

Larvacean Robotics: A biomimetic approach to the study of

enhanced fluid transport

Karla Haiat Sasson, University of Rhode Island

Mentor: Kakani Katija

Summer 2018

Keywords: Biomimetics, Giant Larvacean, Robotics, Computer vision

ABSTRACT

Giant larvaceans of genus Bathochordaeus are abundant zooplanktonic animals. They build

complex structures out of mucus and use their tail motion to feed water into these filtering

structures, which are used to concentrate particles for ingestion. Two species of larvaceans,

B. mcnutti and B. stygius, were analyzed for this paper. The volume flow rate of B. mcnutti

has been shown to be higher than B. stygius (K. Katija et al, 2017a). An observation that tail

locomotion is different for these two species, with B. mcnutti appearing to have a hinge

between its flexible tail and a stiffer tail end (A. Baumer and Katija, 2015), motivates an

interest in exploring these kinematic differences to understand if the function of the hinge

observed in B. mcnutti is correlated to the higher flow rate in this species. A robotic system

was designed to test these differences. The system relied on passive actuation of a soft robot

by a servo motor, and computer vision to analyze the kinematics of the tails. Two tail models,

actuated by the motor, were created to match the two different species’ motions, aiming to

achieve a hinge in one of the tail models and analyze the kinematic differences between the

tail structures. A first approximation of the hinge was created by adding a stiff 635 microns

thick shim stock piece at the end of one modeled tail. Additionally both modeled tails, which

were made of silicone rubber, included a tab at their base for actuation of the whole tail.

Kinematic values were then identified from live footage of B. mcnutti, and compared to the

two models. Hinged and unhinged model motion was visually different, which was supported

by the different acquired kinematic values between the two models.

INTRODUCTION

Larvaceans are pelagic zooplankton found in the world’s oceans. They are basal chordates

with a body morphology composed of a tail and a trunk (or head), and have been found to be

second to copepods in zooplankton abundance (C. Jaspers et al, 2009). Larvaceans build

complex mucus structures (referred to as “houses” since they reside inside them), which are

used to concentrate particles for larvaceans to feed on. Giant larvaceans of the genus

Bathochordaeus are larger than other species, reaching up to 10 cm in length (W.M. Hamner

et al, 1992). Their houses can even exceed 1 m in length. The houses consist of and an inner

layer of finer mesh where particles can be filtered and concentrated to the appropriate size for

ingestion, and an outer structure, the function of which is still subject of debate. Water is

forced into the inner filter by the beating larvacean tail. After passing through the tail

chamber, water and suspended particles flow through two fluted structures. From these

structures, a buccal tube leads particles to the animal’s mouth (K. Katija et al, 2017a). When

the filter structure becomes clogged, the larvacean discards the house and builds a new one.

This has important ecological implications, since the discarded houses are full of carbon and

due to their size, increase the speed of sinking particles to the seafloor (B. H. Robison et al,

2005). Larvacean houses are estimated to constitute up to 1/3 of the carbon flux to the

seafloor in Monterey Bay (B. H. Robison et al, 2005), which has a significant impact on the

biological pump.

Two larvacean species found in Monterey Bay include Bathochordaeus stygius and

Bathochordaeus mcnutti. Through analysis of Monterey Bay Aquarium Research Institute’s

Remotely Operated Vehicle (ROV) footage of these two species, it can be observed that the

tail movement of Bathochordaeus stygius resembles a traveling wave (A. Baumer and Katija,

2015). However, this contrasts with mcnutti, whose tail is observed to have a stiffer section

that bends 2/3 of the way down the tail (Figure 1). This stiff end section appears to be held at

an angle, resembling a hinge. The function of this hinge is unclear.

While pumping, the tail shape of B. mcnutti is composed of a flexible base with a stiff end.

Other flying and swimming animals have been shown to bend their propulsive appendages

within a predictable range of characteristic motions (Lucas et al, 2014). These characteristic

motions are defined by a rigid body or appendage followed by a flexion point, after which the

rest of the structure becomes flexible (Figure 2). Interestingly, B. mcnutti has the opposite

structure. Besides the structure of the flexion point, it has been shown that that point on the

appendage or body of the animals happens at the same ratio on the body (Figure 2), which the

larvacean matches. If the bending modes for swimming or flying are optimized for efficient

movement, perhaps the bending modes seen in giant larvaceans indicate an optimization for

enhanced pumping efficiency.

A study on the role of giant larvaceans in oceanic carbon cycling analyzed both of these

species and calculated the volume flow rate of B. mcnutti to be higher (K. Katija et al,

2017a). A table adapted by K. Katija (Table 1) includes normalized values of this flow rate,

indicating that even when normalized to the animal’s size and pumping frequency, B. mcnutti

maintains a higher flow rate. This brings up the question of whether the hinge has any effect

on this difference in flow rate.

Figure 1. Tail movement of Bathochordaeus stygius (L) and Bathochordaeus mcnutti (R).

Images from MBARI ROV footage.

Figure 2. The position of flexion points of different taxonomic groups. (Lucas et al,

2014).

Table 1. Volume flow rate chart adapted by K. Katija from (Katija et al, 2017a).

Volume flow rate was normalized using tail beat frequency and tail length, yielding a

dimensionless quantity. Volume flow rate measurements were made in situ using

particle image velocimetry. Swimming cycles are defined as one wave cycle and

standard deviations are obtained from measurements done on all observed individuals

of each species.

Species

Number of

Individual

s ()

Swimmin

g Cycles

()

Tail

Length

(cm)

Tail Beat

Frequency

(1/s)

Volume

Flow Rate

(L/hr)

Normalized

Volume

Flow Rate ()

Bathochordaeu

s stygius

5 43 4.9 ± 0.30 0.97 ± 0.02 27.01 ± 4.31 0.07 ± 0.02

Bathochordaeu

s mcnutti

3 10 6.17 ± 0.44 0.77 ± 0.24 69.39 ± 6.03 0.11 ± 0.02

Figure 3 shows a microscope photo of a larvacean tail. It confirms that the end of the tail,

where the hinge happens, has stiffer tissue than the rest of the tail, since cells appear to be

clumped together and have thicker walls than the epithelial cells surrounding the rest of the

body. Additionally, it’s important to point out that the end of the tail does not contain muscle

tissue. This suggests that the hinge is not due to musculature in the tail but is due to some

other mechanism.

