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ABSTRACT  

Environmental DNA (eDNA) is a powerful and non-invasive tool to survey marine 

ecosystems. Using a rapid miniature sequencer like the Oxford Nanopore MinION, 

real-time analysis of the organisms present at a sampling location could be 

telemetered to shore. However, alignment of unknown reads to reference sequences 

can be a time-intensive process, and multiple alternatives to Basic Local Alignment 

Search Tool (BLAST) have been developed. In this study, we compared the speed 

and proportion of MinION eDNA reads classified to taxa of three sequence 

alignment programs: BLAST, Minimap2, and Kraken2. Minimap2, followed by 

MEGAN software for taxonomic classification, proved to be efficient while 

resolving a large proportion of reads to the genus level. When processed by this 

bioinformatics pipeline, MinION reads provided a suitable measure of taxa present 

at a sampling location. This pipeline utilized on MinION eDNA reads can yield a 

fast and accurate picture of the biodiversity in an ecosystem, paving the way for an 

entirely automated real-time sequencing analysis in the future, which will be useful 

in guiding conservation efforts.  
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INTRODUCTION  

Marine organisms increasingly face a number of stressors, including ocean 

acidification and climate change (Sampaio & Rosa, 2020). Tracking and surveying 

marine populations is crucial to understanding the effects of these changes and 

guiding conservation measures. Environmental DNA, or eDNA, provides a non-

invasive way to monitor marine populations and is emerging as a powerful 

alternative to other surveying methods, which can be costly, time-consuming, and 

even detrimental to the survey population (Murphy & Jenkins, 2010). Free-floating 

genetic material shed from an organism, including tissue, skin, and metabolic 

waste, can be collected from the water, amplified, and analyzed to determine the 

organism of origin. This makes eDNA a powerful tool for metabarcoding, or 

characterizing different species from a single water sample (Ruppert et al., 2019). 

By focusing on one variable mitochondrial gene in the eDNA samples, the different 

taxa present in a location can be determined. Furthermore, eDNA pairs well with 

automation; the Long Range Autonomous Underwater Vehicles (LRAUVs) with 

onboard Environmental Sample Processors (ESPs) in the Monterey Bay are able to 

collect and filter genetic material from the water. The next step in automation is to 

include a miniature DNA sequencer onboard. 

The Oxford Nanopore MinION is a rapid miniature sequencer that is useful for 

metagenomics, but due to its real-time sequencing it is only about 95% accurate 

(Jain et al., 2016). This makes differentiating eDNA from individual species in 

similar taxa challenging. Other high-depth sequencers are more accurate but take 

much longer to sequence. Algorithms to improve accuracy and form consensus 

sequences by aligning similar sequences have been developed for the MinION, but 

this process can lose the diversity of similar species within genus or family. 

Traditionally, the Basic Local Alignment Search Tool (BLAST) algorithm is used 

to align reads to known sequences, but this process is slow and would use too much 

processing power on an onboard sequencer (Altschul et al., 1990). To place the 

MinION sequencer onboard the LRAUV in the future and perform real-time 

sequencing and taxon classification on the water, bioinformatics processing of 

sequences must be time and resource efficient.  
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In this study, we analyze the speed and proportion of sequences classified at the 

genus level of three alignment and taxonomic classification pipelines. We compare 

BLAST followed by MEGAN, which uses a lowest common ancestor algorithm to 

assign reads to taxa (Huson et al, 2016); Minimap2, a sequence alignment program 

which uses a chaining algorithm optimized for parallel processing units (Li, 2018), 

followed by MEGAN; and Kraken 2, which uses unique short sequences, or k-mers, 

to align query sequences to a database and then maps them to the lowest common 

ancestor for taxonomic classification (Wood et al., 2019). These three sequence 

analysis pipelines were compared for speed and proportion of reads classified to 

the genus level. This comparison will help us determine which sequence alignment 

program is best suited for processing MinION reads efficiently on board an 

LRAUV, without sacrificing the taxon diversity present in the sampling location.  

MATERIALS AND METHODS  

FIELD SAMPLING  

Water samples of 1L were collected and filtered by an Environmental Sample 

Processor onboard the LRAUV. Sampling occurred at three different stations:  C1 

at the head of the Monterey Canyon, M1, and M2. Sampling occurred at two 

different depths at each station: 10 meters and 150 meters. Water samples were 

filtered to remove waste and then stored on the LRAUV until retrieval.  

DNA EXTRACTION AND SEQUENCING 

The DNA was extracted from samples once brought to land. Then, DNA samples 

underwent PCR amplification of a highly variable mitochondrial gene for 

metabarcoding. The DNA was amplified using the primer sets for either the 

metazoan 12S ribosomal DNA gene (Machida et al., 2012), the eukaryotic 18S 

ribosomal DNA gene (Amaral-Zettler et al., 2009), or the Cytochrome c Oxidase 

subunit I (COI) gene (Leray et al., 2013). Paired end sequencing was performed 

by the Oxford Nanopore MinION, which has six cores and a 256 core GPU with 8 

GB of RAM. For comparison to a high-depth sequencer, the Illumina MiSeq, 

which is highly accurate but takes upwards of 48 hours to sequence, was used. 

