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ABSTRACT  

The analysis of marine imagery remains a critical bottleneck for ecological 

research; complex environments and large data backlogs push the limits of human 

annotation efforts, highlighting the need for more efficient methods. Our work seeks to 

train object detection machine learning models to automate the process of identifying and 

localizing relevant marine animals. For our model, we utilize the FathomNet Database2 - 

a public repository of expertly annotated marine imagery - for our training data. To 

reduce class imbalance and reflect ecological priorities, we collapsed the 2,055 

FathomNet labels into 29 benthic and 21 midwater supercategories, balancing 

morphological similarity, taxonomic structure, data availability, and ecological relevance. 

Additionally, we sort images into either benthic or midwater categories due to their 

inherent environmental differences, training models that are specific to each environment. 

In this paper, we were only able to test our benthic models in our benchmarking 

framework. For benchmarking, we curated a full coverage benthic dataset of 389 images, 

ensuring a high-quality ground truth for quantitative metrics. Our best model, a 

fine-tuned YOLO11x1, had an 0.539 mAP@0.5 and an F1 score of 0.589 (precision 
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0.813, recall 0.461). This model was trained with a carefully selected subset of our total 

data that emphasized data quality over data quantity, highlighting the idea that an 

increasing dataset size without controlling annotation quality can degrade performance. 

Qualitative inspection additionally showed that the model occasionally outperformed 

their own training labels by correctly detecting organisms missing from annotations. 

However, recall was still limited and misclassifications frequently occurred between 

morphologically similar supercategories (e.g., sharks vs. fish, eels vs. fish, gastropods vs. 

sediment). Overall, the model was successful in detecting a significant portion of relevant 

animals in marine imagery, demonstrating that object detection models, coupled with 

human-in-the-loop oversight, may offer a potential solution for accelerating marine 

ecological research. Future work involves expanding our benchmarking framework for 

greater benthic representation, creating a midwater full-coverage test set, and 

experimenting with new methods to extract the most performance from a noisy dataset. 

 

INTRODUCTION  

The analysis of marine imagery remains a critical bottleneck for ecological 

research; complex environments produce scenes with dense fauna, poor lighting 

conditions, and noisy backgrounds that challenge human capabilities. Additionally, 

advances in underwater imaging technologies have produced an unprecedented volume of 

data, outpacing the capacity of manual annotation workflows and highlighting their 

current unscalable nature. Finally, different marine environments contain unique 

biodiversity, noise, and environmental contexts, requiring unique domain expertise to 

properly capture meaningful analysis. Through this research, we aim to train and 

benchmark environment-specific object detection models to evaluate their potential in 

automating post-processing of underwater imagery, specifically for animal localization 

and labeling.  
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PREVIOUS WORK  

ORIGINAL SUPERCATEGORY DETECTORS  

 Prior to my internship, the MBARI and CVisionAI had trained older versions of 

benthic and midwater supercategory detectors in 2023. The old benthic model had been 

based on a Detectron2 architecture with a ResNet backbone, and the midwater model had 

been based on a YOLOv5. Both of these models had been trained using early FathomNet 

data and internal MBARI data; however, there was no separation of training data between 

benthic and midwater which is a key development in this project. Additionally, the 

supercategory mappings used for these older models did not broadly capture the 

biodiversity in our expanded FathomNet data, thus requiring us to update them 

accordingly. Finally, there were also taxonomic reclassifications (mostly regarding soft 

corals, sea fans, and sea pens) that required an update to the supercategory mappings as 

well. Thus, key differences between the old models and the new models include: the 

separation of training data into benthic and midwater, updated supercategories for greater 

biodiversity coverage, and consistent quantitative benchmarking against a full-coverage 

dataset to best capture performance without the influence of noise in our testset. 