Figure 3. Microscope photo of a B. mcnutti tail, stained to identify internal features.

Theusculature in the center of the structure, does not span all the way to the end of the

tail. In the middle of the muscle tissue there is a notochord. The surrounding tissues are

epithelial cells. Magnified sections show tissue at the end of the tail has thicker walls and

more spatially dense cells, compared to the rest of the epithelial cells with less dense

cells and thinner cell membranes. Image courtesy of Janna Nawroth (University of

Hawaii).

The observation that the movement is different in the two species of Bathochordaeus, and

that B. mcnutti has a higher volume flow rate, motivates an interest in the kinematic

differences between the two species. Does the hinge have an effect on the flow rate? How can

we recreate this motion to study associated fluid transport? Here we describe the

development of a biomimetic physical model to study the kinematics of the movement for

future flow measurements.

MATERIALS AND METHODS

SETUP

A system based on motor-actuated soft robotics was used to mimic the larvacean tail. The

actuation of the 8 cm tail mimic consisted of a servo motor (Hitec HS-645MG) controlled by

an Arduino Uno. The servo was placed in a waterproof housing, since the tail model portion

was inside a 24 in L x 12 in W x 16 in H tank (Figures 4-6). The testing portion for the mimic

relied on computer vision to process kinematics via Matlab R2018a.

Figure 4. Diagram of system. PC provided power for Arduino and Camera. Power

supply provided power to servo motor. Diagram indicates Arduino controlled servo

motor, which controlled the tail mimic, which was recorded by the camera. Arduino

software and camera software were used to control the Arduino and Camera

respectively. Matlab was used to process the camera recordings.

Figure 5. The system setup. Servo motor controlled by the Arduino was contained in a

waterproof housing, which was attached to a shaft that actuated the tail. A CMOS

camera, controlled by video processing software, was placed on the side of the tank for

visual processing.

Figure 6. Front view (L) and top view (R) of tail attachment mechanism. Adapter was

attached to a shaft that was moved by the servo motor. The adapter had a slot at its

middle where the tail could be clamped in with set screws.

The Arduino was wired (Figure 7) and coded (Appendix 1) to incorporate a sweep

mechanism with an LED indicating the forward and reverse motion to help keep track of one

cycle. The sweep motion was created by specifying the extreme positions to adjust angle and

incorporating delays to set the desired frequency. To calculate the delay the following simple

calculations were done:

#steps = total angle * 2

delay = period in ms / # steps

Figure 7. Circuit of the Arduino, servo motor and LED in the system.

To be able to measure the kinematics of the tail, a FLIR (PointGrey) Grasshopper3 camera

controlled by FlyCap 2.0 software was placed next to the tank (Figure 5). The camera was a 5

megapixel, monochrome CMOS camera recording at up to 75 fps (set to 55 fps to avoid

flicker due to fluorescent lighting). Attention was paid to maintaining the same exposure

settings and framing for every recording so videos could be compared and easily processed

using the same automated algorithm in Matlab. It was also important for the base of the tail to

be placed roughly in the middle of the tank, with enough space from the bottom and the walls

to avoid interference of these walls on the flow. The tail base was placed halfway up the tank,

and at least 4 in away from the walls. Figure 8 shows interference of the flow when having

the tail too close to the bottom.

Figure 8. Interference of flow in a small tank. Green dye was injected at the base of the

tail, the movement of it shows the flow bounced off the bottom of the tank and the side

walls making its way back up to the tail.

TAIL DESIGN

A major challenge of the system was the matching of an active movement (muscular tail

movement) by using a passive system, in which the entire tail was driven by the base of the

tail.

To create a biomimic of the tail, various characteristics of the real tail were taken into

account:

1. The end of the tail has stiffer tissue.

2. Notochord connects the motion from the head to the end of the tail.

3. There is a connection between the head and notochord.

A 3D printed mold was designed to incorporate different tail designs to match these

characteristics (Figure 9). This mold allowed for different thicknesses of shim stock plastic to

be placed at different parts of the mold. Additionally, a 3D printed tab (Figure 9d) was

created to fit into the mold. The thinner part of the tab (1.27 mm) went into the tail model,

and the thicker side (2.30 mm), which was inside a gap in the mold (under Figure 9a) was

used to fit into the adapter piece on the shaft. After the materials were placed where desired,

Dragon Skin® FX-Pro, a silicon rubber material, was prepared, degassed to get rid of bubbles

and poured into the mold. Before mixing in the dragon skin, a small amount of material

thinner could be incorporated into the mix. A piece of metal was then placed on top of the

mold between the material on the level of A and level of B on Figure 9. This allowed the

material to be evened out. The material was left to dry for 1 hour and then slowly removed

from the mold. Any extra material was cut out from the tail.

Figure 9. Tail mold design. Tab D can be placed on the gap under part A to allow the

thinner part to fit into the tail design and the thicker part to be the piece for the

adapter. Shim stock can be placed between B and C and secured by joining the pieces

together. The standoff at part E can be used to place material in the middle of the tail.

KINEMATIC ANALYSIS

Data from a single sequence ROV video of B. mcnutti (Figure 10), manually traced per frame

(A. Baumer and Katija, 2015), was used as comparison for the model kinematics. Simple

wave measurements were sought out as values for a preliminary approximation for this

comparison. These values, previously defined in the work by Baumer et al, included

wavelength, amplitude, frequency and angle (Figure 11).

Figure 10. Example of ROV footage image processing taken from (A. Baumer and

Katija, 2015). Image shows video frame of organism in house (A) and boundary

detection of animal (B). Since the detection of the tail was complicated because of the

house, the tail was manually traced for analysis.

Figure 11. Diagram of simple wave metrics used for kinematic analysis. Amplitude was

defined as maximum value of maximum peak of the cycle (and minimum value of

minimum peak of the cycle), wavelength was defined as the distance between the

minimum and maximum peak doubled, and the angle was defined as the maximum

from the base that encompasses the entire tail. Diagram by Alexa Baumer.

