
TankTrack: A multi-scale tracking system for

biological targets in the laboratory

Aaron Ray
Under the supervision of Kakani Katija

August 2019

1 Introduction

There are a wide range of propulsion and feeding mechanisms in ocean inverte-
brates that are not well understood. We are interested in learning more about
what life is like for these animals. The propulsion and feeding dynamics can be
very difficult to study, as the animals are often small and the features of interest
even smaller. They can also accelerate very rapidly relative to their size. For
example, studying the swimming dynamics of squid paralarvae requires focusing
a microscope on a larvae several millimeters in length, and then keeping it in
the frame as it accelerates at several mm/s2. These characteristics complicate
capturing high-quality long-term observational data of the animals, as they will
dart out of the camera field of view. In order to capture the small details of the
animals, the animal must appear large in the camera image. As a result, the
animal’s motion is very fast in terms of pixels per second, so the system must
be able to adjust very rapidly. This is the same difficulty that arises when using
a pair of binoculars to track a nimble sparrow compared to a large whale.

In some cases, we can make the problem easier by restricting the motion of
the target. A dab of glue, for example, may trap the animal in place and greatly
simplify the task of keeping it in the camera frame. While for some studies this
solution may be sufficient, it prevents us from studying the natural, long-term
swimming behaviors of the animal. In order to study multi-scale behaviors–
how the swimming behavior, caused my small features on the animal, relates to
large-scale motion–we must allow the animals to swim freely.

The fundamental problem is that with a single camera, increasing animal
resolution commensurately increases the speed at which our system must be
able to respond to animal motion. In order to enable multi-scale tracking of
animals, we propose a system of two cameras mounted on motorized stages.
The first camera is a “spotter” camera, similar to the spotter scope used to
align telescopes. The second camera is the science camera, in this case outfitted
with a large macro lens to observe small-scale features on the animal of interest.
The moving stages allow a computer vision algorithm automatically move the

1



cameras to keep the animal of interest in view. This system combines the
advantages of easier tracking in the spotter camera’s field of view with high
resolution in the science camera. Even if the animal temporarily swims out of
the science camera frame, the system can catch up by maintaining the track in
the spotter frame.

2 Related Work

Our system is similar to a recent plankton tracking system presented in [1]. In
contrast to their purpose-built system, we hope that the system architecture
used for our tracker will be easily extensible to a variety of camera, stage, and
tank combinations.

3 Project Requirements and Goals

We hope that our multiscale tracking software platform will be extensible to a
wide variety of use cases where it is important to relate small-scale behavior on
short time scales with large scale behavior on longer time scales. The system
must be able to record video from both the high-resolution science camera and
the lower-resolution spotter camera. It must also be able to reconstruct the
animal’s position over time, meaning that we must be able to estimate the
animal’s depth.

We consider several constraints on system design to facilitate a wide variety
of potential applications. The tracking platform cannot depend on expensive,
purpose-built equipment. This eliminates tools like telecentric illuminators and
lenses from consideration. The system also cannot use tracking techniques that
rely on large amounts of data. Collecting and annotating data, then training a
neural network based tracker such as DeepLabCut ([2]) is too costly and time
consuming in many cases, such as on a ship during a research cruise. The setup
time would radically dwarf the amount of time that we actually have access to
the animal. The system must also work with any cameras, lenses, and stages
that are appropriate for observing the target of interest.

However, to guide development, our initial goal involves tracking Ctenophores
in a tank. Specifically, we aim to understand how ctene row beating frequency
corresponds to animal motion and behavior. To capture this behavior we need
a macro lens with a field of view on the order of 1 cm, capable of recording
frames at 60 fps. The motion stages must be capable of moving the camera’s
field of view around a 10x10x10cm tank.

An E-con Systems liquid lens was used as the spotter camera. The liquid
lens allows us to estimate object depth from a single camera. A Point Grey
Grasshopper camera with a large macro lens was used for the science camera.
Three Thorlabs LTS300 stages provided the actuation for moving these cameras
around the tank. With this hardware in mind, we can design the software
architecture.

