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ABSTRACT 

Monitoring coastal regions is essential for understanding ocean health. To address 

critical data gaps, the Monterey Bay Aquarium Research Institute (MBARI) has developed 

and deployed Coastal Profiling Floats (CPFs) equipped with chemical sensors. Extending 

CPF mission life requires improving the energy efficiency of the pump motor system. This 

project presents an alternative pump motor design achieved by selecting motors whose 

efficiency curves peak closer to the pump load and by implementing programmable field-

oriented control (FOC) drives. The paper details the mechanical, electrical, and software 

aspects of the project, describes testing, and outlines next steps for integrating these 

improvements into future CPFs. 

INTRODUCTION 

To understand the health of the ocean, it is important to monitor coastal regions. 

Coastal regions contribute nearly half of global new primary production despite only 

comprising 10% of ocean area.1 Monitoring coastal regions is important to understanding 

oxygen dead zones, marine heat waves, harmful algal blooms, managing fisheries and 

overall ocean health. To address critical data gaps, the MBARI Chemical Sensor Lab has 

developed CPF that provide a cost-effective solution for collecting long term defensible 

data across coastal regions. CPFs support standard biogeochemical sensor suites that 

include CTD, oxygen, pH, nitrate, chlorophyll, and backscatter.2 
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CPFs utilize a buoyancy engine to ascend and descend to complete a data collection profile. 

A hydraulic pump displaces oil between an internal and external bladder creating a change 

in the mass distribution of the float. Pumping into the internal bladder increases the density 

of the float causing it to descend and pumping into the external bladder decreases density 

causing the float to ascend. This system actively manages profiling depth. CPFs are 

designed to descend below the euphotic zone and park at a specified depth of up to 350m 

using a buoyancy engine with displacement of approximately 3.5L which is larger than the 

~~0.5L of a standard float. This avoids entrapment in mud, allows profiles through steep 

pycnoclines and supports return of samples while carrying heavy tooling.3   

There is a need to increase the energy efficiency of CPFs to allow more profiles per 

mission. CPFs are powered by ~720Wh battery packs that limit mission life. Increasing 

energy efficiency of the system will increase profile count and mission life. This means 

more data collected per deployment resulting in decreased cost per data collected. The 

pump motor currently utilized results in the largest power loss. It is inefficient and lacks a 

low-power mode. Modern motor control technologies with different energy curves offer 

the opportunity to increase CPF efficiency and as a result the number of profiles executed 

per mission. To explore this approach, a prototype was built to test alternate motor control 

systems and hardware. Efficiency gain was measured in all states and used to estimate a 

resulting increase in profile counts and consequent reduction in cost per profile.   

MATERIALS AND METHODS 

MECHANICAL 

A test fixture was constructed using an aluminum extrusion frame supporting an 

OilDyne hydraulic pump and motor (Figure 1). Custom aluminum brackets were water-jet 

cut and assembled with FDM-printed spacers for damping. The pump was connected to a 

1-gallon plastic reservoir and plumbed to a pressure sensor with an inline regulator. The 

EVLSERVO1 motor drive and INA229 current sensor were mounted on the fixture, and 

an ST-Link programmer was used. An Aardvark SPI Host Adapter was used for 

communication with the drive. The entire assembly was placed in a spill tray, and all tests 

were conducted at 28.8 V, consistent with CPF average operating voltage. 
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Figure 1. Bench Testing Fixture for CPF Pump System 

ELECTRICAL 

The fixture electronics included a modified EVLSERVO1 motor driver and an 

INA229 20-bit current monitoring module populated with a 10 mΩ shunt.4 The 

EVLSERVO1 required rework because its default shunts were scaled for ±165 A, far above 

the ±10 A operating range of the CPF motors. At this range, the maximum drop across the 

original 500 µΩ resistors was only 5 mV, resulting in just 6 quantization steps on the 12-

bit ADC (3.3 V full scale, ±1.65 V input).5 This lack of resolution made current feedback 

unusable and caused highly unstable motor control. 