An algorithm was written in Matlab (Appendix 2) to extract these kinematic values from the

pre-processed tail traces. The algorithm shifted the curve so the base of the tail was at the

origin of the coordinate system. Then, the endpoint of each frame was identified and a

median vertical endpoint position was found from the values of all the frames. A rotation was

then applied to the data to make the midpoint of the endpoints the center of the movement

(Figure 12). To fit some parameters to the curve, the following assumptions were made:

1. The horizontal distance from minima to maxima in a frame is half a wavelength

2. Calculations are done as if the wave continues for at least a wavelength

3. X values after hinge is observed are ignored (Figure 13)

Figure 12. Data rotation. Tail curve was rotated by identifying median value of the tail

endpoints and shifting the curve to have the median value be the middle of the endtail

motion. This way, the tail movement is a little more symmetrical.

Figure 13. Processed frame at which the hinge is visible. In this case all the values

higher than 250 are excluded from the kinematic analysis. Full length of curve was

485.4 pixels, while length without the hinge was 283.5 pixels.

For the amplitude calculations, the x location of the hinge was visually identified (Figure 13)

and all values higher than that x value were excluded from analysis. The maximum and

minimum were then computed for every frame and then plotted together as a function of

video frame (Figure 14). The shape of this maximum Y values vs video frame plot gave the

locations of the maxima and minima of a swimming cycle. Before identifying the peaks, the

curve was smoothed by identifying the moving average of the line to reduce periodic signals.

By indexing the frame at which the peaks happened, the data from the original curve is used

to find the maximum and minimum values of that frame.

The maximum amplitudes in both directions (below and above the x axis) were obtained per

cycle. For the final data comparison, an average was taken between the positive and negative

direction amplitudes, and then an average of the swimming cycles was taken to obtain a final

number.

Figure 14. Minimum and maximum data processing. Tail from a tail model video was

traced at every frame and a maximum and minimum was identified (A). The maximum

and minimum values were then plotted separately, yielding a curve with Y values per

frame (B), which was later smoothed with a simple smooth curve matlab function to

find the frames at which the peaks happened. This curve allows identification of the

maximum Y value per swimming cycle. In this case only a cycle and a half was

observed.

The maximum angle from the base that encompasses the entire tail was calculated per frame

as well. This was done by using the starting point and every point on the curve to get Δy and

Δx values and finding the tan-1(Δy/Δx) to get the angle at every point. The maximum angle

was then identified.

The wavelength was a little more complicated since the wave is not a simple sine wave. As

an approximation, the maxima and minima were determined for the frames at which the

maximum amplitudes were found. The x distance between the minimum point and maximum

point were then calculated. In the case of a sinusoidal wave, the distance between the minima

to the maxima spans ½ of a wavelength, so the wavelength was multiplied by 2.

To make the values comparable to other videos, the data was non-dimensionalized. This was

done by finding the total curved length of the curve (in pixels) per frame, and averaging this

length; and then dividing the kinematic values by this length; eliminating the factor of length

in potential calculation differences.

For the data from the model, the videos from the CMOS camera were input into Matlab and

an image processing algorithm (Appendix 3) is applied (Figure 15). This algorithm rotated

the video, monochromized it, converted it to binary and eliminated any extra objects that may

have been in the video besides the tail. After the video was converted to binary data, the

median of the y values at each x position was found and a tail line was traced every frame.

The resulting larvacean model curve was treated as the equivalent of the manually traced

ROV video, and analyzed with the same algorithm described above.

Figure 15. Image processing algorithm applied to model videos. Grayscale image (A),

Binary image (B), Tail line traced (C), Curve is shifted to origin (D).

RESULTS

Over 20 different tail designs were tested on the setup (Figure 16). The designs ranged from

different thicknesses of tails, different amounts of material thinner, different shapes and

thicknesses of plastic shim stock embedded and different placements of the shim stock in the

tail. Some other design choices were designed to fit the different characteristics of the real

tail. These designs include the incorporation of a “notochord” made out of shim stock in the

middle of the silicone material, which resulted in making the tail too stiff to allow movement,

or the shim stock being to thin to have any effect on the movement. Including a notochord

along with stiff material at the end, which resulted in a delay of the tip of the tail, but not a

good curve for the same reasons as the previously mentioned design. A notochord with no

material at the end of the tail (a flexible end), which was unsuccessful, since the larvacean tail

has an opposite mechanism (flexible tail base, stiff end). And reducing the amount of silicon

rubber material at the end of the tail right before the stiff end, which created a hinge, but the

method also hinged on a tail with no shim stock at the end and therefore was not an accurate

model to compare stygius and mcnutti.

Figure 16. Various tail designs that were made and tested, including incorporation of a

notochord design, different shapes and thicknesses of material at the end of the tail, and

reduction of silicon rubber before the stiff material at the end of the tail.

Ultimately, a design for the two different motions was more successful than the rest. Two

tails of similar design but one with the incorporation of a hinge (Figure 17) had some

important characteristics. The design allowed for the mimics to move flexibly like a tail, and

allowed one of them to have a hinge while the other didn’t. The tails were 2 mm in thickness,

had a 3D printed tab placed in between the layers of material, and both had thinner (a non-

reactive silicone fluid that will lower the mixed viscosity of the silicone rubber) incorporated

into the dragon skin. It was important for the weight of the thinner added to be 10% of the

total weight of the two mixed parts of dragon skin to make the silicone rubber flexible

enough to actuate like the flexible larvacean tail. The tab was particularly important to

successfully propagate the movement of the driven end to the end of the tail. A notochord

design was ultimately not utilized since it was not a good method to mimic the movement.

