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ABSTRACT 

In this paper a stereo camera calibration analysis was developed for the MBARI’s             

Low Altitude Survey System. An image type contribution approach was taken, splitting the             

input images for the calibration in different groups. The reprojection error and row alignment              

error were used as measures for the different grouped combinations from calibrations. This             

procedure allowed the researchers to improve object 3D reconstructions and 2D mosaics            

generation. 

 

INTRODUCTION 

This project is part of MBARI’s ongoing development of the Low Altitude Survey             

System for 1-cm scale seafloor mapping and imaging in the deep ocean. This system is               

located in a sled attached to the bottom of a remotely operated vehicle (ROV). The sled has a                  

tilting platform, pointing to the seafloor, where different sensors take data with the purpose to               

map a region of interest of the ocean. Stereo cameras are one of these sensors and collect                 

visual data sets. Data from the stereo cameras have two main applications for this project: (i)                
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to create colored two-dimensional mosaics; and (ii) to create colored three-dimensional           

reconstructions. For this purpose, it is very important to calibrate the cameras. 

Geometric camera calibration is the process of estimating the camera intrinsics and            

extrinsics parameters. These parameters relate the world and camera coordinate systems,           

taking into account the focal length of the lens, the size of the pixels, the position of the                  

image center, and the position and orientation of the camera. The calibration can be modeled               

as an optimization process, where the discrepancy between the observed image features and             

their theoretical positions is minimized with respect to the camera’s intrinsic and extrinsic             

parameters (Forsyth & Ponce, 2002). 

Stereo camera calibration, is the process of estimating the translation and rotation of             

one camera as seen by the other one. The binocular camera geometry defines a restriction, in                

which a point seen in one camera is restricted to lie on a line in the other camera, this is                    

called the epipolar restriction (Forsyth & Ponce, 2002). Figure 1 shows the essential             

geometry of stereo imaging. 

 

Figure 1: The essential geometry of stereo imaging (Bradski & Kaehler, 2008). 

One common way to find these parameters is using Zhang’s planar pattern technique.             

This method only requires the camera to observe a planar pattern shown at a few (at least                 

two) different orientations (Zhang, 2000). This technique is implemented in the open source             

computer vision library OpenCV. There are different types of planar patterns, a common one              

is to use a checkerboard as the Figure 2 shows. 
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Figure 2: Relation between the world coordinate system and the camera coordinate system. 

Geometric camera calibration and stereo camera calibration have been studied          

extensively. Several books and papers have been written about these topics since the 1990s.              

A new problem arises when attempting to calibrate the cameras underwater, since most             

studies have been made considering air as the medium between the scene and the camera.               

Water adds more distortion to the image, making the problem more complex. 

The objective of this internship was to improve the calibration parameters results, for             

the specific application of seafloor mapping. For that, the approach to address this problem              

was to analyze the contribution of different types of images to the calibration. These types are                

categorized using the parameters of distance and rotation from the checkerboard to the             

camera. 

 

MATERIALS AND METHODS 

MATERIALS 

Checkerboard images taken at test tanks from the years 2014, 2018, and 2019 are the               

primary data. Also, more data are available from a test tank calibration conducted in July               

2020, targeting different views of the checkerboard images and a uniform distribution of             

them across the camera's field of view. 
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CALIBRATION 

The calibration of the cameras was developed using python and OpenCV. The            

analysis has 5 steps: (i) image points recognition from the checkerboard; (ii) image             

clusterization into the different types of images; (iii) image selection for each cluster; (iv)              

calibration of the different combinations; and (v) testing and selection of the best calibration.              

These are discussed in more detail below. 

 

Figure 3: Chart of the calibration process proposed. 

 

RESULTS AND DISCUSSION 

IMAGE POINTS RECOGNITION FROM THE CHECKERBOARD 

The first step to calibrate the cameras is to acquire the checkerboard images for each               

camera simultaneously. In this case, the images processed were taken from previous years, so              

this step was omitted until the end of the internship.  

The geometric calibration of each camera relates the three-dimensional scene          

coordinate system to the camera coordinates, and for that it needs correspondence            

information from both coordinate systems as input. That is why the checkerboard is so useful,               

each corner is assigned a world coordinate starting at <0,0,0> and as the sizes of the squares                 

inside of it are known, the next corner in the x-axis is <1,0,0> times the size of the squares.                   