2



4 System Development

We begin the development by considering how a scientist will interact with the
system. A graphical interface will present the user with the tools needed to
refine and tune the tracking setup. Figure 1 shows an example of this interface
in development. A toolbar offers many options for tuning and control, live feeds
from the spotter and science cameras allow the user to monitor the performance
of the system. The user initializes the tracking by clicking on a target in the
spotter camera. From this point forward, the stages move the cameras to keep
the animal in the field of view. Both video feeds and a log of animal position
estimate are saved automatically.

Figure 1: User interface to the tracking system. The left side of the interface
provides a variety of toolbar options for tuning and interacting with the system.
On the top right, the spotter camera’s field of view is shown. On the bottom
right the science camera view is shown. These are displayed to the user for
reference and also recorded.

3



4.1 Animal Tracking

There are basically only two hard things about the multiscale tracking problem.
The first is tracking the animal in the image. The second is reconstructing
where the animal is based on these observations1.

We begin by investigating how to track the animal in the image. In the
interest of generalizablility, we prefer methods with fewer tuning parameters
that require less effort to transfer to new targets.

The first tracking technique we tried identified edges in the image with a
canny edge detector, then found closed contours in the edges with a routine
built in to OpenCV. The center of the closed contour closest to the estimated
animal position at the previous time step is considered to be the current animal
position. However, as seen in Figure 2, the edges Ctenophores are often not
very robust. As a result, this tracking method is not sufficiently reliable and
stable.

The second tracking technique considered was a simple thresholding opera-
tion as demonstrated Figure 2. The animal position is estimated as the center
of mass of above-threshold pixels with some distance of the estimated position
in the previous timestep. This method is robust to poorly defined edges and
makes effectively no assumptions about the object being tracked. The biggest
downside to this method is that it requires sufficient contrast between the tar-
get and background. If the spotter camera were stationary, then background
subtraction could easily be applied to make the thresholding much more robust.
However, our initial setup assumed a moving spotter camera. This means we
cannot easily use background subtraction. As the edges of the tank appear much
brighter than the animal it is impossible to detect the animal in these areas.

To prevent the bright sides of the tank from being mistaken for the target,
a masking operation can be applied to the sides of the tank. We made a tool
that allows the user to calibrate the position of the corners of the tank in order
to automatically mask out the sides of the tank(see Figure 3).

4.2 Depth From Focus

In order to reconstruct the animal’s position over time, we must estimate its
depth. We hoped to accomplish this with a single camera by using depth-from-
focus. The spotter camera had a built-in liquid lens that allows software control
of focus. When the target of interest is in focus, it should achieve its maximum
sharpness. Sharpness can be calculated by applying a high-pass filter to the
image (such as Laplacian kernel). We determine the sharpest liquid lens setting
by sweeping through all of them and calculating sharpness from each. We can
use an empirical calibration curve for the liquid lens camera (Figure 4) to map
from liquid lens setting to distance to focal plane (and therefore to animal).

1Of course, these two concepts are not entirely distinct, and we can use each to inform the
other. However in this project we treat them as more or less distinct. If there were a more
specific dynamics/behavior model of the targets being tracked, it would make more sense two
couple these two stages more strongly

4



Figure 2: Comparison between raw frame from the spotter camera and the
frame after thresholding and morphological operations (dilate/erode) have been
applied.

Figure 5 shows examples of sharpness curves of a test object and real animal.
Unfortunately it also shows the difficult of estimating depth from sharpness.
Practically, it is difficult to estimate depth from sharpness because the animal
may be spread out over a range of depths (in a discontinuous way) and accurate
measurements require an image at every (or at least most) liquid lens setting that
corresponds to a valid focal plane that is within the tank. Sweeping through
all of these settings limits the frequency with which the animal state can be
updated and the amount of time the animal is in focus in the spotter camera.
The delay in liquid lens setting must also be accounted for, which adds another

5



Figure 3: Utility for calibrating the 3D location of tank corners from pairs of
images and using the estimated corner locations to mask the sides of the tank
in the image as the stage moves.

layer of difficulty (see Figure 6).

Figure 4: Calibration curve that allows us to map from liquid lens setting to
distance to focal plane.