 

MATERIALS AND METHODS  

FATHOMNET DATABASE  

 Computer vision and machine learning models are highly dependent on training 

using large volumes of data in order for algorithms to converge. For this project, we 

sourced our data from the FathomNet Database - a public repository of expertly 

annotated underwater imagery. Some examples of contributors to the FathomNet 

Database include MBARI, NatGeo, NOAA, Schmidt Ocean Institute, WHOI, and 

individual contributors. More specifically, we used a snapshot of the FathomNet 

Database from November 2024 with 107,661 images and 287,877 localizations 

(bounding boxes). The labels from the database were primarily taxonomically based, 

ranging from extremely specific labels on the species level, to extremely ambiguous 

phylum level labels (eg: porifera). Additionally, there were also a few niche label types 
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such as equipment (eg: paint bucket, drum, light laser), fauna components (eg: detritus, 

sinkers, inner/outer houses), and undefined species (eg: Aeolidiidae sp. 1). Before using 

the data for training, we first sanitized the labels by trimming labels down - by removing 

auxiliary titles, punctuation, unclear species, body part notations, etc - until they matched 

a noted taxonomic title found in WoRMS (World Register of Marine Species). After 

cleaning the labels, we were left with 2,055 recovered labels. However, within these 

labels, we had labels that were children of other labels - for example, a species that 

belonged to a phylum - which added further complexity. Additionally, the distribution of 

these labels were also greatly unequal. As seen in figure 1, some labels had thousands of 

instances while others had single examples; thus, balancing the labels became extremely 

important which led to our development of supercategories.  

 

Figure 1. The distribution of a select few labels from the FathomNet Database. Notice the disparity between 

the most and least represented labels. Also notice the different taxonomic levels of the labels. 

 

SUPERCATEGORIES 

Ultimately, we decided to collapse our labels into 29 benthic supercategories and 

21 midwater supercategories. These supercategories represent umbrella groupings that 

contain subsets of the base labels that we got from FathomNet. More specifically, since 

our labels from FathomNet were taxonomic names, we represented our supercategories as 
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groupings of highlevel taxonomic classes with all of their children included. Additionally, 

for each supercategory, we also included taxonomic classes to exclude since some 

supercategories may be supersets of others (eg: bony fish and flat fish) that we chose to 

separate for ecological interest reasons. This way, there was no overlap between any of 

the supercategories in each environment. 

 

Figure 2. An example supercategory and its included/excluded taxonomic classes. The mappings were 

stored in the JSON format for ease of use in Python. 

 

In order to determine what supercategories we wanted, we considered a variety of 

factors including balancing morphological and taxonomic relations, data availability, and 

ecological interest. The ecological interests were determined by consulting benthic and 

midwater animal experts (big thanks to the VARS lab) to see which groups of animals 

were considered relevant for the analysis of marine ecosystems. We also iteratively 

improved on the list by identifying which FathomNet labels and taxonomic groups were 

not captured by our initial draft list, and creating new supercategories to represent them. 

Our final supercategories are shown below:  

 0: Sea Anemones 
 1: Bony fishes 
 2: Flatfish 
 3: Eels 
 4: Gastropods 
 5: Sharks 
 6: Rays and Skates 
 7: Chimaeras 
 8: Sea stars 
 9: Feather stars and sea lilies 
 10: Sea cucumbers 
 11: Urchins 
 12: Glass sponges 
 13: Sea fans 

 0: Bony fishes 
 1: Eel-like 
 2: Sharks 
 3: Rays and Skates 
 4: Cephalopods 
 5: Pteropods 
 6: Shrimps 
 7: Amphipod-like 
 8: Isopods 
 9: Hydroidolina 
 10: Trachylinae 
 11: Scyphozoa 
 12: Calycophorae 
 13: Physonectae 

5 
 

"Bony fishes": {  
        "include": [ "Actinopterygii" ],  
        "exclude": [ "Anguilliformes", "Notacanthiformes", "Myxiniformes", "Zoarcidae", 
"Pleuronectiformes" ]  
} 



 

 14: Soft corals 
 15: Sea pens 
 16: Stony corals 
 17: Black corals 
 18: Crabs 
 19: Shrimps 
 20: Squat lobsters 
 21: Barnacles 
 22: Sea spiders 
 23: Worms 
 24: Brittle Stars 
 25: Tube-Dwelling Anemones 
 26: Demosponges  
 27: Zoanthids 
 28: Clams 

