Climate of the Present, Past, and Future

What we know, and how we know it

Ellie Broadman, Doctoral Candidate, School of Earth and Sustainability, NAU

About me

Today's topics

- 1: Intro to the climate system
- 2: Global warming and the greenhouse effect
- 3: Past climate and climate proxies
- 4: Future climate models and scenarios
- 5: Climate data

Part 1 What exactly *is* "climate" anyway?

Climate

Not weather!

Defined as weather averaged over a long period of time (often 30 yrs)

Weather: Day-to-day changes in temperature, precipitation, snow cover, and wind; highly variable

Climate zones

Atmosphere

- Thin!
- 10 km contains
 90% of mass
- Troposphere = where weather/ climate happens

Atmospheric Composition: Permanent Gases

Constituent	Formula	Percent by Volume	Molecular Weight
Nitrogen	N ₂	78.08	28.01
Oxygen	O ₂	20.95	32.00
Argon	Ar	0.93	39.95
Neon	Ne	0.002	20.18
Helium	He	0.0005	4.00
Krypton	Kr	0.0001	83.8
Xenon	Xe	0.00009	131.3
Hydrogen	H ₂	0.00005	2.02

TABLE 1-2 Permanent Gases of the Atmosphere

© 2010 Pearson Education, Inc.

2. Global warming

3. Past climate

4. Future climate 5. C

Transfer of heat energy

In the far north energy from the Sun is dispersed.

© 2009 Pearson Education, Inc.

General atmospheric circulation

Climate zones

Hydrosphere

← Surface currents (wind driven)

Deep currents (density driven)

Sea Ice

Ice Shelves (margin)

"places where water is in its solid form, frozen into ice or snow."

Link to NASA tour of cryosphere

http://www.youtube.com/watch?v=PjAXoETeVIc

Continental-scale ice sheets (Greenland and Antarctica)

- Cover 11% of Earth's land surface
- If all ice melted, sea level would be 70 m higher
- Thousands of kilometers wide; 1-4 km thick

Biosphere

= the zone of life on Earth"

Carbon

Lithosphere

- Land! 30% of earth
- Dark areas are forests and large lakes
- Lightest areas are deserts and ice
- **Albedo** = Surface reflectivity
- Snow & ice = 70-90% Forest = 5-20% Water = 5-10%

Part 2 What's the deal with global warming?

Electromagnetic radiation

1. Climate system 2. Global warming 3. Past climate 4. Future climate 5. Climate data

Greenhouse effect

Visible vs. infrared

- Visible energy radiated by the sun
- Infrared energy reradiated by the earth
- GHG's are transparent to different wavelengths...

https://www.youtube.com/watch? v=7perebgdXAQ

90

85

80

Heat enters freely but cannot escape : thermal energy builds up, temperature increases inside

Analogy for the trapping of outgoing longwave radiation by some gases, therefore dubbed "greenhouse" gases.

How do we end up with global warming?

Earth's energy balance

Earth's energy balance

Earth's energy balance

Natural vs. Anthropogenic

Water vapor is (currently) the largest contributor to the greenhouse effect

therefore, why are we even worrying about CO_2 ?

Ozone Methane + Nitrous oxide

Why don't we care about water vapor?

Why CO₂?

The long *residence time* of CO₂ coupled with its *anthropogenic sources* makes it the most important greenhouse gas

Where does the CO₂ come from?

Human influence on the carbon cycle

Gray arrows show flow of carbon caused by humans

- B = Deforestation
- $C = CO_2$ "fertilization"
- D = Ocean uptake

Annual cycle of atmospheric CO₂

1. Climate system 2. Global warming 3. Past climate 4. Future climate 5. Climate data

The Keeling Curve

https://www.youtube.com/watch?v=t0dXjmoA0dw

1. Climate system

2. Global warming

Temperatures through time and space

January 2016 temperature compared with normal From: http://data.giss.nasa.gov/gistemp/maps/

http://cci-reanalyzer.org/animations/scycle/World_ERAI_T2_scycle.gif

An *anomaly* is a departure from a reference value or long-term average

http://svs.gsfc.nasa.gov/vis/a000000/a003900/a003901/

1. Climate system 2. Global warming 3. Past climate 4. Future climate 5. Climate data

Globally averaged surface temperature

Records from four different sources all agree:

- temperature rose rapidly from 1910s to early 1940s
- stabilized (possibly cooled) from late 1940s to late 1970s
- rose abruptly since late 1970's

Independent Signs of Warming

Land Sfc Temp

Tropospheric Temp

Sea-surface temp Ocean Heat Content

Marine Air Temp Specific Humidity

Sea Level

Snow Cover

Arctic Sea Ice

Glacier Mass Balance

IPCC AR5 TS

"Global warming" is uneven

- Some areas are cooling
- More warming in the Arctic
- More warming over land

The Albedo feedback

Ice albedo: Positive feedback on climate

- Cooler climate = ↑ ice = ↑ albedo
- Higher albedo = ↑ cooling
- Initial change is reinforced, leading to great change

Part 3

What do we know about long-term, "natural" climate variability?