To correct this, the shunt resistors were replaced with 5mΩ resistors (a 10× 

increase), normalizing the measurement range to ±16.5A and providing reliable resolution 

for the expected operating currents. The EVLSERVO1 also required rework to adapt its 

default differential Hall sensor inputs for use with single-ended Hall sensors.6 

For testing, a Maxon EC60 motor was selected, as its efficiency curve peaks near 

the average load of the OilDyne pump. The EC90 motor currently used in CPFs was not 

suitable because its efficiency curve peaks well above the pump’s maximum load, meaning 

it always operates far below its peak efficiency (Appendix A).7 
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SOFTWARE 

The EVLSERVO1 motor driver was programmed using field-oriented control 

(FOC) firmware generated with the STMicro Motor Control Workbench (MCWB). 

MCWB requires input parameters for the motor, encoder, and Hall sensors. For motors in 

the CPF size range, the built-in motor profiler will often fail, and the parameters must 

instead be manually characterized using an RLC meter and oscilloscope if not provided in 

the datasheet. The modulation index was confirmed to be close to 100%, and MCWB then 

generated C firmware on top of the Motor Control SDK and STM32 HAL.8 

On top of the auto-generated C firmware, a C++ interface was developed for CPF 

testing. The STM32 toolchain compiles the MCSDK code strictly as C, which creates type-

safety issues where C++ requires explicit casting. Since no compiler flags could resolve 

this mismatch, a bridge layer was implemented on top of the existing motor control API. 

The bridge wraps functions that are incompatible with C++ compilation. Although this 

approach required modification of several auto-generated source files, it allowed the 

firmware to compile and provided a functional interface. 

Table 1. Interface Layer State Descriptions 

Run State → Default state entered at startup. 

→ Executes commands received from the SPI FIFO, including motor speed control (SETSPEED) 

Low Power 

State 

→ Entered on a SETIDLE command. 

→ Analog electronics such as gate drivers are powered down, and the MCU on the STSPIN32G4 is 
placed in standby mode.5 

→ Wakeup occurs either through the real-time clock (RTC) after a timeout or via an external wakeup 

pin. 

→ On wakeup, the FSM restarts and re-enters into Run Mode. 

Error State → Entered when error flags are triggered (e.g., over-voltage, over-current, feedback failure). 

→ The FSM attempts to clear errors safely, while maintaining a counter for each event. 

→ If the same error occurs more than five times within one minute, recovery fails and the drive is 
forced into a permanent standby mode. 

 

A C++ finite state machine (FSM) was implemented on top of the bridge layer 

(Appendix B). All states publicly inherit from a common base state that defines the 
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minimum required methods, ensuring consistent behavior and simplifying transitions. The 

FSM manages driver operation through three primary states seen in Table 1. 

An interrupt-driven SPI protocol was implemented to allow the CPF controller 

(master) to communicate with the motor driver (slave). Messages follow an NMEA-style 

format with a defined command set (Table 2).9 

On each interrupt, received bytes are placed into a 256-byte buffer. If the buffer 

overflows, it is reset. When an endline character is detected, the message is pushed into a 

FIFO and the buffer is cleared. Messages dequeued from the FIFO are XORed and 

compared to the checksum before being parsed and passed to a state of the FSM. 

Table 2. SPI Communication Commands 

Command Example Description 

SETSPEED $PMC,SETSPEED,<signed 

int>*CS\r\n 

Sets the motor speed and direction (rotations per second). 

SETIDLE $PMC,SETIDLE,<MODE>,<

timeout>*CS\r\n 

Enters low-power mode. MODE = SHUTDOWN or 

TIMEOUT. Timeout in seconds. MCU wakes via RTC or 

external pin. 

GETHEALTH $PMC,GETHEALTH*CS\r\n Returns an NMEA message with die temperature, power 

consumption, and error flags (over-voltage, over-current, 

feedback loss). 

GETSPEED $PMC,GETSPEED*CS\r\n Returns the current motor speed (rotations per second). 

 

TUNING 

The motor driver implements cascaded PI control loops for current and velocity. 

