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1. ABSTRACT 

Understanding the ecological variability of deep-sea organisms is critical for the 

preservation and protection of deep-sea ecosystems. Many animals, including gelatinous 

zooplankton, are commonly found within the benthic boundary layer (BBL), an important region 

in the water column that is essential for pelagic-benthic coupling processes (e.g. carbon and 

nutrient cycling). BBL processes, and changes in animal communities, have been studied at Station 

M (~ 4,000 m deep in Northeast Pacific) since 1989. In this present study we ask: how does animal 

abundance change in the BBL in relation to time? With its distinct identification features and 

observed high densities at Station M, the gelatinous hydrozoan, Benthocodon pedunculata, makes 

an ideal study candidate. Specifically, we looked for seasonality in the abundance of these 

hydromedusae and whether some years experienced higher densities. To achieve this, we 

leveraged 30 years of visual data collection at Station M, which includes remotely operated vehicle 

(ROV) video transects, still images from time-lapse cameras and a seafloor-transiting benthic 

rover. To analyze this high volume of imagery, we applied machine learning (ML) by (1) training 
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a multi-object benthic classifier on MBARI’s VARS data; (2) deployed the classifier on the image 

data to generate proposals for classifications and localizations; and (3) reviewed the ML 

proposals of B. pedunculata using the vars-gridview tool. Preliminary results indicate that there 

is variation in their abundance. 

 
2. INTRODUCTION 

The Benthic boundary layer (BBL) is an enriched water column directly above the seafloor. 

It’s associated with critical biogeochemical processes between the pelagic and benthic regions of 

the deep-sea (Smith, 1992). This includes the transport of organic particles to the seafloor, 

contributing to carbon cycling in the ocean (Boudreau & Jorgensen, 2001; Thomsen, 1999). In 

addition, this water column has observed high abundances of gelatinous marine organisms 

including deep-sea jellies (Wishner, 1980) therefore, it’s been suggested that most of the species 

in the BBL play an important role in the pelagic-benthic marine food web (Alldredge, 1984; Choy 

et al., 2017; Gibson & Barnes, 1997).  

 

The gelatinous hydrozoan, Benthocodon pedunculata (Order: Trachymedusae, Family: 

Rhopalonematidae), has often been observed at high densities in the BBL within Station M 

(4000 m depth), a time-series station collecting data for over 30 years. These small medusae reach 

up to 3 cm in diameter and can be characterized by their deep reddish-brown coloration, rounded 

bell, and their numerous short tentacles (up to ~350) (Fig.1). They are commonly found in the 

Monterey submarine canyon (deeper than 3000m) but have also been observed in the Atlantic and 

other regions of the Pacific Ocean (Larson et al., 1992; Matsumoto et al., 1997, 2020). 
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Figure 1. (Top right) Close-up of species of interest Benthocodon pedunculata. (Background)A dense swarm of B. 
pedunculata in the Monterey abyssal plain. Image credits: Monterey Bay Research Institute. 
 

 

            B. pedunculata is typically observed above (up to 100 m) or directly on the seafloor. 

Specifically, regions of the seafloor that are covered by soft sediment. These observations of them 

resting on the seafloor have suggested that they feed off the bottom (Matsumoto et al., 1997). A 

large portion of their diet consists of foraminiferans and crustaceans like copepods and amphipods 

which are mostly benthic (Gage & Tyler, 1991).  

 

           Although it’s a common inhabitant within the BBL at Station M, the ecological role of this 

benthopelagic medusae is poorly understood. In order to get an understanding of their importance 

in the food web, there is a need to investigate how their populations vary over time. In this present 

study, we investigated the abundance patterns of the hydromedusae Benthocodon pedunculata in 

the Benthic Boundary layer at Station M, using machine learning as a tool. Methods of obtaining 

B. pedunculata density were used from a 3-year time-series study by (Smith et al., 2020). We 

wanted to know whether some years experienced higher densities over a 6-year period between 

the years 2013-2019. 
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3. MATERIALS AND METHODS  

3.1 Area of study 

Station M (34°50′N, 123°00′W, 4000m) is located in the Monterey abyssal plain of the 

Northeast Pacific and is about 291 kilometers offshore of Santa Barbara, CA (Fig. 2). This area is 

characterized by soft sediment (silty-clay) and low topographic relief (<100 m over 1600 km2) 

(Smith & Druffel, 1998). Station M has been collecting visual data of the seafloor for the past 30 

years. It hosts a variety of imaging systems and is one of three long-term monitoring study sites of 

the abyssal plain in the world (“Station M Instrument Servicing Expedition 2018,” 

2018).  Instrumentation includes the benthic rover, an autonomous robot that moves slowly across 

the seafloor collecting photos and sediment measurements, sediment traps that collect sinking 

organic particles that sink down to the seafloor, time-lapse cameras, and yearly visits from 

MBARI’s remotely operated vehicles.  