This process is applied to each corner maintaining the z-axis as zero, so that the world                

coordinate origin is at one of the corners of the checkerboard, and the pattern lies on the                 

xy-plane. 

The coordinates of each corner in the image plane are found recognizing the             

checkerboard in the image. This is accomplished through an OpenCV function, called            
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findChessboardCorners , that searches for a specific checkerboard size. Once found, the           

world and camera point coordinates of the checkerboard are stored. 

 

IMAGE K-MEANS CLUSTERIZATION 

As it was stated, the objective of the internship was to improve the calibration              

parameters results. The approach taken was to analyse the images and their contribution to              

the calibration of the stereo rig. To do the analysis, the images were split into groups,                

according to the position of the camera as seen by the checkerboard. These groups or clusters                

were computed using a k-means algorithm. The features used were: (i) The area in pixels               

covered by the checkerboard; (ii) the height and (iii) pitch rotation from the checkerboard to               

the camera; and in the cases where available (iv) the yaw rotation from the checkerboard to                

the camera. Each column of the features matrix were normalized, so that each column has a                

mean of zero and a standard deviation of one.  

With the data available, each of clusters computed were tagged as: (i) near and no               

rotation; (ii) medium distance and no rotation; (iii) far and no rotation; and (iv) pitch rotation.                

Depending on the year the images were acquired, the group (v) yaw rotation was              

incorporated. 

 

IMAGE SELECTION 

From each cluster it is necessary to take a selection of the images. The calibration               

process can be computationally heavy if all images are being processed, requiring extended             

time without guarantee of a good result. 

A simple heuristic was used: select the n images that the sum of the total area covered                 

by the checkerboards covers a maximized field of view. The process begins by creating a               

matrix of the covered area by the checkerboards. In equation 1 this process can be seen, the                 

initial covered area is equal to the sum of the matrices that contains ones where   OVC 0          M i      

the checkerboard is, and zero elsewhere. 
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The algorithm then selects the image where its checkerboard is covering the less             

covered area. The selection is done computing the mean of the non zero values of a mask of                  

and each matrix. The lowest mean value is selected. Then, the algorithm runsOVC k   M i             

again but penalizes the area of the selected checkerboard as seen in equation 2, and removes                

the index of the selected value from the search list. A visualization of the algorithm can be                 

seen in Figure 4. 

 

 

Figure 4: From left to right: (i) initial covered area; (ii) masking of the covered area by one of the 

checkerboards; and (iii) new covered area being penalized by the selected checkerboard. 

 

CALIBRATION 

With the goal aiming to analyse the contribution of each group to the calibration, all               

the combinations of the groups were computed. For each combination a fixed number of              

images were selected with the algorithm previously explained, maintaining the same amount            

of images per cluster. Table 1 explains this procedure for a two clusters analysis. 

Combination Images used from group 1 Images used from group 2 

Group 1 36 - 

Group 2 - 36 

Group 1 & 2 18 18 

Table 1: Amount of images used per combination, for a two cluster analysis, selecting the 36 images 

that covered more field of view. 
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After selection of the images each camera is calibrated using the function            

calibrateCamera from OpenCV, using the rational model for the distortion. The result are the              

intrinsics, extrinsics and distortion parameters of each camera. These results are given as a              

start point to the function StereoCalibrate, also from OpenCV.  

 

TESTING AND SELECTION OF THE BEST CALIBRATION 

To test each calibration two measurements were taken: (i) the reprojection error; and             

(ii) the row alignment error. The first computes the difference in magnitude between the              

reprojected three-dimensional coordinate of the corners of the checkerboard into the image,            

and the actual coordinate of the corners in the image. Figure 5 illustrates the error in                

magnitude of the reprojection of one corner into the image plane. The error is calculated as                

stated in equation 3, where and represent the image corner and reprojected corner     CI i   CR i         

of the i corner of the checkerboard. 

 

 

Figure 5: Reprojection error illustration of one corner. 
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The row alignment error is computed after a process called rectification. The idea of              

this process is to force the epipolar lines to be horizontal, and by doing that both image planes                  

are forced to be row aligned and lie in the same plane. If the stereo calibration parameters                 

were estimated correctly each corresponding point in the left image should match the same              

y-coordinate in the right camera. Using the checkerboard images, this error can be computed              

comparing the coordinates of each corresponding corner. Equation 4 shows how this error is              

computed, where and represents the left image corner y-coordinate and the right  ICL i   ICR i           

image corner y coordinate of the i-corner of the checkerboard. 

