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ABSTRACT

Mapping and Scene reconstruction are highly prioritized areas of research interest within

the marine domain. 3D Gaussian Splatting (3DGS) is a new technique that is currently dom-

inating the research on object and scene reconstruction [1]. Despite its prevalence, as with

many mapping/rendering techniques, it struggles to perform well underwater. In this work, I

explore the implementation of a method called Z-Splat [2], which utilizes sonar sensor fusion

with RGB imagery to create a high-quality reconstruction that overcomes several marine arti-

facts, including turbidity, light scattering, and distortion. I compare it with standard 3DGS to

identify strengths in the state-of-the-art and potential research gaps to overcome in future work.

Notably, while most methods excel in object reconstruction, this method shows great potential

for image and sonar fusion for high-quality terrain reconstruction, which is crucial for oceanic

mapping.

1 INTRODUCTION

Mapping, 3D Scene rendering, and digital environment reconstruction are all tasks that are

currently being pushed for improvement in the marine community. Coral ecosystems, marinas,

shipyards, oil rigs, seamounts, mining, defense, and construction are all media that rely on

high-quality data for informed decision-making, study, and mission completion.

Enabling these tasks underwater, remote-operated vehicles (ROVs) and autonomous un-

derwater vehicles (AUVs) are commonly employed. For the task, these systems are typically
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equipped with perception sensor suites, including monocular cameras and/or sonars. These

perception systems enable the capture and representation of 3D spatial data through the use of

existing techniques, such as photogrammetry, structure from motion (SfM), and neural radiance

fields. [3, 4, 5]

3D Gaussian Splatting (3DGS) [1] is a novel view synthesis and differentiable scene recon-

struction technique that has gained recent prominence. Most developments have been made in

the surface world, and as such, are well-adapted to typical environmental constraints that one

would encounter in the air. Underwater environments present additional challenges, including

turbidity, light diffusion, and dynamic environments, among others.

Cameras and Sonars each have their own strengths and weaknesses; cameras are great at

capturing structure and visual understanding, but lack depth (in reference to the sensor) and

are susceptible to turbid and low-light conditions, which can degrade data capture. Sonar,

on the contrary, tends to overcome turbidity and low light, being acoustic sensors. It is also

good at capturing depth data, while visual structure is lacking compared to RGB monocular

camera imagery. The use of each complements the other to mitigate the previously mentioned

weaknesses.

Another obstacle is capturing viewing angles for the environment. Many techniques, such

as photogrammetry, work best when used with an exhaustive range of view angles. Additional

view angles allow the camera data to overcome the depth information shortcoming. [3, 6] This

is typically done for the digitization of objects. We can capture images in a full 360-degree view

of the object to gain a comprehensive understanding of its structure. The problem faced when

attempting to use the same technology for terrain reconstruction is that the viewing angles are

typically much less robust for any given scene. A terrain traversal normally has a fixed range

and angle relative to the environment.

Naturally, we can reach the conclusion that, while using cameras that lack depth information

and having a sensor that captures depth, their fusion should greatly benefit the overall objective

of a terrain reconstruction mission.
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2 MATERIALS AND METHODS

2.1 DATA COLLECTION

Data were collected for testing using two methods. The first, using Mitsuba [7], simulated data

from 3D models capturing both RGB and depth imagery to emulate sonar. Field data were col-

lected from the MBARI test tank using the CoMPAS Lab’s MOLA ROV/AUV, augmented with

a high-resolution camera and an Oculus m750d forward-looking sonar. Various trajectories and

objects were captured, which will be discussed in the following two sections.

2.1.1 SIMULATED DATA

To capture the simulated data, 3D models were gathered from the Stanford 3D model li-

brary [8]. In order to extract RGB and sonar views of the model, Mitsuba was used [7]. Given

a trajectory for a target-facing orbit, a set of key frames was extracted for RGB and Depth im-

ages, from which slices were taken to emulate the range histograms of an FLS. The simulated

data is helpful for iterative testing and controlling the exact parameters for viewing angles. We

primarily used the LEGO bulldozer model and the Stanford rabbit. The Lego helped because

it has color data, and the rabbit has a more curvy structure than the rigid edges of the Lego

construct.