4.3 Software Architecture

A primary goal for our tracking system is extensibility and ease of changing
individual components. To facilitate this flexibility, the software architecture
is structured in a very modular way. Each piece of hardware interfaces with a
single piece of code running in its own process. We can think of each software

6



Figure 5: Example sharpness vs. liquid lens setting curves for a test object
and a real animal. The left panel shows that there may be multiple sharpness
peaks corresponding to different objects in the scene. In this case, the left peak
was caused by very high frequency background patter. In the middle panel, the
same data from the left panel was passed through a low pass filter before the
high-pass Laplacian to filter out the background pattern. On the right, we see
the sharpness curve for a real animal. It demonstrates that with a narrow focal
plane, it is very difficult to decide solely from sharpness data where to focus, as
there are two peaks that both correspond to the animal (in this case, the main
body and the tentacles were at different depths)

process in the system as a node in an “interaction graph”. Changing hardware
only requires writing a small amount of new interface code for that specific
hardware (a new “node”). While this level of abstraction could be obtained
with well-defined interfaces between pieces of code within a single monolithic
process, explicitly separating the pieces has several advantages.

First, the composability of the system is improved. Different pieces of soft-
ware can be run independently. For example, the node that saves video can be
started, stopped, and restarted independently of the rest of the system. The
camera node and video saving node can be run without the rest of the system
to save calibration data without the rest of the system’s hardware hooked up.
This type of functionality could be achieved by adding more fine-grained control
to a user interface of a single monolithic application, but it would require extra
effort compared to getting the ability “for free” in this system.

Second, separate processes are actually required to get proper parallelism
in Python. Python’s Global Interpreter Lock (GIL) prevents different Python
threads from running at the same time. Thus splitting the program into pro-
cesses directly increases performance (which is incredibly important when read-
ing cameras a high rate and saving video).

Finally, the communication interface between processes occurs across TCP
sockets. As a result, the system can trivially be spread across many computers.
If hard drive bandwidth limits video saving rate, camera images can be broad-
cast to several computers that each save a different camera’s video. Similarly, a
long-term tracking experiment could be monitored remotely by running the user
interface from a second computer. Composing the system with these discrete
pieces makes these different combinations trivial, instead of having to explicitly

7



Figure 6: For a static scene, we sweep through liquid lens settings and take
5 images at each setting, computing the sharpness for each. The dot coloring
corresponds to the order of images at each setting. The order of data points is
Red, Green, Blue, Cyan, Magenta, and the data points are taking approximately
30 ms apart (30 Hz). Clearly the liquid lens adjust delay is on the order of tens
of ms. In monotonic sweeps like this, the shape of the data would end up being
more or less correct anyway. But it limits the speed at which we can change the
setting back and forth. For example, trying to set the liquid lens to 80 - 85 - 70
may result in the third image being captured closer to a setting of 80 than 70.

design for them ahead of time in a monolithic application.
Our message passing interface of choice, ZeroMQ, is a general purpose high

performance message marshalling library. It uses TCP or IPC as its transport
protocol, although IPC is only supported on Linux. Apparently the TCP stack
on Windows is smart enough to optimize sending data over TCP to the loopback
address and doesn’t actually incur the usual TCP overhead, but I have not
confirmed this. UDP would be a more appropriate protocol for a lot of the
image data we are sending, but unfortunately is not supported. On a single
computer the difference does not seem to be too great, but problems may arise
over a more complicated network topology (and almost certainly video problems
would arise trying to stream the full-rate video feed over the internet). ZeroMQ

8



is similar to LCM, but simpler and less fully-featured, which was an appropriate
tradeoff for this project.

Figure 7 outlines the structure of the system. One set of processes interfaces
directly with the hardware. This abstracts away device-specific problems like
camera drivers and other interfaces specific to different hardware. A second set
of processes uses the interfaces provided by the hardware nodes to display infor-
mation to the user and automatically track the target. A final set of processes
saves the science products generated from the first two sets, such as logging
video from the cameras and state estimate of the target.

Figure 7: Flow diagram describing the software architecture. Some nodes inter-
face with the hardware, passing images or stage position to the user interface
and tracking layer. The target position estimation from this second stage and
images from the hardware interfaces are saved by a final set of nodes.

5 Results

Figure 8 shows the finished tracking system and a tank used for testing. It was
tested first with a set of rigid test objects (like the red plastic target in Figure
9 and later with several Ctenophores. Figure 10 shows that the multi-scale
tracking system successfully follows a Ctenophore as it swims from the bottom
to top of the test tank. The tracking process in Figure 10 was only tracking two
dimensions (it assumed a fixed depth). Estimating depth from focus proved to
be to unreliable for automatic depth estimation. The soft features of the animal
and presence of other texture in the tank (e.g. bubbles on the walls, edges of
the tank) made the animal’s sharpness signal weaker and difficult to reliably

9



detect. This challenge, combined with the speed limitations of the liquid lens
adjustments made automatically-controlled depth tracking infeasible.