 

 
Figure 2. (Left) Map of Station M. The enlarged area presents the location of imaging instruments at Sta M, such as 
the time-lapse camera (yellow) and the benthic rover (blue). The red dots represent ROV dive sites. Figure credit: 
(Smith et al., 2020). (Right) Graphic depicts instrumentation from Station M (“Station M Instrument Servicing 
Expedition 2018,” 2018). 
 
 

For this study, we focused on imagery from a time-lapse camera (CANON 5D Mark iii) 

supported by a titanium tripod where the lens of the camera was resting 2.05m above the seabed. 

On each side of the tripod was a 200W strobe that provided illumination to the seafloor. The 

camera was tilted down 32° degrees which gave a field of view volume of 13.7m³ (Smith et al., 

2020). Lighting quality in the top 20% of each image was not favorable making it difficult to 

identify marine organisms, therefore, only the bottom 80% of each image was analyzed, yielding 
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a sample volume of 19.3 m³ (Fig. 3).  Photographs were taken every hour, although there are some 

periods of 2013 that were not recorded. 

 

 
Figure 3. Solid black line represents the sample volume (19.3 m³) of analyzing 80% of the image. Figure credit: 
(Smith et.al., 2020). 
 

 3.2 Machine learning applications (ML)- Model 

 A YOLOV5 deep learning model for object detection (Redmon et al., 2016) was applied 

in this study. This is a form of supervised machine learning and it generates a bounding box around 

individual objects of interest within each image, a class label, and a confidence score (Fig. 4). The 

model was run on 47,114 images from Station M’s time-lapse camera between June 2013- 

December 2019 with a confidence threshold of 0.1, where the detections of B. pedunculata were 

recorded.  

 
Figure 4. Image from VARS database that shows a swarm of B.pedunculata in the Monterey abyssal plain. The orange 
bounding boxes were generated by the YOLOV5 model and include class label and confidence score. 
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3.3 ML Image training & testing sets 

 To generate training data for the application of machine learning, images from ROV dives 

containing Benthocodon were queried within VARS-Localizer, a software tool that queries 

observational annotations from MBARI’s Video Annotation and Reference System (VARS). 

VARS is an open-source database that stores and catalogs deep-sea imagery collected by MBARI’s 

different camera systems including dives by remotely operated vehicles (Schlining & Stout, 2006). 

Within each image, bounding boxes or “localizations” were manually created around each 

individual (Fig.4). Over 1000 localizations of Benthocodon were labeled in Genus (Benthocodon, 

662) and species level (B. pedunculata, 572) combined. To quickly correct and edit bounding 

boxes, VARS-gridview (Fig.5), an MBARI-developed software was utilized (Vars-Gridview, 

2021/2021). 

Testing data was generated using RectLabel software (RectLabel- Lableing Images for 

Bounding Box Object Detection and Segmentation, n.d). A subset of 235 randomly selected 

unlabeled images from Station M’s time-lapse camera were manually labeled. This testing data 

was used to evaluate model performance. 

 

      
Figure 5. (Left) VARS-Localizer enables the labeling of visual data directly from the VARS database. Green boxes 
are the localizations generated by an person annotator. (Right) VARS-gridview displays each individual 
Benthocodon localization making it easier to correct or resize bounding boxes. 
 