2.1.2 FIELD DATA

Field data were captured from the test tank. Facilitating data capture was the MOLA, a

ROV/AUV (remotely controlled in this case), outfitted with a Sony 8 K (16-47mm equivalent,

f/1.8 lens, 1′′ sensor) camera and an Oculus m750d sonar. The sensors were adjacent and par-

allel, facing the same direction from nearly the same position (functionally the same position

for the testing purposes). The first two tests were "lawnmower pattern" rasters of the test tank

walls and the southwest corner. The corner was captured to test how well the spatial relativity

of the 3D scene reconstruction functioned. The following two data collection tests involved

"tidally locked" target-oriented orbits of the MOLA about two objects (a Docking station and

a metal panel calibration board) suspended roughly 1.5m underwater. The MOLA maintained

a static depth and distance from the objects during the orbits.
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2.1.3 Sonar and Camera Sensor Data

These sensor data are each formatted differently, which requires a few extra steps for their

fusion. Camera data is traditionally represented as a 2D matrix, with the origin located at the

top-left. The coordinate frame has X values increasing along the horizontal axis and Y values

increasing along the vertical axis. Z data represents depth, orthogonal to the matrix, away

from the view frame. Sonar data is nuanced based on the sensor type. In this case, we use

a forward-looking imaging sonar. The FLS data is represented in polar coordinates, with the

origin being a single point, while angles are projected onto a cone to capture the information.

The information is represented by an azimuth angle (theta) and a range/distance (r). Angle

captures X values, distance aligns with Z, and the elevation data, as Y (or phi), is ambiguous,

capturing an angle and compressing it onto the plane, as the Z data is in a typical monocular

camera image. In simulation, this datatype is emulated by creating a range histogram from a

horizontal slice of a depth image.

2.1.4 Key Frame Pairs

Key frame pairs are necessary for ensuring the fusion data represent the same view at the same

time. In simulation, data is generated simultaneously, making matching trivial. In the case

of field data, the sensors operate at different frequencies. The sonar captured data at a higher

frequency, and thus was synced to chosen images that best captured the scene with good quality

and low blur (at a roughly equivalent time step between each frame).

2.1.5 Preparing Data for Z-Splat

Due to the camera housing being a dome for waterproofing, image distortion is expected from

the data capture. The distortion can cause 3D reconstruction to have lower quality, making

straight objects appear curved. To prevent this, the images must be rectified. In this case, we

use COLMAP’s undistortion algorithm to achieve this [9].

Sonar data also must be preprocessed for use in Z-Splat. The data is represented in a 2D

matrix, similar to an RGB camera, with the origin located at the top of the image. Sonars

also tend to have low-intensity noise and dense noise right near the sensor. This is overcome

by overlaying zero-intensity values near the origin and filtering the remaining noise below a

specified threshold.
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2.1.6 Structure from Motion

Finally, before optimizing, a set of points is used to seed the initial scene. There are two

methods used for this: random initialization and estimated scene initialization. Random initial-

ization uses scattered points within the scene dimensions. For estimated scene initialization,

an algorithm such as COLMAP [9] is used. This algorithm takes a set of images and uses fea-

ture matching to estimate the camera’s position in space. Based on this, it initializes matched

features as points in a point cloud, which then seeds the optimization with a good guess of the

scene.

2.2 Z-Splat

Z-Splat [2] is based on 3D Gaussian Splatting [1], a state-of-the-art volume rendering technique

that also encompasses other methods, such as Neural Radiance Fields (NeRF) [5]. The goal of

these algorithms is to capture spatial data in a way such that each view uniquely captures the

properties of light and structure.

2.2.1 Gaussian Splatting

Gaussian splatting, as discussed in [1], involves projecting 3D gaussians onto a 2D image. It

can do this due to the anisotropic nature of the Gaussians and their included spherical harmon-

ics. The projection is rasterized and rendered as a 2D camera image by projecting rays through

the Gaussians from the view frame and using alpha-blending for each pixel. These images

can then be compared against ground truth to differentiate a loss, the feature that makes the

algorithm differentiable and optimizable (commonly used in machine learning, such as back-

propagation and gradient descent).