Paleoclimate: the long view

- What's "normal"?
- Are there natural long-term cycles?
- How does recent climate change compare with natural variability?
- What's the world like when it's warmer (analogs)?
- And: how do we know all of this?

How do we study paleoclimate?

- Proxy data from natural archives
 - Marine sediment cores
 - Lake sediment cores
 - Ice cores
 - Tree rings
 - Corals
 - Speleothems (stalagmites)
 - Evidence of glaciers/water level changes

Paleoceanography

living microorganisms record information about seawater composition when they form their shells

the science of past oceans

1. Climate system

3. Past climate

4. Future climate 5. Climate data

Isotopes

% Definition:

 avatars of one element that contain the same number of protons but a different number of neutrons

**** Two kinds:**

- Stable isotopes (stick around)
 - e.g. ¹³C, ¹⁸O, ²H
- ← Radiogenic isotopes (decay)
 - e.g. ¹⁴C, ⁸⁷Rb, ²³⁸U

Both are extremely useful in geology

Foraminifera

- Marine critters made of calcium carbonate (CaCO₃)
- Tell us most of what we know about past temperatures

2. Global warming

3. Past climate

Glacial periods

ESTIMATE OF PAST POLAR TEMPERATURE

Evidence of larger glaciers

1. Climate system 2. Global warming 3. Past climate 4. Future climate 5. Climate data

Indicators of Past Climate: Ice Cores (Greenland and Antarctica)

Lakes

Evidence of *regional* climatic changes

Go back ~10,000 years

Various biological and physical indicators of climate are preserved

1. Climate system

2. Global warming

3. Past climate

4. Future climate

5. Climate data

Pollen produced by vegetation is preserved in lake sediments that can be dated by radiocarbon (¹⁴C)

Trees

- Annual layers are best developed in mid-latitude and high-latitude regions that experience large seasonal changes
- Thickness of layers indicates growth conditions over decades to centuries
- Hurricanes, fires, and other events can be inferred from tree rings

Part 4 What about climate of the future?

So... what's going to happen?

To address this, we need to know about *climate models*

What is a climate model?

a mathematical representation of the climate system based on physical, biological and chemical principles

General circulation models

- Mathematical representations of main features of land, water, ice, atmosphere
- Models use equations for physical laws to control the circulation of the atmosphere
- For example: convection, conservation of mass and energy

Why do we trust climate models?

(a) Multi Model Mean Surface Temperature

(°C) -30 -24 -18 -12 -6 0 6 12 18 24 30

Model simulated temperature (1980-2005)

(b) Multi Model Mean Bias

Difference between simulated and observed temperature (1980-2005)

Why do we trust climate models?

(a) Multi Model Mean Precipitation

(b) Multi Model Mean Bias

Model simulated precipitation (1980-2005)

Difference between simulated and observed precipitation (1980-2005)

Emissions scenarios

- Projections of CO₂ emissions range from fossil-fuel intensive (business as usual) to drastic reductions
- Emissions will eventually decrease as fossil fuel reserves are consumed
- Sufficient reserves for continued growth well into the 22nd century

Emissions scenarios: RCP's

RCP = representative concentration pathways = plausible emissions trajectories based on different assumptions about society and technology

= approximate total radiative forcing by 2100 (Wm⁻²)

- PCP 8.5 = business as usual; nationalism; slow technological advancement
- RCP 6 = middle of the road; some effort to reduce emissions
- RCP 4.5 = emphasis on global solutions to sustainability
- RCP 2.6 = drastic reductions; peaking 2020 and negative after 2080

CO_2 concentration \rightarrow radiative forcing

• Uncertainty among climate models (light-colored areas) is less than the differences among scenarios (curves)

 Global average temperature is likely to rise by 1-2°C by the middle of this century; by 2-4 °C by the end of the century (relative to 1986-2005)

1. Climate system 2. Global warming 3. Past climate 4. Future climate 5. Climate data

Committed Warming

- The climate system does not equilibrate immediately after a climate forcing
- The large heat capacity of oceans causes a delay
- Even if GHG concentration stabilized, warming will continue
- Best estimates are another 0.5°C mean global temperature rise

Committed warming: Climate change that will happen in the future because of past emissions, regardless of changes in future emissions

Biggest uncertainties are different into the future:

- •Less than 20 years: internal climate variability (e.g., El Niño)
- •Multiple decades: confidence in climate projections (e.g., clouds and other feedbacks)
- •End of century and beyond: what people will do (emissions scenarios)

Climate Feedbacks

Part 5 Where can we find climate data?

Weather and climate data

1) earth

https://earth.nullschool.net/

2) NASA Climate

https://climate.nasa.gov/

3) Erb Weather

http://erbweather.com/

4) MesoWest

https://mesowest.utah.edu/

Paleoclimate data

5) NOAA Paleoclimate

https://www.ncdc.noaa.gov/data-access/ paleoclimatology-data

6) Neotoma Paleoecology Database

https://www.neotomadb.org/

7) LiPDVerse

https://www.lipdverse.org/
Diatom data

Diatoms of North America

https://diatoms.org/

... and counts!

Diatom data

Diatoms of North America

https://diatoms.org/

... and counts!

Ways to use data:

-species diversity

-planktic/benthic (higher lake level = more planktic)-morphologies

-and more!