This is because the animal has muscle tissue around the notochord, eliminating the possible

stiffening of the tail from the thickness in the area, which the model does not have. Finally, a

635 micron thick shim stock piece was placed at the end of one of the tails. It was important

that the shape of the material was closer to the rim of the tail at the bottom of the tail and

thinner as it goes up the tail to allow the tail to be heavier at the end and also allow for a more

smooth transition from the flexible material to the stiff material. Additionally, the material

needed to be evenly placed in the tail, since any tilt would create a slanted motion instead of a

hinge. The placement of the material had to be at the desired vertical place for the hinge. The

combination of the tab, the material shape and thickness, and the thinner in the material

allowed the tail to be flexible like the larvacean tail and also allowed a hinge to be created for

one of the tails and not the other.

Figure 17. The final tail design for Bathochordaeus stygius (L) and Bathochordaeus

mcnutti (R).

Figure 18. Digital detection of hinged model (Top) and unhinged model (Bottom).

Table 2. Table comparing kinematic values of videos of the models. Same colored rows

indicate the data comes from the same video (but different swimming cycles). Three

videos were analyzed for the hinged model (actuated at different frequencies but same

angle) and two were analyzed for the unhinged model. Error values come from the

standard deviation of averaged values.

 Parameters

set to

Arduino

(average

length of

cycle and

angle)

Half angle

(positive

and

negative

directions)

Amplitude

(positive)

Amplitude

(negative)

Wavelength

(positive)

Wavelength

(negative)

Hinged

Cycle 1

810 ms 82.5 29.2676 ±

1.7788

28.2622 ±

1.0959

0.2654 ±

1.236e-4

0.3312 ±

0.003

0.6374 ±

0.009

0.7225 ±

0.025

Hinged

Cycle 2

810 ms 82.5 29.2676 ±

1.7788

28.2622 ±

1.0959

0.2652±

1.236e-4

0.3252 ±

0.003

0.6561±

0.009

0.6731±

0.025

Hinged

Cycle 1

1030 ms

82.5

29.2791 ±

1.1228

28.0791 ±

1.7204

0.2309 ±

0.003

0.3762 ±

0.006

0.5220±

0.002

0.6040±

0.007

Hinged

Cycle 2

1030 ms

82.5

29.2791 ±

1.1228

28.0791 ±

1.7204

0.2259 ±

0.003

0.3634±

0.006

0.5186±

0.002

0.5780±

0.007

Hinged

Cycle 1

1250 ms

82.5

28.4873 ±

0.9941

28.9102 ±

1.6742

0.2340 ±

0.002

0.3466 ±

8.037e-04

0.5978 ±

0.019

0.5825 ±

0.008

Hinged

Cycle 2

1250 ms

82.5

28.4873 ±

0.9941

28.9102 ±

1.6742

0.2302 ±

0.002

0.3450 ±

8.037e-04

0.5978 ±

0.019

 0.5825 ±

0.008

Unhinged

Cycle 1

1030 ms

82.5

38.2210 ±

1.7745

0.1458 ±

 5.862e-04

0.2120 ±

0.002

0.3885±

0.005

0.5025 ±

0.009

28.0297 ±

1.5372

Unhinged

Cycle 2

1030 ms

82.5

38.2210 ±

1.7745

28.0297 ±

1.5372

0.1470±

5.862e-04

0.2152 ±

0.002

0.3779 ±

0.005

0.4840 ±

0.009

Unhinged

Cycle 1

1250 ms

82.5

33.6373 ±

3.1963

27.5336 ±

1.1315

0.1872 ±

8.733e-04

0.1715 ±

0.002

0.5322 ±

0.003

0.5234 ±

0.003

Unhinged

Cycle 2

1250 ms

82.5

33.6373 ±

3.1963

27.5336 ±

1.1315

0.1889 ±

8.733e-04

0.1747 ±

0.002

0.5272 ±

0.003

0.5284 ±

0.003

Table 3. Table of comparison between live organism video, and hinged and unhinged

model videos. Values were normalized using tail length in pixels, eliminating effect of

field of view differences in the video. To simplify comparison between the footage, only

videos with length of cycle of 1.030 seconds are displayed below. The values presented

below are averaged values of data with length of cycle of 1.030 seconds, displayed in

Table 2. The values are averaged across swimming cycles and from positive and

negative positions. Error values come from the standard deviation of averaged values

from Table 2.

Video Maximum

Angle (°)

Maximum

Amplitude,

A

Wavelength,

λ

Average

length of

cycle (sec)

Swimming

cycles

B. mcnutti 36.63 ±

2.990

0.246± 0.016 0.801 ±

0.105

1.030 ±

0.220

2

Hinged

model

28.68 ±

0.600

0.299 ±

0.041

0.556 ±

0.021

1.030 2

Unhinged

model

33.13 ±

5.090

0.180 ±

0.019

0.438 ±

0.032

1.030 2

Two tail models (Figure 17) were created to match the differing motions in two species of

Giant larvacean. Figure 18, showing frames of the digital detection of the two models

created, displays two different motions achieved with the models. It can be observed that the

bottom (unhinged) model has a rounded shape to the movement, while the top (hinged) seems

to have a straight end, creating a hinge. The method of passive actuation was successful in

recreating this movement in this first iteration of the design.

To analyze the kinematics of these models, 6 different videos were recorded. For the hinged

model, 3 videos were recorded with different frequencies set to the Arduino. The servo

frequencies applied to these videos were taken from the average length of cycle previously

defined in the work done on ROV footage of B. mcnutti (A. Baumer and Katija, 2015). It is

important to note that the ROV data processed was a single sequence of one animal with only

2 swimming cycles, therefore, more data will give more accurate results in the future. Three

lengths of cycle were applied to the model: 810 ms, 1030 ms and 1250 ms. These values were

taken from the average length of cycle and the error that had been defined on the ROV

processed data. As seen in Table 2, the length of cycle had almost no effect on the amplitude

or angle calculations of the hinged model, however, there seems to be a variation in the

wavelength values, which we can expect since frequency and wavelength are interrelated.

Amplitude values were defined by finding the maximum of the maximum peak and the

minimum of the minimum peak, since that curve inverted would be the maximum too.

