection confidence

drops noticeably. Solutions could be to add more occluded and lower-contrast examples to the

training data. Overall, more analysis is needed to evaluate the detection performance and the

effect of double-counting of individuals as they move through the images. Labeling some of the

Triton imagery would allow us to use it both during training to improve the model and during

testing to get accurate performance results.

Control Limitations: Even though some of the adaptive sampling was successful, it will

require post-mission signal analysis and some trial and error to identify the edge cases where

the system does not behave as expected, and make it more robust. The informed-adaptive

control still needs to be tested at sea, with the goal not only to determine how many layers of

animals are present but also to integrate multi-modal priors such as chlorophyll or temperature,

depending on the mission. The informed logic could help address another limitation, which

is the need to manually fine-tune the adaptive algorithm. Since it is difficult to model the

distribution accurately beforehand, you have to go out and re-adjust the parameters for every

new species. This is demanding if you want to scale this adaptive control to many use cases. It

would therefore be beneficial to automate this process by using the context and sparsity detected

during the exploration phase of the informed-adaptive logic to set the parameters for adaptive

control.

CONCLUSIONS & RECOMMENDATIONS

We demonstrated the integration of the Triton wide-view imaging payload with adaptive con-

trol on the LRAUV platform, building on the previous work from multiple MBARI efforts.

The at-sea deployments validated the Triton payload, and its three cameras generated over 300

hours of midwater transect video that is added to MBARI’s existing database. My contribution

to this project was proposing the informed-adaptive control logic, implementing the real-time

vision pipeline, which connected the incoming video stream from the cameras to the adaptive

YoYo control logic on the main vehicle, and post-deployment analysis of the data. The missions

showed a clear correlation between Nanomia septata detection rates and depth, supporting the

potential of using adaptive YoYo’s for studying sparse midwater organisms. Some succesful

adaptive YoYo’s showed the feasibility of visually driven adaptive sampling, but at the same
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time, the field trials showed several challenges that should be addressed in future work. Detec-

tion performance was only evaluated in a limited way and was sometimes affected by marine

snow and low-contrast conditions. Generating a labeled dataset from the Triton imagery would

allow for quantitative evaluation and retraining of detection models for this particular payload.

Incorporating object tracking and using all three Triton cameras for cross-validation could also

reduce false positives. The potential of the three cameras should in general be further explored,

as they could be used for depth estimation and other things. Future deployments can test the

informed-adaptive control logic at sea, switching between exploration (standard YoYo dives)

and adaptive (adaptive YoYo dives) phases. Interesting priors would be temperature, chloro-

phyll or co-occurring species to inform about likely target regions. This approach could, for

example, be used to locate a rare species by first identifying the conditions it tends to inhabit

and then remaining in that zone to maximize chances of finding it. Additionally, getting an un-

derstanding of the context first could inform the parameter fine-tuning process for the adaptive

control, which is currently done manually.
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