 14: Lobata-like 
 15: Beroidae 
 16: Appendicularia 
 17: Pyrosome 
 18: Salps 
 19: Worm-like 
 20: Arrow Worms 
 
 

 

Figure 3. All of the supercategories and their mappings to either benthic or midwater environments 

 

Additionally, we had these supercategories mapped to either benthic or midwater 

environments based on the usual habitat of the specific category. This mapping serves as 

a resource for future marine ecosystem analysis, and also guides our methods for 

separating images into benthic vs midwater environments. Below we have the 

distributions of supercategories for the benthic data and the midwater data respectively: 

 

Benthic Supercategories         Midwater Supercategories 

 

Figure 4. The distributions of respective supercategories for our sorted benthic and midwater images 
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ENVIRONMENTAL SEPARATION 

Beyond just having ecological differences, benthic and midwater are 

fundamentally different environments with unique animals, lighting, and noise. These 

differences inherently affect model performance due to background context. Thus, our 

next step was to separate our images into either benthic or midwater environments. 

However, with 100,000 images, doing this by hand was not feasible; thus, we had to find 

ways to automate this process. The first thing we did was hand label ~8,000 images, in 

order to create a source of truth for either testing methods or machine learning model 

training. This was done using a custom data annotation platform I programmed, using a 

NextJS frontend with a GoLang, PostgreSQL, and Redis backend. 

 

Figure 5. An example of the differences between benthic (left) and midwater (right). Different 

environmental contexts include lighting differences, presence of sediment, fauna differences, and more. 

 

Our first approach was to extrapolate from the image annotations and our 

benthic/midwater mappings. We took the annotations in the image, and mapped them to 

either belonging in either benthic or midwater classes. Then, we simply took the majority 

count (if there were more benthic instances or midwater instances) to determine the 

environment. This worked well for around 80% of the images; however, this meant that 

20,000 images were still unclassified and therefore excluded from training. Reasons for 

this included having equal proportions of benthic and midwater entities in one image, or 

having only supercategories that were present in both benthic and midwater environments 

(eg: bony fish). Thus, we needed some way to sort these remaining images using the only 

data we had - annotations and the image itself. 
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Figure 6. The distribution of benthic vs midwater localization ratios in all of the FathomNet data. As 

demonstrated, most images contained only midwater examples, or benthic examples. Images with only 

examples that were mapped to both midwater and benthic were then discarded. 

 

Our second approach was to use image features extracted from a ResNet50 

convolutional neural network for classification. These image features are learned by 

training the ResNet50 on our handlabeled training data; the resulting layers of the 

network then represent specific features in the image that the model has decided to be 

relevant when deciding how to classify the image. For example, some of the features that 

were extracted were shadow and highly contrasted areas. Intuitively this makes sense, as 

shadows can only exist where there is a surface for light to project onto, which exists 

only in the benthic zones and not the midwater. This method required only the image - no 

other metadata was needed - which made it the most convenient to use out of the box 

without needing to run data cleaning on the annotation metadata. This ended up working 

for the majority of images, reaching a 99% accuracy on our test data set. However, this 

method did not take into account the annotation data, which contained helpful discerning 

information, leading to our third approach to incorporate both data streams into one 

decision model. 

Our final approach was to combine image features (eg: shadows) and annotation 

features (eg: presence of coral) to classify environments. In this case, we trained a 

multimodal model that used the ResNet50 CNN backbone to extract image features, 

which we then combined with the image annotations as additional features for the model 

to use as input in classification. This way we can combine the benefits of the mostly 

accurate annotation based heuristic with the nuanced approach of the image feature 
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method. This model ultimately was the most accurate as tested on our test set; however, it 

did require more overhead to get the annotations into the correct format to be used as 

features. In the end, we were left with 43,568 midwater images and 64,093 benthic 

images. 