Because of this, the “negative” amplitude is recorded with the “positive” amplitude. The

wavelength calculations were done using these amplitude values, which is why we also have

a positive and negative wavelength value. For the unhinged model, 1030 ms and 1250 ms

were used. The 810 ms data was not used because of problems with the video detection,

which failed to identify parts of the tail at some of the frames. Additionally, the length of

cycle seemed to have very little effect on the kinematic values of interest on the hinged

model, and the 4 cycles analyzed seemed to not vary too much in output values. The defined

method was found to be sensitive to the quality of the video, requiring for the tail to be

significantly lighter than the background in the footage for the kinematic detection.

Table 3, which serves to quickly depict differences between the models and the real footage,

shows that all kinematic values between the different footage seem to be close to each other

and at least in the same order of magnitude. The unhinged and hinged models also show clear

differences in values, displaying the unhinged videos as closer in angle values to the live

footage than the hinged model, but the same difference from the live footage in amplitude.

Discussion

Since the system was passively actuated, exact kinematics of the tail were difficult to achieve

with this method. However, kinematic values of interest in the models were within the same

order of magnitude as the live footage (Table 3). The unhinged model seems to be closer in

angle to the live footage than the hinged model, but there is variation in the wavelengths for

both models and the live footage.

In the end, unhinged videos had more variation in the range of kinematic values obtained

from the videos, having higher standard deviations for the angle and wavelength than the

hinged model (Tables 3) and a bigger difference in values obtained per cycle (Table 2). The

wavelength also seems to be the kinematic parameter with the most variation in the models

and even the live animal footage, an expected result since wavelength seems to be affected by

the frequency of the tail, as seen on Table 2. Part of this variation is due to the frequency

differences. However, this shows that the wavelength method may not be accurate enough to

describe the curve. A more accurate approach for non-sinusoidal curve fitting, such as spline

interpolation, may be desirable in the future for better amplitude and wavelength values.

It is important to mention that part of the reason the wavelength method is not completely

accurate, besides frequency variation, is the shape of the movement of the tail (Figure 19) as

well as automated identification of peaks, resulting in identification of local maxima peaks,

which don’t give information about the period maximums (Figure 19). This can be manually

modified in this case due to the small number of swimming cycles, but it interferes with the

automated calculation of wavelength. Additionally, as seen in Figure 19, the frames at which

the maximum peaks happen do not always have a sine wave shape. The curve from Figure

19b, which comes from the third video frame, seems to identify a minimum and maximum

that do not necessarily show the shape of a half wavelength. Therefore, this method of

finding a wavelength may not be accurately describing the shape of the larvacean tail.

Figure 19. Issues with wavelength characterization method. (A) shows that the

findpeaks function will identify all local maxima, even if our interest was in the periodic

maximum peaks observed in the first two identified peaks. B and C show the difference

of what the maximum amplitude values can look like in different frames. These frames

were identified from two peaks of A, and show an example of how B is not necessarily

giving a measurement that would work as a wavelength.

Other limitations in the analysis include the angle calculations. The average angle

calculations from the models ranged from 28.7-31.9°, however, the set angle on arduino was

80°, meaning the angle calculations should have yielded 40°. This means that the calculated

angle on the live footage may not be expressing the real angle of movement with the current

algorithm. This is most likely due to the fact that the calculation depends a lot on the visual

input. In Table 2, we can see that the angle in the negative and positive directions of the x-

axis are not centered, which means the motion of the tail may be titled in the analysis and

may reduce accuracy of kinematic values. Last but not least, other limitations of the system

include the servo actuation. The servo can only sweep back and forth, and ideally the motion

would have a smoother transition like the live organism. Additionally, the movement of the

real tail seems to move more prominently one way and then meets resistance on the way

down, as if flow is getting in the way. These challenges should be explored in future

iterations of the models.

CONCLUSIONS

The volume flow rate of B. mcnutti has been identified to be higher than B. stygius (K. Katija

et al, 2017a), therefore a goal of the study was to explore the kinematic differences by

creating biomimics of the two species. The study resulted in the creation of two models

(Figure 17) that resulted in clear visual differences in motion, and the creation of a hinge in

one of the model’s motion. Therefore, the method of passive actuation was found to be good

first approximation of the movement recreation. Results from the kinematic analysis showed

amplitude and angle values of the models to be in the same order of magnitude and close

proximity to real values, but most importantly showed kinematic differences between the two

models. These findings are important for future investigation into the efficiency of the

pumping mechanism of the giant larvacean, since B. mcnutti (hinged motion) has

approximately a 50% higher flow pumping rate than B. stygius (unhinged motion). If this

flow rate difference can be understood through the visual and kinematic differences between

the two species, a new framework can be built from which to understand future pumping

mechanism designs, as well as reaching a better understanding of the hinge function and role

in the larvacean’s biology.

Future considerations for the continuation of this project may include the incorporation of

artificial muscle actuation if a closer to real life movement is desired from the models, a more

detailed kinematic description of the tail movement for more accurate comparisons, or

exploring horizontal actuation, as it is possible the material creating the hinge may be doing

so because it meets resistance with the flow because of its heavier composition, and a

horizontal actuation may show if the hinge in the model was due to gravity.

REFERENCES

1. A. Baumer, K. Katija, Larvacean locomotion: a kinematic investigation, MBARI Intern

Report, 2015.

2. B. H. Robison, K. R. Reisenbichler, R. E. Sherlock, Giant larvacean houses: Rapid carbon

transport to the deep sea floor. Science 308, 1609–1611 (2005).

3 C. Jaspers, T. G. Nielsen, J. Carstensen, R. R. Hopcroft, E. F. Møller, Metazooplankton

distribution across the Southern Indian Ocean with emphasis on the role of Larvaceans. J.

Plankton Res. 31, 525–540 (2009).

4. K. Katija, R. E. Sherlock, A. D. Sherman, B. H. Robison, New technology reveals the role

of giant larvaceans in oceanic carbon cycling. Sci. Adv. 3, e1602374 (2017).

5. K. N. Lucas, N Johnson, W. T. Beaulieu, E. Cathcart, G. Tirrell, S.P. Colin, Bending rules

for animal propulsion. Nat. Commun. 5:3293 doi: 10.1038/ncomms4293 (2014).