MinION sequencing of the six samples yielded 220,876 total DNA reads at 10 
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meters at C1, 102,314 reads at 150 meters at C1, 247,119 reads at 10 meters at 

M1, 66,409 reads at 150 meters at M1, 261,493 reads at 10 meters at M2, and 

124, 884 reads at 150 meters at M2.  

SEQUENCE CLUSTERING AND POLISHING 

Reads were clustered and polished on an Amazon Web Services (AWS) Linux 

server with sixteen parallel CPUs with around 113 GB of memory and one NVIDIA 

Tesla M60 GPU with 2,048 parallel processing cores and 8 GB of memory. The 

potential for multithreading across these processors allows us to accomplish time-

intensive processes like genomic alignments much faster. Therefore, a 

bioinformatics pipeline that is optimized for parallel processing would be ideal. If 

required, clustering and polishing of Oxford Nanopore MinION reads were 

performed in an NGSpeciesID Conda environment, which clusters and forms 

consensus of Oxford Nanopore reads (Prost et al., 2020). Oxford Nanopore’s 

Medaka algorithm was used to create consensus sequences from similar raw 

Nanopore reads, along with the Spoa algorithm to implement partial order 

alignment of consensus sequences.  An abundance ratio of .001 was used to allow 

for more unique clusters of sequences.  

ALIGNMENT AND TAXONOMIC CLASSIFICATION 

Alignment was also performed on the AWS server. Reads were queried to a custom 

reference database mapping known sequences for 12S, 18S, and COI primers to 

NCBI accession IDs and aligned using BLAST, Minimap2, or Kraken2. The speed 

of each alignment program was timed and averaged for each of the six samples. 

BLAST was installed and run on a Docker container. Reads were mapped to 

reference sequences with minimum 85% identity. Minimap2 was installed through 

Conda and run in the NGSpeciesID environment. The parameters were set for 

Oxford Nanopore genomic reads. Kraken2 provided taxonomic names while 

BLAST and Minimap2 provided NCBI accession IDs for reads, including multiple 

accession IDs for certain reads. After alignment through BLAST or Minimap2, 

reads were processed with MEGAN software to match accession IDs to the NCBI’s 

taxonomy database using a lowest common ancestor (LCA) algorithm, which 
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assigns reads to taxa based on the sequence’s level of conservation (Huson et al., 

2016). The assigned taxonomy output was then processed using a custom R (R Core 

Team, 2020) script developed in RStudio (RStudio Team, 2020) and the package 

phyloseq (McMurdie & Holmes, 2013).  

RESULTS  

RUNTIME  

Figure 1 shows the average runtime of BLAST, Kraken2, and Minimap2 on six 

samples. Analysis was run on the 16 CPUS on the AWS server. BLAST took the 

greatest amount of time to align reads to references sequences, averaging 1348.55 

seconds or about 22 minutes. Minimap2 averaged 170.77 seconds and Kraken2 

performed alignment the fastest, averaging 1.08 seconds. Only Minimap2 and 

Kraken2 were fast enough to feasibly perform real-time analysis onboard an 

LRAUV. Furthermore, at peak memory usage, Minimap2 used a maximum of 

about 5 GB of memory while Kraken2 and BLAST used more memory. Note that 

there would be around 8 GB of memory on an embedded board placed on an 

LRAUV.  
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Figure 1.  Comparison of the average runtime of each alignment program on six samples 

from C1, M1, and M2 sampling stations.  

PROPORTION READS CLASSIFIED  

The proportion of total reads classified to any taxon was calculated for each of the 

six samples when processed with BLAST followed by MEGAN, Kraken2, or 

minimap2 followed by MEGAN and plotted as a boxplot (Figure 2). 

BLAST/MEGAN yielded the lowest proportion of classified reads, averaging 0.33. 

Kraken2 classified an average proportion of 0.60 reads to a taxon, followed by 

Minimap2/MEGAN which classified an average proportion of 0.524 reads to a 

taxon. However, Kraken2’s proportion of reads resolved to the genus level was 

poor, averaging 0.08 (Figure 3). Minimap2/MEGAN classified the greatest average 

proportion of reads to a genus at 0.34, followed by BLAST/MEGAN with an 

average proportion of 0.25. Therefore, the Minimap2/MEGAN pipeline can best 

classify similar eDNA sequences to a genus.  
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Figure 2.  Boxplot comparing the distribution of proportion of reads classified by each 

classification program for six samples from C1, M1, and M2 sampling stations.  
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Figure 3.  Boxplot comparing the distribution of proportion of reads classified to the genus 

level by each classification program for six samples from C1, M1, and M2 sampling 

stations.  