 

Figure 7. An illustrated example of our multimodal pipeline. This demonstrates how the image annotations 

were combined with image features (eg: shadows) to sort our images into benthic and midwater. 
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FULL COVERAGE BENCHMARKING 

Finally, in order to test our models in a consistent and reliable manner, we needed 

a good test dataset. One issue we faced when testing on a split of our full FathomNet data 

is the fact that the images are mostly noisy. Ideally, for every image we use in training 

and testing, every entity of interest would be localized and labelled; however, due to 

human annotation limitations, this is not necessarily possible. Thus, the majority of 

images in our dataset had many unlabeled positive examples, which would greatly affect 

our testing results (essentially introducing false negatives). For example, if the model 

detects a sea urchin that exists in the image but wasn’t labeled in the data, then that will 

be counted as an incorrect prediction even though it was objectively correct.  

To combat this, we sourced a collection of higher quality images that we call full - 

coverage. This just means that these images have been extremely carefully annotated, 

getting as close as possible to localizing all relevant objects in an image. This ensures that 

our model is not punished for predicting results better than our ground truth dataset. 

Additionally, having the preset dataset meant that we could compare performance 

between different models, thus allowing for more quantitative direct comparisons. 

Ultimately, this full coverage test dataset set was composed of 389 images, spanning only 

benthic images. As a caveat, while this testset provided a better reflection of model 

performance by reducing incorrectly punished “false positives”, it suffers from its small 

size, with many supercategories having only a few examples (as little as just one or 

none). 

 

Figure 8. Comparing and contrasting between a full coverage image and a partial coverage image. Full 

coverage implies that all regions of interest are labeled and localized close to perfectly, while partial 
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coverage will have missing annotations which introduces noise to our dataset. The red box indicates an 

example of an unlabeled positive. 

 

 Additionally, to properly compare the performances of each model, we had to find 

the best performing confidence threshold for each model we were testing. This was done 

using Ultralytics validation framework, focusing on optimizing overall f1 score on the 

full-coverage test set. 

 

EXPERIMENTS  

 For this project, we trained both benthic and midwater object detection models, 

where each model is focused on detecting the respective supercategories defined above. 

Since we only had a full-coverage dataset for benthic environments, we focused mainly 

on testing the benthic models. In this case, the models we trained were fine-tuned on the 

YOLO11x1 convolutional neural network architecture from Ultralytics (augmented with 

Albumentations) and logged with CometML. Training was performed on a compute 

cluster with an AMD Threadripper with two RTX 6000 Ada GPUs. The final benthic 

model we trained - the ablated dataset model - and a handpicked midwater model were 

ultimately uploaded to the MBARI HuggingFace repository. 

 

HEURISTIC SPLIT BENTHIC SUPERCATEGORY DETECTOR  

For our first model that we trained, we used the data splits that we derived from 

our annotation heuristic environment sorting method. This means that our dataset was 

composed of 41,113 images, which was limited by the 20,000 images that our heuristic 

method could not classify environmentally. Most notably, this dataset underrepresented 

bony fish because images with only bony fish annotations were unable to be sorted using 

our heuristic, leading them to be discarded. 

 

FULL DATASET BENTHIC SUPERCATEGORY DETECTOR 
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The second model that we trained used the environmental splits determined by 

our multimodal model, which meant that the number of training images increased to 

63,000 images with 202,000 localizations. This remediates the underrepresentation of 

bony fish, and provides more training examples for every supercategory. 

 

ABLATED DATASET BENTHIC SUPERCATEGORY DETECTOR  

The final model we trained used a downsampled subset of the full dataset for the 

above benthic detector with 36,000 images and 164,000 localizations. The reasoning 

behind this decision relied on the idea that unlabeled positives introduced noise that 

would be adversarial to training; for example, every unlabeled positive in the image is 

taught to the model as background, impeding the model’s performance on that 

supercategory.  Additionally, our preliminary experiments demonstrated that many of the 

underrepresented supercategories still achieved high performance, possibly indicating 

that we could truncate some of our overrepresented categories and still maintain similar 

levels of performance. Thus, with the knowledge that most images in FathomNet were 

partial-coverage, and having more images would introduce more unlabeled positives, the 

goal then became to find a balance between maximizing the number of labeled examples 

and minimizing the number of unlabeled positives.  