6. W. M. Hamner, B. H. Robison, Insitu observations of giant appendicularians in Monterey

Bay. Deep Sea Res. A 39, 1299–1313 (1992).

ACKNOWLEDGMENTS

I want to thank my mentor Kakani Katija, Joost Daniels and the rest of the members of the

Bioinspiration lab for the support and guidance through this project. I would not have been

successful without their knowledge and resources they made available to me.

I also want to thank MBARI staff that helped me with details of my project, such as Jim

Scholfield, Frank Flores, Larry Bird, Denis Klimov, Ray Thompson, Dale Graves and Brent

Jones. Thank you to Brian Kieft and Rob Sherlock for letting me tag along on their vessel

work on the Paragon and the RV Rachel Carson. And thank you to George Matsumoto and

Linda Kuhnz for directing the intern program, particularly for making sure we had fun this

summer and the great support through the whole program.

I lastly want to thank MBARI and The Packard Foundation for the funding for the research

and the experience doing research with MBARI scientists and engineers.

APPENDIX 1. Arduino Code

 #include <Servo.h>

Servo myservo;

// Variables that are constant:

const int ledPin = 13; //port number for LED2

const int minimum =59; //min servo position in command degrees

const int maximum =137.5; //max servo position in command degrees

//const int minimum = 1000;

//const int maximaum = 2000;

const int microseconds =6.3694; //3 delay counts in milliseconds

const int inc = 1; //servo position increment, command degrees

const int inc2 = 1; //servo position increment reverse

// Variables that change:

//int pos = 1500; //servo position in microseconds

int pos = 0; //servo position in command degrees

void setup() {

 // initialize the LED as an output:

 pinMode(ledPin, OUTPUT); // sets the digital pin 13 as output

 // initialize serial communication:

 Serial.begin(9600);

 // initialize servo motor baudrate

 myservo.attach(9,544,2400);

 //attach (pin,min,max)

 // myservo.writeMicroseconds(minimum);

 myservo.write(70); //80

 delayMicroseconds(100000); //10000

 }

void loop() {

 //Servo sweep:

digitalWrite(ledPin, HIGH); //LED ON positive increment loop

 for(pos = minimum; pos <= maximum; pos=pos+inc) {

// myservo.write(166);//165

 myservo.write(pos);

// myservo.writeMicroseconds(1000);

 delay(microseconds);

}

//

// myservo.write(1);

// delay(100);

// myservo.write(166);

// delay(1000);

//

 digitalWrite(ledPin, LOW); //LED OFF on negative increment loop

 for(pos = maximum; pos >= minimum; pos=pos-inc2) {

 myservo.write(pos);

 // myservo.write(pos);

 // myservo.writeMicroseconds(2000);

 delay(microseconds);

 }

}

APPENDIX 2. Matlab analysis of ROV video footage

close all

clear all

%% Find endpoint

load('batho1_inhouse_tail_frontedge_rotated.mat')

%load('batho5_freeswimming_tail_frontedge.mat')

for n=1:length(tail_boundary)

 midline=tail_boundary(n).rot_boundary_data;

 %midline=tail_boundary(n).boundary_data;

 endpoint(n,1:2)=midline(end,:);

end

med=median(endpoint);

endptx=med(1,1);

endpty=med(1,2);

%% Rotation

for n=1:length(tail_boundary)

 midline=tail_boundary(n).rot_boundary_data;

 %midline=tail_boundary(n).boundary_data; %free swimming data

 ys=midline(1,2);

 xs=midline(1,1);

 midlinex=midline(:,1)-xs;

 midliney=midline(:,2)-ys;

 midline1=[midlinex,midliney];

 startptx=midline1(1,1);

 startpty=midline1(1,2);

 x =linspace(startptx,endptx,300);

 y =linspace(startpty,endpty,300);

 m=[x;y];

 medianline=transpose(m);

 %% Amplitude

 %Rotation of curve to make median endpoint the median of the curve

 endx=x(1,end);

 endy=y(1,end);

 deltay=(endy-startpty);

 deltax=(endx-startptx);

 A=atan(deltay/deltax);

 Rotated=[cos(A),-sin(A);sin(A),cos(A)];

 r2=midline1* Rotated;

 axisline=medianline*Rotated;

 endpointrotated(n,1:2)=r2(end,:);

% plot(midline1(:,1),midline1(:,2),'m')

% xlabel('x (pixels)')

% ylabel('y(pixels)')

% hold on

% plot(medianline(:,1),medianline(:,2),'m')

% hold on

% plot(axisline(:,1),axisline(:,2),'b')

% hold on

 plot(r2(:,1),r2(:,2),'b')

 pause(.1)

 hold on

 legend('Before rotation','Before rotation','After rotation')

 %% Maxima and Minima

 rx=r2(:,1);

 ry=r2(:,2);

 [arclen,~] = arclength(ry,rx);

 arc(n)=arclen;

 idy=find(rx<=250);

 ry2=ry(idy);

 mint=min(ry2); %minima

 maxt=max(ry2); %maxima

 idxmin=find(ry2==mint);

 idxmax=find(ry2==maxt);

 rxmax=rx(idxmax);

 rxmin=rx(idxmin);

 rmin(n,1:2)=[rxmin,mint];

 rmax(n,1:2)=[rxmax,maxt];

 plot(rmin(:,1),rmin(:,2),'bo')

 xlim([0 450])

 ylim([-250 150])

 hold on

 plot(rmax(:,1),rmax(:,2),'ro')

 %% %Intersection of rotated curve with x-axis

 % ty=transpose(axisline);

 % tyx=axisline(1,:);

 % tyy=axisline(2,:);

 % rr=transpose(r2);

 % rrx=rr(1,:);

 % rry=rr(2,:);

 % P= InterX(ty,rr);

 % figure(2)

 % plot(tyx,tyy,rrx,rry,P(1,:),P(2,:),'co') %rotated line intersected with axis

 % hold on

 % title(['Frame (' num2str(n) ')'])

 % set(gca,'Ydir','reverse')

 % ylim([-250 250])