After preliminary validation of the system in the lab, we tested its perfor-
mance during a research cruise on the Western Flyer. Unfortunately, it did not
perform as well as hoped at sea. Relying on intensity thresholding for animal
detection proved to be too brittle. It was not possible to maintain illumination
and background coloring consistently enough for robust thresholding. The large
amount of light transmission through the tank’s walls significantly contributed
to this problem. Even in the best-case scenario where we can ensure consis-
tent illumination and background, Figure 10 demonstrates that the process of
masking out the bright sides of the tank limits tracking in a large proportion
of the tank’s volume. The flexibility of the system’s modular design aided the
tuning and troubleshooting process as we attempted to improve performance, so
although the animal detection portion of the system does not work well enough
we were able to validate the overall architecture.

Figure 8: Finished system construction.

10



Figure 9: Closer view of the two cameras and their moving stages. The liquid
lens spotter camera is on the left and the macro lens science camera is on the
right.

11



Figure 10: Successful multiscale tracking of a Ctenophore.

12



Figure 11: The problem with masking off the sides of the tank to enable
thresholding-based detection.

13



6 Future Improvements

The tracking system’s current issues stem from animal detection reliability and
difficulty in depth estimation. The simplest solution to animal detection is to
fix the spotter camera. A stationary spotter camera allows us to implement
(dynamic) background subtraction before thresholding, greatly improving ro-
bustness to varying lighting and background conditions. Fixing the camera
slightly limits the extensibility of the system, as it imposes the restriction that
the tank must be small enough to be entirely seen by the camera from a single
point of view. This could be mitigated in the future by adding multiple fixed
spotter cameras if necessary.

Depth estimation can be solved by adding a second spotter camera and
directly estimating 3D target position from camera geometry instead of sharp-
ness. This process is much easier and more robust, at the expense of requiring
an additional camera. In most cases, this tradeoff is worth the trouble.

Changing the system design to have a multiple fixed cameras and a moving
science camera requires an extrinsic calibration step. When the spotter camera
moves with the science camera, determining their relative offset is quite easy.
With several cameras mounted in different directions, the calibration process be-
comes more cumbersome. During the system’s testing on the Flyer cruise, the
multiple, fixed spotter solution was tested, and we were able to validate that
thresholding with dynamic background subtraction proved to be an extremely
robust detection mechanism. We were also able to show that the target position
reconstruction from multiple camera views was very straightforward to imple-
ment. Unfortunately, the camera calibration process proved to be too difficult
with the time and resources available on the cruise. Despite these setbacks, we
are optimistic for the science output that the system will enable in the future
with just a few minor adjustments.

7 Acknowledgements

I would like to thank Kakani Katija for her mentorship this summer. I learned
a lot in the Bioinspiration Lab and her guidance on this project and the time
she took (out of her very busy schedule) was invaluable to my growth as a
scientist and engineering. I would also like to thank Paul Roberts for always
being there to bounce a crazy idea off of, and teaching me a great deal about
image processing. Joost Daniels provided a great deal of guidance on how to
design the system for ease of use in the field, and it never would have made it
onto the Flyer without his guidance in the development process. Denis Klimov
helped me with the lens selection process and provided valuable feedback early
in the development process. Finally, I would like to thank George Matsumoto
for organizing a very enriching intern program.

14



References

[1] Deepak Krishnamurthy, Hongquan Li, François Benoit du Rey, Pierre Cam-
bournac, Adam Larson, and Manu Prakash. Scale-free vertical tracking
microscopy: Towards bridging scales in biological oceanography. bioRxiv,
2019.

[2] Alexander Mathis, Pranav Mamidanna, Kevin M. Cury, Taiga Abe,
Venkatesh N. Murthy, Mackenzie Weygandt Mathis, and Matthias Bethge.
DeepLabCut: markerless pose estimation of user-defined body parts with
deep learning. Nature Neuroscience, 21(9):1281–1289, September 2018.

15


