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ABSTRACT 

Sinking particles in the water column are a major pathway of carbon flux to the deep ocean but 

they are difficult to study as particles and their associated transformations show high variability 

over time, depth and location. However, characterizing particles has proven to lead to more 

accurate estimates of carbon flux and therefore is of great significance. While autonomous in-situ 

imaging platforms are promising methods, the amount of data generated is a challenge. AyeRIS, a 

novel in-situ imaging system was used to capture images of the water column in Monterey Bay, 

California on 11th November 2021 and these images were run on MorphoCluster, a semi-

supervised marine image classification software, to test the efficiency of the software in classifying 

a large marine imaging dataset and to test what particles can be resolved using MorphoCluster and 

AyeRIS. The major steps included data preparation, unsupervised steps; deep learning features 

extraction, clustering, and supervised steps; validation, and growing. 51% of the dataset was 

classified using MorphoCluster into 5 particle classes through three iterations, with the significant 

classes being fecal pellets, larvaceans, crustaceans, and sinking particles. MorphoCluster was more 

efficient in classifying the abundant particle classes than the rarer ones and the most abundant 

clusters comprised of blurry objects which may be unfocused smaller particles such as detritus and 

aggregates. The difficulty in classifying them may have been due to the resolution of AyeRIS 

images. While the feature extraction and clustering steps of MorphoCluster required high computer 
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performance, a significant amount of time and effort was also needed for the supervised validation 

and growing, especially for the more rare classes.  

 

1 INTRODUCTION  

 

1.1 BIOLOGICAL PUMP AND CARBON FLUX IN THE WATER COLUMN 

The biological pump of the ocean refers to the downward flux of carbon from the surface of the 

oceans to the sea floor through a set of biological, chemical and physical processes, where it may 

be sequestered into the earth’s interior over millennia (Boyd et al., 2019; Volk & Hoffert, 1985). 

An estimated value of 5 -12 Pg-C year−1 is sequestered by the biological pump (Boyd & Trull, 

2007; Henson et al., 2011) making it an important component of the global carbon cycle and a 

driver of global climate through the regulation of the partial pressure of atmospheric carbon 

dioxide (pCO2) (Sarmiento & Gruber, 2006). However, there is still much uncertainty around 

carbon flux values due to the high variability of particles and processes involved, over time, 

location and depth.  

At the sunlit surface of the ocean, primary producers (phytoplankton) fix carbon as organic matter 

through photosynthesis. This organic matter is then transported downwards via different pathways 

to the deep ocean, during which it may undergo different ecological transformations. Two major 

pathways include vertical migrations by zooplankton such as copepods and physical mixing. The 

more passive pathway is through the gravitational settling of particles sinking out of the euphotic 

zone. They may either be phytoplankton cells that sink directly, fecal pellets egested by 

zooplankton grazing on phytoplankton or detritus and aggregates formed from phytoplankton. 

Durkin et al., 2021 in a study conducted across 4 major ocean ecosystems using sediment trap 

observations, categorized sinking particles into 9 major classes; aggregates, dense detritus, large 

loose fecal pellets,  long cylindrical fecal pellets, salp fecal pellets, Rhizaria (Phaeodarians), mini 

(spherical) fecal pellets and short (ellipsoid or oval) fecal pellets.  

Resolving the particles involved in the biological pump allows for better quantification of its 

carbon fluxes as more accurate particle sizes and carbon content can be estimated when the identity 

of the particle is known as shown by Durkin et al., 2021.  
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1.2 STUDYING THE CARBON FLUX IN THE WATER COLUMN: IMAGING SYSTEMS 

Particles in the water column has been studied mainly by using instruments that intercept particles 

as they sink down the water column such as sediment traps (either deep-moored, surface-tethered 

free-drifting, or neutrally buoyant) (Boyd et al., 2019). However, these methods may be more time-

consuming and less efficient compared with in-situ imaging platforms deployed on autonomous 

vehicles. AyeRIS is one such imaging system, deployed on a Long Range Autonomous 

Underwater Vehicle (LRAUV), developed by the BioInspiration Lab at Monterey Bay Aquarium 

Research Institute. It has seven 23MP cameras and can capture an imaged volume of up to 2L. 