The actual process of downsampling is as follows. The initial subset was chosen 

by first taking images that had examples of underrepresented supercategories. Then for 

the overrepresented supercategories, we set a threshold of ~15,000 localizations and 

greedily selected new images to include until we met that threshold. Our greedy criteria 

was to select images with highest counts of over- represented classes, which maximizes 

the number of examples while minimizing the number of images, in theory reducing the 

amount of unlabeled positives.  
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Figure 9. The distribution of the 29 benthic supercategories in the benthic dataset. “Unused” are examples 

in the full dataset that were downsampled away in the reduced dataset. 

 

RESULTS  

QUANTITATIVE RESULTS  

We then benchmarked all three benthic models against our full-coverage dataset. 

Our heuristic split detector achieved a precision of 0.6912 and a recall of 0.3840 for an 

F1 score of 0.4310. The full benthic dataset detector (63k images, 202k localizations) 

achieved 0.524 mAP@0.5 and an F1 score of 0.549 (precision 0.846, recall 0.406). The 

reduced benthic dataset detector (36k images, 164k localizations) surprisingly 

outperformed the original, with 0.539 mAP@0.5 and an F1 score of 0.589 (precision 

0.813, recall 0.461). This reduced dataset was downsampled from the full benthic dataset 

by greedily selecting images with the highest occurrences of over-represented 

supercategories until a threshold was met, maximizing the number of examples while 

minimizing number of images, ideally reducing false negatives. This result highlights that 

increasing dataset size without controlling annotation quality can degrade performance. 

Ultimately, the reduced benthic detector proved to be the most performant, with the 

highest mAP@0.5 and F1 scores. 

Additionally, we also examined the confusion matrices of our final model to see 

individual supercategory performance. These confusion matrices were benchmarked on a 

validation dataset, not the full-coverage dataset. This was done because the validation 
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dataset has much greater representation for the supercategories (the full-coverage dataset 

is much too small for this purpose), so it better represents individual class performance. 

Because of this, it is expected for the confusion matrix to indicate large amounts of false 

positives, since these are localizations that exist in reality, but are not reflected in the 

validation data due to the partial coverage issue. 

 

Figure 10. The normalized confusion matrix for the benthic supercategory detector. Normalization was 

performed column-wise. 

From the confusion matrix, we can see that the model performs well for almost 

every supercategory. A few outliers include barnacles, zoanthinds, and clams which were 

commonly mistaken for the background. Additional areas of confusion included the 

fish-like animals (bony fish, flat fish, eels, sharks, etc) and corals (black corals, sea fans, 

etc). These could be attributed to morphological similarities between the supercategories. 
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 Since these confusion matrices were benchmarked on a validation set, we have a 

confusion matrix for the midwater detector also, as shown below: 

 

Figure 11. The normalized confusion matrix for the midwater supercategory detector. Normalization was 

performed column-wise. The Cydippida supercategory was an artifact accidentally leftover from a previous 

iteration of the supercategories and should not be considered. 
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QUALITATIVE RESULTS 

From a visual inspection of the model prediction mosaics below, it was seen that 

both the benthic and midwater models perform well in identifying and localizing the 

majority of relevant animals. Additionally, the differences between midwater and benthic 

environments are highlighted through these mosaics; images from these different 

environments are wholly different, with benthic environments being noisier and denser, 

while the midwater images are much cleaner and usually are focused on a single 

organism. The results of the models are qualitatively as good, and on occasion better, 

than the hand-annotated training data that we had used. However, there were still 

shortcomings that we will discuss in the upcoming sections. 