Only the torque current loop was tuned, as the flux current loop was not used in this 

application. Tuning was performed under load with the hydraulic pump attached. 

Torque current feedback was read from a 12-bit ADC, which introduced significant 

noise (Figure 2b). Spectral density analysis using MATLAB Signal Processing Toolbox 
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showed that the signal of interest during up/down step tests was below 40 Hz (Figure 2a). 

A low-pass filter was designed to suppress higher-frequency noise. Filter parameters were 

iteratively adjusted for each tuning cycle to balance noise reduction with minimal signal 

distortion (Figure 2c).11 

 

Figure 2. Torque Current Step Test 

 

DATA AND RESULTS 

LOW POWER MODE 

 Power consumption of the motor driver was measured in low-power mode and 

compared against the original drive, which consumed ~10 W at idle. Measurements were 

taken using an INA229EVM 20-bit current-shunt monitor. Several minutes of current data 

were logged and processed with a filter before averaging to determine steady-state current. 

A shunt-based measurement was selected over a current clamp to improve sensitivity. 

Accuracy was validated by comparing results against clamp measurements across resistive 

loads on an oscilloscope. 

Table 3 summarizes idle current and power consumption of the EVLSERVO1 and 

selected on-board peripherals. The evaluation module includes unused features such as 

CAN bus transceivers and differential encoder support, which cannot be fully powered 

down in this configuration. Additionally, the encoder cannot be powered down on the 

evaluation board. 
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Reff Designator 

Nominal 

current 

(mA) 

Nominal 

Voltage 

Power 

(mW) Part Number Notes 

EVLSERVO1 Full 

Unit 31 28.8 892.8 

 

In standby mode, no priffrals striped 

LED2 2.2 2 4.4 

 

VBUS Status LED 

R28 2.2 26.8 58.96 

 

Status LED resistor 

U10 23 5 115 ST26C32AB For differental encoders 

U11 60 3.3 198 TCAN330DCNT CAN Bus 

U2 

 

3.3 0 PM8851 

 

   

0 STR485E 

We do not need the Z phase of the 

encoder, so could remove this IC. Quite 

low power though 

Encoder 9.9 28.8 285.12 

 

Add ability to power down Encoder / 

Hall 

Table 3. Unneeded Peripherals on the EVLSERVO1 Breakdown 

 

When the EVLSERVO1 MCU was placed in standby mode, idle power draw 
decreased by 91%. By removing/powering down unnecessary peripherals, idle power was 
reduced by 97.9% (Figure 3). 

 

 
Figure 3. Idle Power Comparison 
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RUN MODE 

To evaluate motor efficiency gains in run mode, the pump was operated at a 

constant speed, while pressure was varied. CPF missions can profile at pressures of up to 

350 dBar.3 For each test point, the pump was held at a constant pressure for approximately 

3 minutes (Figure 4). Current measurements were recorded with the INA229EVM, and 

steady-state sections were extracted. The data was processed using a boxcar filter and 

averaged; standard deviations were calculated to assess measurement quality. 

 

Figure 4. Pressure Test 

Testing demonstrated that the alternative drive, combined with a motor whose 

efficiency curve is better matched to pump loading, provided a 50–65% improvement in 

efficiency across pressures of interest at 1000 RPM (see data in appendix C).Testing 

demonstrated that the alternative drive, combined with a motor whose efficiency curve is 

better matched to pump loading, provided a 50–65% improvement in efficiency across 

pressures of interest at 1000 RPM (Figure 5). 
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Figure 5. Power vs Pressure at 28.8V 

 

TOTAL IMPROVEMENT 
 
 An energy model was constructed to estimate the total power consumed during a 

CPF profile at a given depth. The model provided a breakdown of where energy is used 

across motor states (Figure 6). 