 

Each checkerboard from the selected images of each group combination was tested by             

these two measures, storing its mean and standard deviation. While using the reprojection             

error, a visualization of this error was developed. The direction of the error could be               

computed, from the image corner to the reprojected one, as Figure 6 shows. 

 

Figure 6: Reprojection error direction of one corner. 

This discovery led to the creation of a new representation, called a reprojection arrow              

error map . This map gathers the direction and magnitude of the reprojection error from              

different views of the checkerboard, filling the field of view of each camera. In Figure 7 the                 
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arrow error maps of the left and right camera after calibration can be seen. The tiny colored                 

dots seen in each image are actually arrows, their magnitude is represented by the length of                

the arrow and its color. 

 

Figure 7: From left to right: (i) reprojection arrow error map of the left camera; and (ii) reprojection 

arrow error map of the right camera. 

In the left camera’s reprojection arrow error map, harmonic radial distortion can be             

seen in the center. In the right camera’s reprojection arrow error map this radial distortion is                

not distinguishable. Both cameras are theoretically equal, so the result should be the same for               

each. In practice it is impossible to build two identical things, but the difference is still very                 

interesting. The explanation to this phenomena is not clear yet, as not enough time was               

invested, and there is more than one possible explanation.  

 

RESULTS 

Each group combination was tested with the reprojection error and row alignment            

error measures. The mean and standard deviation was computed for the total checkerboard             

used. In Figure 8 and Figure 9 the results are shown for the 2018 data. 
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Figure 8: Reprojection error mean and standard deviation versus group combination. 

 

Figure 9: Row alignment error mean and standard deviation versus group combination. 

Each group was labeled with a name, in order to observe its contribution. As seen in                

both bar plots, each group by itself does not give a good result. By using different                

combinations, a better result can be achieved. Mixing the information of both measurements             

one can select the best combination and by doing so the best stereo calibration parameters.  
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Appreciably, there is no clear correlation between the graphs shown. When there is no              

clear group combination winner, the selected one was chosen by the minor row alignment              

error. 

 

CONCLUSIONS/RECOMMENDATIONS 

From the procedure taken to analyze the image’s contribution to the calibration, one             

could possibly expect that the best combinations should be the same across calibrations from              

different years. However, this is not happening, and we cannot conclude this as the              

checkerboard images from different years vary significantly in distance, rotation and           

field-of-view coverage. For this year’s calibration, a more complete acquisition was made,            

resulting in a better and more diverse image type contribution..  

From previous years results, this procedure allowed the Low Altitude Survey System            

to generate better three-dimensional reconstructions of different objects and two-dimensional          

mosaics as the ones shown in Figure 10 and Figure 11.  

 

Figure 10: Three dimensional reconstruction of an artificial reef. 
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Figure 11: Two dimensional mosaic of the ASHES Hydrothermal Vent Field.  

The next steps to continue with this analysis are to process the new data acquired for                

the 2020 calibration, and select the best stereo parameters. After that, the parameters can be               

applied to future and past surveys, giving more insights of the unknown regions of the deep                

ocean.  

 

ACKNOWLEDGEMENTS 

The MBARI Summer Internship Program is generously supported through a gift from            

the Dean and Helen Witter Family Fund and the Rentschler Family Fund in memory of               

former MBARI board member Frank Roberts (1920-2019) and by the David and Lucile             

Packard Foundation. 

 

References: 

Bradski, G., Kaehler, A. (2008). Learning OpenCV. (1st ed.) United States of            

America; O’Reilly Media, Inc. 

Forsyth, D., Ponce, J. (2002). Computer Vision a modern approach. (2nd ed.) United             

States of America; Pearson Education, Inc. 

OpenCV (version 4.0.0) [Software]. Retrieved from https://opencv.org/  

12 

https://opencv.org/


Zhang, Z. (2000). A Flexible New Technique for Camera Calibration. IEEE           

Transactions on Pattern Analysis and Machine Intelligence, 22 (11), 1330-1334. 

 

13 