 

 

Figure 12. Mosaic of benthic model predictions with an IoU threshold of 0.7, confidence threshold of 0.25, 

and image size of 640x640. 
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Figure 13. Mosaic of midwater model predictions with an IoU threshold of 0.7, confidence threshold of 

0.25, and image size of 640x640. 
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DISCUSSION  

IMPROVEMENTS 

With an inference rate of ~5ms per image on a RTX 6000 Ada Generation, these 

models can provide accurate labels and localizations at a much faster rate than the 

traditional human-annotation pipeline. From the confusion matrices, we can see that the 

models do a good job of labelling most supercategories correctly, as well as properly 

localizing them. Additionally, the model predictions can be seen to be as good or better 

than the initial FathomNet database training data. For example, figure 14 demonstrates 

how the benthic model was able to pick out all the sea pens and sea anemones that were 

originally unannotated in our training data. 

 

Figure 14. Contrast between the training-data annotations (left) and the model predictions (right). We can 

see that the model can generate results that are more complete than our training data, and considerably 

faster too. 

 

SHORTCOMINGS 

While the models perform well in labeling and localizing our supercategories, 

there are still a couple limitations to its abilities. One major limitation is the tendency for 

the model to mix-up supercategories that are morphologically similar, such as bony fish 

and sharks. This also extends to smaller organisms that are usually found on the sediment 

interface; these organisms are commonly mistaken with the background.  
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Figure 15. A visual demonstration of the model mixing up bony fish and sharks (top row, right most 

bounding box). The bottom row of images demonstrates how examples of bony fish and sharks can be 

morphologically similar (from left to right: shark, fish, shark, fish). 

 

Figure 16. Another image demonstrating the model conflating squat lobsters and shrimps. This is an 

interesting case where one specimen was actually given two bounding boxes and two labels. 

 

 Figure 16 also demonstrates an interesting case where one specimen was given 

two bounding boxes and labels. The case of one specimen having two bounding boxes 

generally does not occur due to enacting non-maximum suppression when determining 

the resulting bounding boxes; however, this was only enabled for overlapping bounding 

boxes with the same possible label. In this case, where the overlapping boxes had 

different labels, both boxes were mistakenly kept due to having high enough confidence 

scores. This highlights both the ability of our model to detect overlapping specimens (eg: 
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a starfish on coral), while also showcasing its weakness in morphologically similar 

supercategories. 

 Another interesting drawback of our models can be seen primarily in the 

midwater supercategory detector. Due to our original data-cleaning process, where we 

truncated labels regarding specific body parts of certain specimens, we end up double 

counting certain supercategories. For example, the FathomNet label “Calycophorae 

body” and “Calycophorae body” were both truncated down to just “Calycophorae” in our 

data-cleaning process to maintain our strict taxonomic labels to build supercategories 

from. As seen in figure 17, this leads to both the specimen's head and body to both be 

counted as the supercategory, leading to a double count. 

 

 

 

Figure 17. Examples of double counting in the midwater model due to the truncation of FathomNet labels 

in our data-cleaning process.  

20 
 



 

Finally, recall is still the model’s greatest weakness which can be seen in 

examples where the model misses very obvious examples. As seen from our quantitative 

results, the recall of our best benthic model is still around 0.461, indicating that the model 

is still mispredicting many of the relevant regions as background, likely a result of the 

partial-coverage training data. However,  

 

Figure 18. An extreme example of the model missing an obvious specimen (the claim in the center of the 

image) 

 

CONCLUSIONS/RECOMMENDATIONS  

For future recommendations, we suggest expanding the full-coverage framework 

to both include more benthic examples for greater biodiversity and midwater examples. 

Additionally, we hope to experiment with new methods to extract the most performance 

from a noisy dataset such as using pseudolabels, artificial generated examples, 

upsampling, and more. Finally, it would be prudent to work on improving model 

inference speeds by trying out smaller models (such as a YOLO11n or YOLO11s) or 

TensorRT optimizations in order to enable real time detections for a video stream. 

Overall, we conclude that object detection models can optimize the annotation 

and analysis workflows for ocean scientists and ecologists. These models can be created 

by finetuning YOLO models with large, expertly-labeled, public repositories as long as 

the noise in training images is accounted for. Ultimately, the models were successful in 

detecting a significant portion of relevant animals in marine imagery, demonstrating that 
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object detection models, coupled with human-in-the-loop oversight to review proposed 

annotations, offer a potential solution for accelerating marine ecological research. 
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