 
Figure 6. Power vs Time for a 100m Profile 

The results show that run mode dominates overall consumption, meaning that 

efficiency improvements in this state yield the greatest benefit. The model predicts a 2.4–

2.6X increase in profile count at mission-relevant depths (Figure 7). 
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Figure 7. Profile Depth vs. Count (Assuming ~720Wh Battery) 

 
POWER CACULATION VALIDATION 
 

A calculation of total power from torque current, phase voltages, and electrical 

angle was performed to validate Motor Pilot GUI data.13 The process applied inverse 

Park and Clarke transformations, followed by a power calculation.12 The calculated 

values did not align with Motor Pilot outputs, indicating inconsistencies. This is most 

likely due to an error in implementation of the calculation rather than an issue with the 

Motor Pilot data itself. 

Equation 1. Calculating Power from Torque Current 
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DISCUSSION AND NEXT STEPS 

While bench tests demonstrated promising efficiency gains, further validation is 

required. In particular, repeated trials are needed to confirm reliability and identify edge 

cases, such as starting the OilDyne pump into back pressure after long idle periods. Cold 

pumps appear to require higher startup torque than warm ones, and this behavior was not 

fully evaluated. Integration of the motor and drive into a CPF, followed by tank and 

eventually at-sea testing, will be critical to uncover additional issues. 

Another key motivation for exploring the EVLSERVO1 was its support for 

regenerative braking. The hardware includes a dedicated regeneration circuit, which could 

potentially harvest back EMF during ascent and recharge the battery pack. This capability 

was not tested during this project and remains an important next step. 

The EVLSERVO1 drive is designed for high-power motors (~4 kW) and is 

oversized for this application. As described above, it required modification to operate 

effectively with lower-current motors. A custom driver could be made lighter, more 

compact, and more efficient by using appropriately scaled current shunts and eliminating 

unused peripherals. Several ICs on the evaluation board include low-power/shutdown pins, 

but these were not connected, leaving no way to power down these ICs. Adding switching 

for powering down encoders and Hall sensors would further reduce idle draw.  

Software development also remains incomplete. While a functional C++ bridge and 

finite state machine were implemented, the interface is not yet production-ready. Unit 

testing must be added, particularly for the error handling state. Error handling should 

include logging, message transmission to the CPF master, and more robust recovery 

strategies. The current bridge layer, which wraps the autogenerated MCSDK code, is 

functional but messy and should eventually be replaced with a cleaner solution. In 

retrospect, implementing the interface layer directly in C would have been chosen. 

Further testing is needed to validate the efficiency results. The first attempt to 

calculate bus power from torque current, phase voltages, and electrical angle did not match 

the values reported by Motor Pilot. This mismatch is almost certainly due to an error in the 

calculations rather than a problem with the Motor Pilot data. It also remains unclear how 
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much of the efficiency gain comes from motor choice (EC60 vs. EC90) versus the drive. 

Repeating the tests with the same setup but using an Elmo drive would help separate these 

effects. We speculate that the motor may be the main contributor to the increased 

efficiency, though drive settings could also play a role. 

CONCLUSIONS 

The improved pump motor system described in this paper demonstrated significant 

energy savings and, after further validation, could be implemented in CPFs to substantially 

increase profile count. This improvement would lower CPF operating costs and extend 

mission duration. In addition, it lays the groundwork for integrating and testing 

regenerative braking in CPFs. 

ACKNOWLEDGEMENTS 

I would like to thank Gene Massion for his mentorship, guidance, and for 

generously sharing his wealth of knowledge with me throughout this internship. I am also 

grateful to the intern coordinators, George Matsumoto and Megan Bassett, for their 

leadership of the internship program and their support over the summer. Special thanks to 

the MBARI electronics technicians Chris Beebe, Jim Montgomery, James McClure, and 

Jose Rosal for their patience and expertise. I also thank Roman Marin for support in 

manufacturing parts, Scott Jensen and Brett Hobson for their generous donation of 

materials, and Erik Trauschke for invaluable insights on current sensing. The MBARI 

Summer Internship Program is generously supported through a gift from the Dean and 

Helen Witter Family Fund and the Rentschler Family Fund in memory of former MBARI 

board member Frank Roberts (1920–2019) and by the David and Lucile Packard 

Foundation. Additional funding is provided by the Maxwell/Hanrahan Foundation. 