However, AyeRIS generates a huge amount of imaging data which can be a setback due to the 

amount of time needed for analysis if performed manually. 

1.3 MORPHOCLUSTER  

MorphoCluster is a software invented by Martin Schroeder in 2020 (Schroeder et al., 2020) that 

uses a semi-supervised approach to the classification of large marine imaging datasets by 

clustering the dataset. Being partially unsupervised, it utilizes the ability of a deep neural network 

to learn distinctive features of images and clusters the dataset based on similar features using an 

HBDSCAN* algorithm. The supervised part includes an interactive web tool, that allows the user 

to revise and grow the clusters, manage the hierarchy of clusters and annotate them.  

 

 

 

 

 

 

 

Figure 01: Overview of the feature extraction, clustering, validation and growing steps of MorphoCluster 

as modified from Schroeder et al., 2020. The next steps (not shown) are hierarchical arrangement and 

labeling of clusters 
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1.4 OBJECTIVES 

 

➢ Evaluating MorphoCluster software as a tool to rapidly classify a large marine imaging 

dataset 

 

➢ Exploring the extent to which particles can be resolved from AyeRIS images using 

MorphoCluster 

 

2 METHODS AND MATERIALS 

 

2.1 DATA COLLECTION 

Images used were collected by the AyeRIS imaging system mounted on a LRAUV in Monterey 

Bay, California along the transect shown in the below figure, on 11th November 2021. This was 

one of the first deployments of the AyeRIS in the ocean and it reached a maximum depth of 142.7 

m during this deployment. 

 

 

 

 

 

 

 

 

 

Figure 02: Transect (in yellow) followed by LRAUV, Galene, indicating the area of Monterey Bay sampled 

by AyeRIS  
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2.2 IMAGE PROCESSING  

The output data from AyeRIS consisted of grey scale images and each image contained many 

objects or regions of interest ie., fecal pellets, aggregates, zooplankton. For particle classification, 

individual regions of interest (ROIs) were required. The processing of extracting individual ROIs 

from the raw images involved the steps included below in Figure 03. The resulting dataset included 

259 103 grey scale ROI images and these were used for analysis using MorphoCluster. 

 

 

 

 

 

 

 

Figure 03: Steps followed in the processing of images from AyeRIS imaging system to produce regions of 

interest, ROI’s and their table of properties.  

 

2.3 IMAGE CLASSIFICATION USING MORPHOCLUSTER 

 

2.3.1 DATA PREPARATION  

 

The input data for MorphoCluster consisted of only one .zip file. hence called archive.zip. The 

image archive .zip file had to consist two files, 

 

i. The data set of ROI’s to be classified (single object images) 

ii. A .csv file (hence called index.csv file) containing two columns; “object_id” which 

was a unique identifier for each image which in this study was the image name and 

“path” which was the file path for each image.    
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This image archive had to be placed in the data directory of the software in our computer along 

with the deep learning model parameters. The code for the data preparation step was written 

in R and is as follows, 

 

files <- list.files(path = "<insert file path>") 

n <- length(files) 

 

index <- matrix(NA, nrow = n, ncol = 2) 

colnames(index) <- c("object_id", "path") 

 

for(i in 1:n){ 

  index[i,1] <- c(sprintf("%s", files[i]))    

  index[i,2] <- c(sprintf("rois, /%s", files[i])) 

  }   

   

write.csv(index, "index.csv", row.names = FALSE, col.names = FALSE) 

 

2.3.2 FEATURE EXTRACTION  

 

A decapitated deep neural network, ResNet18 acts as the feature extractor in MorphoCluster. The 

network used model weights pre-trained on the ImageNet data unless specified otherwise (--

parameters-fn). The input mean and standard deviation of the estimated mean color values of the 

images (R,G,B values) also had to be provided. As the output of feature extraction, it produced a 

512d feature vector for each image (features.h5). 

The command used to run the feature extraction was as follows, 

 morphocluster features [--parameters-fn model_state.pth] [--input-mean 0.9,0.9,0.9] 

[--input-std 1,1,1] archive.zip features.h5 

 

The mean and the standard deviations of ImageNet images were used for this study (mean=[0.485, 

0.456, 0.406], std=[0.229, 0.224, 0.225]). 