3.4 Verification and analysis of ML Performance  

Once the ML classifier was applied to unlabeled Station M images, we evaluated the 

performance of the model by randomly selecting a subset of 250 images representing the years of 

interest (2013-2019). For each image, we recorded: (1) True positives (TP): Number of correctly 

identified objects, (2) False positives (FP): Number of incorrectly identified objects (e.g. calling a 

sea cucumber Benthocodon) (3) False negatives (FN): Number of target objects missed by the 
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model. This information allowed us to calculate the error estimate of Benthocodon counts 

generated by the model to give a more accurate number, under the assumption that the model 

cannot be 100 percent accurate. To find the total true objects, we used the following equations: 

 

(1)	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 

(2)	𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

In Eq. 1, the precision gives the proportion between the number of positives the model detects and 

all of the objects in the image. This is a measure of the accuracy of the predictions generated by 

the model. Eq. 2, is the proportion of correct detections by the model and the actual count of the 

object of interest. This indicates how good the model is at correctly classifying the object of 

interest. Once precision and recall were calculated, the error estimated total object count was found 

by using the following equation:  

(3)	𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐵𝑒𝑛𝑡ℎ𝑜𝑐𝑜𝑑𝑜𝑛 =
(𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  

 
3.5 Calculating density of Benthocodon 
 
To calculate the density and plot our time-series graph of Benthocodon, we used R 4.1.0 (R Core 

Team, 2013) and R Studio 1.4.1717. To find density we used: 

 

(4)	𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
#	𝑜𝑓	𝐵𝑒𝑛𝑡ℎ𝑜𝑐𝑜𝑑𝑜𝑛	
𝑆𝑎𝑚𝑝𝑙𝑒	𝑣𝑜𝑙𝑢𝑚𝑒	 , (𝑢𝑛𝑖𝑡𝑠 = 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

m³K ) 

 

For Eq.4, monthly densities were calculated from 2013-2019.  
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4. RESULTS  

4.1 Analysis of ML performance 
 

An average of 11.4% of Benthocodon were detected by the YOLOV5 model. In images 

that had high densities (60+) of Benthocodon in frame, the model detected an average of 7-8 target 

objects. Our model precision was 81.6%. 

 

4.2 Benthocodon density over time  
 

Variation in the abundance of Benthocodon over a 6-year time period was observed in 

our preliminary results. The highest density recorded were in the years 2015 and 2016 with a 

density average of over 0.6 individuals·m⁻³. Low densities were observed in 2016 and 2018 with 

a density average of ~0.05·m⁻³ (Fig. 6). 

 

 
Figure 6. Time-series graph shows the monthly density of Benthocodon pedunculata (y-axis) through time (x-axis) 
from July 2013-Decemeber 2019. The counts of Benthocodon were generated from the machine learning proposals. 
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DISCUSSION  

Although we were able to plot a time-series graph with the output generated by our machine 

learning model, we cannot make concrete conclusions about the variability observed in this time-

series study. Our model detected a low percentage (11.4%) of Benthocodon when deployed on 

unlabeled images from Station M. The more objects in the image, the less accurate the model 

seemed to be. In addition, training a model on a small object like Benthocodon proved to be a 

challenging task. Benthocodon appears indistinct the smaller and further away it is in the image. 

Our model did not detect these smaller target species. It’s also important to note that most of the 

training data generated came from ROV dives. The camera field of view varies across dives. Most 

of the images within VARS have close-up views of our target species, with few representing a 

similar field of view as the time-lapse camera images from station M. Lighting can also vary 

between the ROV dives and the time-lapse camera at Station M which may have contributed to 

the low accuracy of the model. A suggestion for future work would be to generate a Station M-

specific training set. This may yield higher detection and classification of our target species.  

 

 

 

Despite the low detection rate of our target species, our study was still able to yield 

population counts and would greatly benefit from ML model improvements. Our preliminary 

results suggest investing in creating more image training sets can increase the capability to 

accurately detect and classify marine organisms. Machine learning has the potential to further 

advance our understanding of our oceans and answer ecological questions. Once a more accurate 

representation of abundance over time is achieved, future studies could see if environmental 

factors play a role in abundance changes over time. Things like current speed, food availability, 

and substrate type. In situ studies have suggested that substrate type and current speed may have 

an effect on the abundance of Benthocodon (Matsumoto et al., 1997). Results from a 3-year time-

series study at Sta. M found that ocean currents seem to influence the abundance of B .pedunculata. 

As current speed increased, the density of Benthocodon decreased suggesting that they swim high 

above the seafloor when current speed is high (Smith et al., 2020). Having this knowledge of 

abundance can provide some insight on deep-sea jelly community structure in the BBL and its 
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significance in the benthopelagic food web, which can lead to the overall important goal of 

protecting and preserving these deep-sea ecosystems. 
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