 %% Angles

 rx=r2(:,1);

 p=length(rx)/3;

 for i=1:p

 y2=r2(i,2);

 x2=r2(i,1);

 y1=r2(1,2);

 x1=r2(1,1);

 deltay=-(y1-y2);

 deltax=-(x1-x2);

 A=atan(deltay/deltax);

 angleInDegrees(i) = rad2deg(A);

 max2(n)=nanmax(angleInDegrees);

 max3(n)=nanmin(angleInDegrees);

end

 % Wavelength

%Maximum

ry=rmax(:,2);

rx=rmax(:,1);

Amplitudemax=max(ry);

idy=find(ry==Amplitudemax);

maximum=rmax(idy);

minimum=rmin(idy);

altdist(n)=maximum;

distance(n)=abs((maximum-minimum)*2);

%Minimum

ry1=rmin(:,2);

rx1=rmin(:,1);

Amplitudemax=min(ry1);

idy=find(ry1==Amplitudemax);

maximum=rmax(idy);

minimum=rmin(idy);

altdist2(n)=minimum;

distance2(n)=abs((minimum-maximum)*2);

end

%mean arclength

arcln=nanmean(arc);

%Median endpoints before and after rotation

med1=median(endpoint);

med2=median(endpointrotated);

%% Angles

%Angle for negative values

max5=abs(max3);

mean_anglemin=nanmean(max5)

stdv=std(max5);

n=length(max5);

t=sqrt(n);

erroranglemin=stdv/t

%Angle for positive values

max4=abs(max2);

mean_anglemax=nanmean(max4)

stdv=std(max4);

n=length(max4);

t=sqrt(n);

erroranglemax=stdv/t

%% Amplitude and wavelength

ry=rmax(:,2);

rx=rmax(:,1);

ry1=rmin(:,2);

rx1=rmin(:,1);

%Amplitude positive values

r1=smoothdata(rmax(:,2));

[pks1,locs1]=findpeaks(r1);

findpeaks(r1)

idx=locs1;

xmaxpeaks=rx(idx);

ymaxpeaks=ry(idx);

Ampmax=abs(ymaxpeaks/arcln)

stdv2=std(Ampmax);

n=length(Ampmax);

t=sqrt(n);

errorampmax=stdv2/t

%Wavelength positive values

xminpeaksformax=rx1(idx);

yminpeaksformax=ry1(idx);

Ampmax_min=yminpeaksformax/arclen;

wavelengthmax=((xmaxpeaks-xminpeaksformax)/arclen)*2

stdv=std(wavelengthmax);

n=length(wavelengthmax);

t=sqrt(n);

errorwavemax=stdv/t

% Amplitude negative values

inv=-(rmin(:,2));

r2=smoothdata(inv);

[pks2,locs]=findpeaks(r2);

findpeaks(r2)

idx1=locs;

xminpeaks=rx1(idx1);

yminpeaks=ry1(idx1);

Ampmin=abs(yminpeaks/arcln)

stdv2=std(Ampmin);

n=length(Ampmin);

t=sqrt(n);

errorampmin=stdv2/t

%Wavelength negative values

xmaxpeaksformin=rx(idx1);

ymaxpeaksformin=ry(idx1);

Ampmin_max=ymaxpeaksformin/arclen;

wavelengthmin=((xminpeaks-xmaxpeaksformin)/arclen)*2

stdv2=std(wavelengthmin);

n=length(wavelengthmin);

t=sqrt(n);

errorwavemin=stdv2/t

% %% Average values

% Avgwavelength=(wavelengthmin + wavelengthmax)/2

% %Max

% Avgamplitudes= (Ampmax+Ampmax_min)/2

% Avgamplitudenegative= (Ampmin+Ampmin_max)/2

APPENDIX 3. Matlab analysis of test model

clear all

%% Load video

v = VideoReader('3_6.avi');

numframes = round(v.Duration * v.FrameRate);

inc=2;

thresh=90; %Threshold for binary conversion

%% Find median of endpoint for rotation

for fff=1:numframes

%% Load frame

imm = read(v,fff);

imm=imrotate(imm,-90);

imm=imrotate(imm,180);

% Monochromize

imm = rgb2gray(imm);

%imshow(imm)

% Cropping

% xl = [113 1432];

% yl = [199 1047];

% imm = imm(yl(1):yl(end),xl(1):xl(end),:);

%immorig = imm;

%imshow(immorig)

% Convert to Binary

immthresh = imm > thresh;

%imshow(immthresh)

% Remove extra objects

immthresh = bwareaopen(immthresh,111);

%imshow(immthresh)

%Find Midline

[xpts,ypts]=find(immthresh==1);

[xpts2,ind,~]=unique(xpts);

ypts=unique(ypts);

counter=1;

midline=1;

for n=ypts(1,1):1:ypts(end,1)

 q=find(immthresh(:,n)==1);

 midline(counter,1:2)=[n,median(q)];

 counter=counter+1;

end

%Move curve to origin

ys=midline(1,2);

xs=midline(1,1);

midlinex=midline(:,1)-xs;

midliney=midline(:,2)-ys;

midline1=[midlinex,midliney];

%Find endpoint

endpoint(fff,1:2)=midline1(end,:);

end

%Find mid-endpoint

med=median(endpoint);

endptx=med(1,1);

endpty=med(1,2);

%% Analysis

for fff=1:numframes

%% Image modifications

imm = read(v,fff);

imm=imrotate(imm,-90);

imm=imrotate(imm,180);

% Monochromize

imm = rgb2gray(imm);

% % Cropping

% xl = [113 1432];

% yl = [199 1047];

% imm = imm(yl(1):yl(end),xl(1):xl(end),:);

%immorig = imm;

% Convert to Binary

immthresh = imm > thresh;

% Remove extra objects

immthresh = bwareaopen(immthresh,111);

%%Midline

[xpts,ypts]=find(immthresh==1);

[xpts2,ind,~]=unique(xpts);

ypts=unique(ypts);

counter=1;

midline=1;

for n=ypts(1,1):1:ypts(end,1)

 q=find(immthresh(:,n)==1);

 midline(counter,1:2)=[n,median(q)];

 counter=counter+1;

end

%Move curve to origin

ys=midline(1,2);

xs=midline(1,1);

midlinex=midline(:,1)-xs;

midliney=midline(:,2)-ys;

midline1=[midlinex,midliney];

startptx=midline1(1,1);

startpty=midline1(1,2);