 

2.3.3 CLUSTERING 

 

The clustering step is done through the HBDSCAN* algorithm which clusters the densest regions 

in the feature space as clusters of similar feature images. The algorithm is characterized by two 

parameters; minimum cluster size (m) and neighborhood size (k). The neighborhood size (k) was 
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set to k=8 and the minimum cluster size, the minimum number of features required to make a 

cluster in the feature space, was exponentially reduced (Figure 04) as recommended in Schroeder 

& Kiko, 2022. 

 

An additional Principal Component Analysis step was included here to reduce dimensionality of 

the feature vector from 512 to 64. The command used to run the clustering initially, was as follows, 

morphocluster cluster [--pca 64] --min-cluster-size m --min-samples k features.h5 

tree.zip 

 

The output was saved as the tree.zip in the data directory of the software. 

 

 

 

 

 

 

 

 

 

 

Figure 04: Minimum cluster size, k, was reduced exponentially starting from k = 128. 

 

2.3.4 LOADING WEB APPLICATION 

 

Next the image archive zip file, extracted features file (features.h5), and the clustering output file 

(tree.zip) were loaded into the web application using the following commands. 

 

flask load-objects archive.zip 

 

flask load-features [--pca 64] features.h5 

 

flask load-project tree.zip 
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Once all the required files were loaded into the web application, the parent node (unclustered 

images) and the cluster nodes were shown on the interface. 

 

2.3.5 CLUSTER VALIDATION 

 

In the validation step, the clusters obtained were looked through manually for homogeneity. If the 

cluster was pure, the cluster was named and accepted (validated) and if the cluster was mixed, it 

was sent back to the parent node, that is the set of unclustered images (rejected). The validated 

clusters resulting from validation can also be termed as cluster “seeds” as they are the cores of the 

densest regions of the feature space. 

 

2.3.6 CLUSTER GROWING  

 

In this step, these cluster seeds were then “grown” into bigger clusters. This meant that more 

images were collected from the neighborhood size of the dense regions until a “similarity 

threshold”, which is the boundary around a cluster seed in the feature space from which outwards 

are images that cannot be considered similar to the ones in the cluster seed, was identified and 

reached (See Figure 01 for a visual representation). Unclustered images from the neighborhood 

ordered from decreasing similarity to the cluster seed, were displayed as “recommended members” 

as pages of 50 images each. The similarity boundary was chosen by finding the image which was 

strictly dissimilar to the seed. This was done in 2 ways; the binary search or the turtle mode.  

 

The binary search was the faster method and in this method the search is done through pages as a 

whole. If the first page has all similar images, once reviewed and accepted, the next page shown 

will have skipped a couple pages. And if that page was accepted the next page had skipped double 

the number of pages than before. Thereby the number of pages skipped between each page review 

doubled, increasing the number of images the user had to go through, making it faster. In the turtle 

mode, however, the user had to go through each object on each page individually. After all the 

clusters were grown, the output was saved in the export directory in the data directory of the 

software on the computer.  
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2.3.7 REITERATION  

Once the grown clusters were saved, the clustering step was repeated for the unclustered pool of 

images with a reduced minimum cluster size (m). Here instead of the archive.zip file, the output 

zip file from the growing in the previous iteration saved in the export directory of the data directory 

was used. The resulting zip file from the clustering was given a new name (referred to as tree-2.zip 

here) 

morphocluster cluster [--pca 64] --min-cluster-size 64 features.h5 tree-64.zip --tree 

/data/export/2020-05-15-10-34-34--3--tree-128.zip 

 

Next, the steps from 2.3.5 to 2.3.7 were repeated and along with 2.3.4 this process was repeated 

until no more pure clusters emerged from the clustering.  