  



 13 

 

References: 

[1]K. Fennel et al., “Carbon cycling in the North American coastal ocean: a synthesis,” 

Biogeosciences, vol. 16, no. 6, pp. 1281–1304, Mar. 2019, doi: 

https://doi.org/10.5194/bg-16-1281-2019. 

 

[2]“‘Argo Float Program.’ n.d. Argo. University of San Diego, Scripps Institute of 

Oceanography.,” 2025. https://argo.ucsd.edu/ 

 

[3]visceral_dev_admin, “New coastal profiling floats for diagnosing ocean health,” 

MBARI, Feb. 06, 2020. https://www.mbari.org/news/new-coastal-profiling-floats-for-

diagnosing-ocean-health/ 

 

[4]“INA229 data sheet, product information and support | TI.com,” Ti.com, 2020. 

https://www.ti.com/product/INA229 (accessed Aug. 25, 2025). 

 

[5]“STSPIN32G4 | Product - STMicroelectronics,” STMicroelectronics, 2025. 

https://www.st.com/en/motor-drivers/stspin32g4.html#documentation (accessed Aug. 25, 

2025). 

 

[6]“EVLSERVO1 | Product - STMicroelectronics,” STMicroelectronics, 2024. 

https://www.st.com/en/evaluation-tools/evlservo1.html#documentation (accessed Aug. 

25, 2025). 

 

[7]Selection of DC Drives, “Selection of DC Drives,” FlippingBook, 2025. 

https://online.flippingbook.com/view/72734/30/ (accessed Aug. 25, 2025). 

 

[8]“X-CUBE-MCSDK | Product - STMicroelectronics,” STMicroelectronics, 2021. 

https://www.st.com/en/embedded-software/x-cube-mcsdk.html#documentation (accessed 

Aug. 25, 2025). 

 



 14 

[9]“NMEA 0183,” Wikipedia, Apr. 17, 2020. https://en.wikipedia.org/wiki/NMEA_0183 

 

[10]STMicroelectronics, “Motor Control Part3 - 8 General and analytic PI regulator 

tuning,” YouTube, Dec. 03, 2018. https://www.youtube.com/watch?v=r7MsMJSvDaI 

(accessed Aug. 25, 2025). 

 

[11]“Get Started with Signal Processing Toolbox,” www.mathworks.com. 

https://www.mathworks.com/help/signal/getting-started-with-signal-processing-

toolbox.html 

 

[12]“Field-Oriented Control (FOC) - MATLAB & Simulink,” www.mathworks.com. 

https://www.mathworks.com/help/mcb/gs/implement-motor-speed-control-by-using-

field-oriented-control-foc.html 

 

[13]“STM32 MC Motor Pilot - Start-up guide - stm32mcu,” St.com, 2025. 

https://wiki.st.com/stm32mcu/wiki/STM32MotorControl:STM32_MC_Motor_Pilot_-

_Start-up_guide (accessed Aug. 25, 2025). 

  



 15 

APPENDIX A 

Schematic of bench testing setup. 
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APPENDIX B 

UML State Machine Diagram of interface layer software.
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APPENDIX C 

Pump pressure test with EVLSERVO1 and Maxon EC60 at 1000 RPM. 

Speed 

(RPM) 

Pressure 

(PSI) 

Voltage 

(V) 

Current approx. 

(A) 

Mean of Shunt Current 

(A) 

Shunt Stdev 

(A) 

1002 4 28.822 0.72 0.711211 0.013631 

1002 54 28.822 0.77 0.761368 0.009825 

1002 100 28.822 0.83 0.8106 0.009344 

1002 207 28.822 0.96 0.939189 0.009519 

1002 303 28.822 1.06 1.03798 0.014897 

1002 406 28.822 1.18 1.169447 0.008125 

1002 452 28.822 1.23 1.212947 0.006343 

1002 500 28.822 1.29 1.269518 0.004563 

1002 550 28.822 1.35 1.326354 0.00641 

1002 608 28.822 1.46 1.418153 0.023428 

1002 650 28.822 1.51 1.467713 0.023573 

 