%Line from startpoint to median-endpoint

x =linspace(startptx,endptx,300);

y =linspace(startpty,endpty,300);

m=[x;y];

medianline=transpose(m);

%% Amplitude

%Rotation of curve to make median-endpoint the median of the curve

endx=x(1,end);

endy=y(1,end);

deltay=(endy-startpty);

deltax=(endx-startptx);

A=atan(deltay/deltax);

Rotated=[cos(A),-sin(A);sin(A),cos(A)];

r2=midline1* Rotated;

axisline=medianline*Rotated;

endpointrotated(n,1:2)=r2(end,:);

% %Rotation plot

% plot(midline1(:,1),midline1(:,2),'c','Linewidth',3);

% xlabel('x (pixels)')

% ylabel('y(pixels)')

% set(gca, 'FontSize', 22)

% hold on

% plot(r2(:,1),r2(:,2),'b','Linewidth',3);

% legend('Before rotation','After rotation')

% hold on

% plot(medianline(:,1),medianline(:,2),'c','Linewidth',3)

% hold on

% plot(axisline(:,1),axisline(:,2),'b','Linewidth',3)

% hold on

%% Maxima and Minima

rx=r2(:,1);

ry=r2(:,2);

%Find arclength

[arclen,seglen] = arclength(ry,rx);

arc(fff)=arclen;

%X-axis cutoff to ignore hinge

idy=find(rx<=800);

ry2=ry(idy);

rx2=rx(idy);

mint=min(ry2); %minima

maxt=max(ry2); %maxima

idxmin=find(ry2==mint);

idxmax=find(ry2==maxt);

rxmax=rx(idxmax);

rxmin=rx(idxmin);

rmin(fff,1:2)=[rxmin,mint];

rmax(fff,1:2)=[rxmax,maxt];

% %Min and max points

% plot(r2(:,1),r2(:,2))

% title(['Frame (' num2str(fff) ')'])

% xlabel('X (pixels)')

% ylabel('Y (pixels)')

% set(gca, 'FontSize', 22)

%hold on

% plot(rmax(:,1),rmax(:,2),'bo')

% hold on

% plot(rmin(:,1),rmin(:,2),'ro')

% legend('Tail Line per frame','Maximum Y values per frame','Minimum Y values per frame')

%% %Intersection of rotated curve with x-axis

% ty=transpose(medianline);

% tyx=medianline(1,:);

% tyy=medianline(2,:);

% rr=transpose(r2);

% rrx=rr(1,:);

% rry=rr(2,:);

% P= InterX(ty,rr);

% figure(2)

% %plot(tyx,tyy,rrx,rry,P(1,:),P(2,:),'co') %rotated line intersected with axis

% % hold on

% title(['Frame (' num2str(fff) ')'])

% set(gca,'Ydir','reverse')

% % ylim([-250 250])

%% Angles

p=length(rx)/3;

for i=1:p

y2=r2(i,2);

x2=r2(i,1);

y1=r2(1,2);

x1=r2(1,1);

deltay=(y2-y1);

deltax=(x2-x1);

A=atan(deltay/deltax);

angleInDegrees(i) = rad2deg(A);

angleInDegrees(angleInDegrees == 0)= NaN;

max2(fff)=nanmax(angleInDegrees);%angle for positive values

max3(fff)=nanmin(angleInDegrees);%angle for negative values

end

end

%mean arclength

arcln=nanmean(arc);

%Median endpoints before and after rotation

med1=median(endpoint);

med2=median(endpointrotated);

%% Angles

%Angle for negative values

max5=abs(max3);

mean_anglemin=nanmean(max5)

stdv=std(max5);

n=length(max5);

t=sqrt(n);

erroranglemin=stdv/t

%Angle for positive values

max4=abs(max2);

mean_anglemax=nanmean(max4)

stdv=std(max4);

n=length(max4);

t=sqrt(n);

erroranglemax=stdv/t

%% Amplitude and wavelength

ry=rmax(:,2);

rx=rmax(:,1);

ry1=rmin(:,2);

rx1=rmin(:,1);

%Amplitude positive values

r1=smoothdata(rmax(:,2));

[pks1,locs1]=findpeaks(r1);

findpeaks(r1)

idx=locs1

xmaxpeaks=rx(idx);

ymaxpeaks=ry(idx);

Ampmax=abs(ymaxpeaks/arcln)

stdv2=std(Ampmax);

n=length(Ampmax);

t=sqrt(n);

errorampmax=stdv2/t

%Wavelength positive values

xminpeaksformax=rx1(idx)

yminpeaksformax=ry1(idx)

Ampmax_min=yminpeaksformax/arclen

wavelengthmax=((xmaxpeaks-xminpeaksformax)/arclen)*2

stdv=std(wavelengthmax);

n=length(wavelengthmax);

t=sqrt(n);

errorwavemax=stdv/t

% Amplitude negative values

inv=-(rmin(:,2));

r2=smoothdata(inv);

[pks2,locs]=findpeaks(r2);

findpeaks(r2)

idx1=locs

xminpeaks=rx1(idx1);

yminpeaks=ry1(idx1);

Ampmin=abs(yminpeaks/arcln)

stdv2=std(Ampmin);

n=length(Ampmin);

t=sqrt(n);

errorampmin=stdv2/t

%Wavelength negative values

xmaxpeaksformin=rx(idx1);

ymaxpeaksformin=ry(idx1);

Ampmin_max=ymaxpeaksformin/arclen

wavelengthmin=((xminpeaks-xmaxpeaksformin)/arclen)*2

stdv2=std(wavelengthmin);

n=length(wavelengthmin);

t=sqrt(n);

errorwavemin=stdv2/t

% %% Average values

% Avgwavelength=(wavelengthmin + wavelengthmax)/2

% %Max

% Avgamplitudes= (Ampmax+Ampmax_min)/2

% Avgamplitudenegative= (Ampmin+Ampmin_max)/2