 

3 RESULTS 

 

3.1 1ST ITERATION 

The first iteration (m = 128) for the dataset of 259 103 images resulted in 31 clusters. The biggest 

cluster emerged was a group of unfocused objects termed “blobs”. With the validation step, 4 

clusters were rejected due to being too mixed and 27 were validated, named and grown. At the end 

of growing, the clusters had 67 391 images or accounted for 26.01 % of the total data set. The 

clusters were mainly blobs and noise but there were three fecal pellet clusters.  
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Figure 05: An example of a cluster of the ‘blobs’ 

 

3.2 2ND ITERATION 

In the second iteration (m = 64), there were an additional 19 clusters resulting from the clustering 

step. 4 clusters were rejected and 15 were validated and grown. At the end of the iteration, there 

the clusters included 40 % of the data set. An important new cluster that emerged was the cluster 

of crustaceans of different species.  
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Figure 06: Two clusters of fecal pellets 

 

 

 

 

 

 

 

 

 

 

Figure 07: An example cluster of the crustaceans 
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3.3 3RD ITERATION  

In the third iteration (m = 32), 22 new clusters emerged from the clustering step. 2 clusters were 

rejected and 20 were validated and grown. At the end of the iteration, 51% of the data set was 

clustered and there were 61 clusters in total. An important new cluster that emerged here was the 

cluster of objects that looked like sinking long aggregates of particles. 

 

 

 

 

 

 

 

 

 

   Figure 08: An example cluster of the ‘sinking particles’ 

 

3.4 4TH ITERATION  

The fourth iteration (m = 16), resulted in an additional 33 clusters. However due to time 

constraints, the validation step could was not finished. A new cluster that emerged here was a 

cluster of larvaceans. 
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Figure 09: Cluster of the larvaceans and their mucus houses 

 

Thereby at the finish of the project, the data set was classified up to a half or 51% (). 

 

 

 

 

 

 

 

 

Figure 10: Percentage of classified images with the number of iterations completed (4th iteration not shown 

as it was not completed). 
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4 DISCUSSION 

 

4.1 EVALUATION OF MORPHOCLUSTER AS A TOOL FOR RAPID ANNOTATION OF 

LARGE MARINE IMAGING DATASETS   

Initially, the setting up and running of MorphoCluster was a lengthy process. And it was due to 

the instructions for running MorphoCluster were not updated with the software version in the 

GitHub ReadMe which was the one that was referred. The updated command syntax had several 

key changes that without knowing, delayed the project. 

With the data preparation, during the creation of the .csv file, there were two errors made with the 

file paths. For example, for the images in the directory named “rois”, the format used was, 

“/roi/LRGA4_20220411T063917.447285Z_AyeRISCAM02_0_0_0_2100_0_172_172_0.png”, 

while the corrected format was, 

“rois/LRGA4_20220411T063917.447285Z_AyeRISCAM02_0_0_0_2100_0_172_172_0.png”.  

Moreover, MorphoCluster was initially run on a virtual machine with low RAM. Therefore the 

feature extraction phase and clustering phase for an initial testing dataset of ~500 000 images took 

approximately 1 day and 4 days respectively. Since this was not viable, a switch was made to a 

high-performance computer (DeepRip) which was much faster.  

In the validation phase, while there were a few clusters that had one or two members rejected, 

many of the clusters had to have several to many members rejected. When the number of additional 

clusters increased, the time taken for validation increased. It was mostly the insignificant clusters 

such as noise and ‘blobs’ that remained the same through the validation. Also, the feature of the 

validation step where the cluster members are arranged in such a way that the members next to 

each other were most dissimilar, was very helpful in rejecting members and increasing the 

homogeneity of the cluster.  

The growing phase was the step that took up the majority of the time. Moreover, this step retained 

some subjectivity as the similarity threshold was determined by myself. Also for example, if the 

cluster was fecal pellets, while the pages should be aligned such that most similar-looking objects 

to fecal pellets were shown first, in the growing stages of many clusters, there were images that 

clearly looked like, fecal pellets in this example, after images that were clearly different. This led 
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to switching to turtle mode for some clusters, which was very slow. This was most common in 

rare clusters like the animals as they were less numerous in the data set. However since there was 

a lot of noise and ‘blobs’ in the data set, and it was needed to pull out those images as soon as 

possible, the growing step was done a bit leniently. But clusters of importance were handled 

strictly. 