2.2.2 Optimization Steps

The optimization steps involve three main functions. These are typically referred to as the

Clone, Split, and Prune steps. These steps modify the Gaussians within the scene to better align

with the ground truth images using the Structural Similarity Index Measure (SSIM) [10]. When

a region requires additional information, the Clone step splits a Gaussian, enabling further in-

formation to be represented within the specified area. If there is a region being overgeneralized

by too large a Gaussian, the split step divides it in half. Finally, if there are Gaussians that
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provide no useful information, they are culled in the Prune step. Further parameters are also

adjusted during each optimization step, including opacity, colors, and size.

3 RESULTS

3.1 Simulated Data Results

3.1.1 RGB Only

Figure 1: Rendered scene view from RGB-only reconstruction (splatting is bottom).

Geometric scores:

Chamfer Distance: 0.5365268203411178

Hausdorff Distance: 1.4812917328902362

Median Distance: 0.05141216006735875

F-score: 0.04518639763503701

Precision: 0.0235

Recall: 0.5855089102980083

Photometric scores:
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SSIM: 0.9878209829330444

PSNR: 46.5294189453125

LPIPS: 0.047710977494716644

Figure 2: Point cloud reconstruction using RGB-only input (simulated).
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3.1.2 Fusion

Figure 3: Rendered scene view from RGB + Sonar fusion (splatting is bottom).

Geometric scores:

Chamfer Distance: 0.4638771872954217

Hausdorff Distance: 1.4476355190714936

Median Distance: 0.057023677623188475

F-score: 0.06203365005083043

Precision: 0.0329

Recall: 0.5418793033616849

Photometric scores:

SSIM: 0.9832841157913208

PSNR: 42.77613067626953

LPIPS: 0.0637257918715477
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Figure 4: Point cloud reconstruction using RGB + Sonar fusion (simulated).

3.2 Field Data Results

3.2.1 RGB Only

Figure 5: Rendered scene view from RGB-only reconstruction.

Photometric scores:

SSIM: 0.9380944967269897

PSNR: 36.92620849609375
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LPIPS: 0.20102904736995697

Figure 6: Point cloud reconstruction using RGB-only input.

3.2.2 Fusion

Figure 7: Rendered scene view from RGB + Sonar fusion.
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Photometric scores:

SSIM: 0.9758889675140381

PSNR: 43.005008697509766

LPIPS: 0.09243087470531464

Figure 8: Point cloud reconstruction using RGB + Sonar fusion.
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Dock Test

RGB

Figure 9: Rendered scene view of Dock test using RGB-only input.

Fusion

Figure 10: Rendered scene view of Dock test using RGB + Sonar fusion.

DISCUSSION

Throughout experiments, it was apparent that including the sonar enabled the pruning of points

in space commonly referred to as "floaters." While some of the photometric results were rel-

atively close, empirical results from observation show that there was significant culling of the
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floating gaussians in 3D space when the reconstructed scene was viewed in a real-time view

renderer. This is especially evident in the scene renders from the field test. The renderer used

for observations was on the website "superspl.at."

Additionally, final experiments involving object orbits showed that extensive view angles

with z-splatting harmed the final result, as it culled portions of the objects in space due to

stronger reflections off the test tank walls. In Figures 9 and 10, this can be seen, where the

fusion render for the whole object orbit appears to cull some of the object of interest, whereas

the RGB-only orbit reconstructs it more accurately.

CONCLUSIONS & RECOMMENDATIONS

In conclusion, Z-splat has proven to be an effective tool in view-constrained data collection

scenarios. Its strengths lie in its ability to better estimate depth data than other techniques due

to the fusion with sonar. While it excels in cases with limited view angles, it struggles with

more comprehensive datasets that encompass broader view angles.

Future work may overcome these object removal issues by exploring background subtrac-

tion. There is also existing work that has explored real-time optimization for 3DGS, utilizing

depth cameras and relying on the spatial carving strengths of that sensor. This can likely be

extended to the marine domain through the use of sonars.
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