GENUS DIVERSITY 

The bioinformatics processing of MinION sequence reads with Minimap2 and 

MEGAN yielded a suitable spread of genus diversity when eDNA samples were 

amplified using 12S, 18S, and COI primers. The majority of reads were assigned 

to a genus. Figure 4 shows the thirteen most abundant genera at the C1 sampling 

location from 323,190 total reads. The majority of eDNA samples belonged to 

copepods, anchovies, and algae using this pipeline, which is predictable given the 

primer sets used. 0.39 proportion of the reads were unassigned to a genus. At the 

M1 sampling location, 313,528 total reads were processed and mostly assigned to 

copepods, anchovies, and algae, with a proportion of 0.27 unassigned reads (Figure 

5). Notably, the presence of Pseudo-nitzschia, a diatom which is capable of 



 9 

producing harmful algal blooms, was also observed at this location. At the M2 

sampling locations, 386,377 total reads were processed and mostly assigned to 

copepods, anchovies, and algae, with a proportion of 0.42 unassigned reads (Figure 

6). The most abundant genera we found were consistent with metazoans 

documented in the Monterey Bay National Marine Sanctuary (Burton & Lea, 2019). 

Throughout the six samples, a few striped dolphin and California sea lion reads 

were observed as well, showing that this tool can be used to search for the presence 

of marine mammals. 

 

Figure 4.  The proportion of MinION reads from two samples at the C1 location assigned 

to the 13 most abundant genera, as well as proportion of reads unassigned to a genus, using 

12S, 18S, and COI primers. All other genus assignments are summed into the other 

category. 
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Figure 5.  The proportion of MinION reads from two samples at the M1 location assigned 

to the 13 most abundant genera, as well as proportion of reads unassigned to a genus, using 

12S, 18S, and COI primers. All other genus assignments are summed into the other 

category. 
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Figure 6.  The proportion of MinION reads from two samples at the M2 location assigned 

to the 13 most abundant genera, as well as proportion of reads unassigned to a genus, using 

12S, 18S, and COI primers. All other genus assignments are summed into the other 

category. 

COMPARISON TO A HIGH-DEPTH SEQUENCER 

 The use of Minimap2 followed by MEGAN on 12,390,231 total reads amplified 

with 12S primers from the Illumina Miseq yielded a similar abundance of anchovies and 

rockfish as seen with the MinION reads. A proportion of 0.55 reads were unassigned to a 

genus, but a relatively large proportion of Mola Mola reads were observed, as well as 

possible human contamination. The MiSeq, while more accurate, takes much longer to 

sequence eDNA and gives a similar view of genus diversity as the MinION.  

 

Figure 7.  The proportion of Illumina Miseq reads from 120 samples at the C1 location 

assigned to the 13 most abundant genera, as well as proportion of reads unassigned to a 

genus, using only 12S metazoan primers. All other genus assignments are summed into the 

other category. 
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DISCUSSION  

Minimap2 for reference sequence alignment followed by MEGAN for taxonomic 

classification proved to yield the highest proportion of reads classified to the genus 

level without sacrificing efficiency. Minimap2 also had conservative memory 

usage, which makes it apt to process sequencing reads in an embedded Linux 

system onboard an LRAUV. Minimap2’s efficient detection of overlaps in inputted 

reads is due to its seeding and chaining algorithm, which runs much faster than 

other alignment programs (Li, 2018). It is also designed to handle long reads with 

an error rate up to 15%, which can handle the 5% error rate associated with Oxford 

Nanopore MinION reads. This makes Minimap2 a great tool for processing 

MinION sequencing results. 

This bioinformatics pipeline for Oxford Nanopore MinION reads also accurately 

represents the  genus diversity of a sampling location when compared to the deeper 

sequencing performed by the Illumina MiSeq, which is also more time-intensive. 

Minimap2’s algorithms are designed to perform accurate read mapping, which 

explains the resolution to genus and conservation of genus diversity observed (Li, 

2018). When the three primer sets, 12S, 18S, and COI, are all used on a sample, a 

range of animals, from microorganisms to megafauna, can be observed. We were 

able to observe Pseudo-nitzschia through this method, an organism which can 

produce a deadly neurotoxin in the Monterey Bay, as well as marine mammals 

which may be affected by this toxin. Minimap2’s processing of eDNA reads from 

the MinION is a useful method to track and survey taxa present in the Monterey 

Bay, which can inform conservation efforts.  

 

CONCLUSIONS/RECOMMENDATIONS  

eDNA is rapidly becoming a powerful tool to survey populations that may be 

difficult to survey with traditional methods. The technology is improving fast to 

gain greater accuracy and taxa diversity of reads. A single water sample can yield 
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a sufficient idea of metazoan biodiversity in a location. This study’s comparison of 

read mapping programs is one step closer to the goal of having the Oxford 

Nanopore MinION sequencer on board an LRAUV. This in-sea sequencer, with 

read mapping performed by the program Minimap2, can be utilized to quickly gain 

an idea of what organisms are present, including elusive marine mammals or 

invasive or toxic species. It could also be used to follow and track populations of 

animals without requiring us to ever leave land. Processing of eDNA reads with 

Minimap2 for mapping to reference sequences and MEGAN for taxonomic 

classification improves accuracy by forming consensus sequences without 

sacrificing genus diversity or efficiency.  This bioinformatics pipeline serves as a 

powerful conservation tool to track biodiversity and individual marine populations 

without having to expend the time and energy to physically track and tag animals.  
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