According to Schroeder et al., 2020, the clustering needs to be reiterated until no more pure clusters 

emerge or when the graph in Figure 10 reaches a steady state, which seems to have started 

happening. The hypothetical prediction shown in Figure 11 where it reaches a steady state around 

iteration 5, is based on the fact that the curve gradient had started to decrease. 

 

 

 

 

 

 

 

 

Figure 11: Prediction of the curve of percentage of classified objects with iteration number 

 

Overall, while the clustering was mainly data-driven, fast, and able to pull out clusters that may 

have been unperceivable to humans, it did need a user to review and grow the clusters which were 

relatively slow and a lot more subjective. It did a relatively fair job of pulling out the noise, blob, 

and fecal pellet clusters but not so well with the others.  This may be due to the high number of 

noise and blob images and therefore it would however be interesting to see what results would 

come of a dataset without a lot of noise. 
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4.2 PARTICLE TYPES RESOLVED USING AYERIS AND MORPHOCLUSTER   

Better characterization of the particle types involved in the biological pump allows for more 

accurate quantification of carbon fluxes as showed by Durkin et al., 2021. The particle types in the 

water column identified from AyeRIS images using MorphoCluster were fecal pellets and the 

‘sinking particles’. The fecal pellet clusters began to emerge in the first iteration and this may 

indicate the high number of them in the data set, consistent with Durkin et al., 2021, where they 

were a main class of particles identified. While there were different sizes of fecal pellets, the 

clusters were not separated as such. There were mainly long, thin pellets and short, looser pellets. 

Moreover, the ‘sinking particles’ identified here were consistent with the type of particles observed 

in the water column during an ROV dive in Monterey Bay (personal observation) and they may 

be loose aggregates that are sinking vertically, giving them an elongated streamlined shape.  

 

 

 

 

Figure 12: Magnified image of a member of the cluster, ‘sinking particles’ 

The main animals identified were crustaceans and larvaceans while fish, ctenophores, and 

chaetognaths were spotted in the dataset when they came up as recommended members in the 

growing phases. The greyscale property and the resolution of the images certainly made it harder 

to identify particles in the validation and growing phases. Identification of these organisms 

simultaneously with the particles may help resolve the various ecological processes occurring in 

the water column as particles sink, in the longer term, such as zooplankton-particle interactions 

(Möller et al., 2012; Christiansen et al., 2018). 

The ‘blobs’ clusters mainly had objects that were blurry, unfocused and hence depicted a 

hexagonal shape corresponding to the camera aperture or with very high brightness that masked 

any identifiable features. Since they were also in high abundance in the data set, they may be 

another major type of smaller particle such as detritus or aggregates. This may also be a result of 

the lower spatial resolution of the images (compared to the coverage). Since this high amount of 
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noise and ‘blobs’ delayed the clustering of interesting image classes, MorphoCluster would be 

more effective if these images could be filtered out in the image processing steps.  AyeRIS images 

also had high temporal resolution and along with the high spatial coverage, this may be beneficial 

in calculating carbon fluxes more accurately. But there also may be an image overlap especially 

with the animals as they move around and particle counts taken from them may be needed to be 

treated with caution.  

 

5 CONCLUSIONS/RECOMMENDATIONS  

Overall, 51% of the dataset of 259 103 images were able to be classified using MorphoCluster into 

mainly 5 particle classes, ‘blobs’, ‘sinking particles’, fecal pellets, crustaceans and larvaceans. 

MorphoCluster seemed to be more efficient in classifying the more abundant particle classes in 

the data, ‘blobs’, noise and fecal pellets than the rarer yet significant classes, animals and ‘sinking 

particles’.  Validation and growing phases required the most time and the growing phase especially 

was conflicting as images seemed at times not arranged in decreasing similarity in a page of 

recommended members and it retained some subjectivity with the user determining the similarity 

boundary. Large sized objects were able to be identified more clearly due to the quality of images. 

Moreover, due to the resolution of AyeRIS images, the smaller particles may not have been 

captured well and they may be the abundant ‘blobs’ in the dataset. Continuing the iterations until 

no new pure clusters emerge is recommended as the immediate next step and finding a method to 

filter out “blobs’ and noise before using MorphoCluster would be better to assess the efficiency of 

MorphoCluster in classifying large marine imaging datasets. 
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