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ABSTRACT 

By using an ROV based, low-altitude mapping system equipped with LiDAR, 

multibeam sonar, and a stereo photography system enables the collection of high-

resolution data in complex terrain. The vehicle developed at the Monterey Bay 

Aquarium Research Institute operates at a 3-meter altitude above the seafloor 

while traveling at speeds of 1 meter/second or less. The LiDAR system scans a 

90° field of view 40 times per second, each scan containing 1600 individual 

soundings with an 8mm footprint on the seafloor. The resulting 64,000 soundings 

per second produces 1cm resolution bathymetr. This high resolution means that 

even small errors in data alignment result in significant mapping artifacts. Past 

techniques for alignment did not account for angular error, and therefore are 

insufficient for the alignment of this high-resolution data. This paper explores the 

use of Iterative Closest Point as an algorithm to align the native 3-dimensional 

data using both translation and rotation – six degrees of freedom. 
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INTRODUCTION 

Low Altitude System Hardware 

The Monterey Bay Aquarium Research Institute (MBARI) has developed a low 

altitude mapping system that consists of LiDAR, multibeam sonar, and a stereo 

photography system. 

The LiDAR is a new system developed by 3D at Depth called the Wide Swath 

Subsea LiDAR (WiSSL). It consists of two laser heads each scanning a 50° field 

of view, overlapping by 5°. This results in a 90° field of view for the LiDAR 

system. Each laser footprint is 8mm and, achieves 1cm resolution when the 

vehicle is flying at 3 meters at less than 1 meter/second. The Sonar system is a 

400-kHz Reson 7125 multibeam sonar that collects a 135° swath with 5cm 

resolution. The stereo photography system consists of two GX1920 2.4 MPixel 

color cameras that provide an 80° field of view, illuminated by dual strobes. 

The estimated pose of the vehicle is provided by a Kearfott SeaDevil Inertial 

Navigation System (INS) and a 300kHz Teledyne RD Instruments Doppler 

Velocity Log (DVL). The offsets and rotations between the INS and the other 

sensors provide locations of each sensor allowing the projection of collected data 

into 3D space.  

Figure 1 shows an example of the data products produced by this system. The 

products shown are a 50m square survey of sponge ridge in Monterey Bay. 

Figure 1: Low Altitude Mapping Products – multibeam sonar, LiDAR, Photomosaic 
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Low Altitude Survey Data Representation 

Data collected from the LiDAR and sonar are represented in their native form as 

some combination of sensor location (offset from INS pose), time of flight to the 

bottom, and the angle of the specific beam or laser. The implementation of this for 

multibeam sonar very different from the LiDAR and the underlying 

implementation of both are beyond the scope of this paper. That raw data is used 

to create an unordered collection of points in space that represent the seal floor. 

Each point has a latitude, longitude, and depth to represent the location in space. 

Additionally, each point has a flag that indicates if it is a valid point. Invalid 

points can represent non-picked returns from sonar, noise, material in the water 

column, or other undesirable data. 

This point data for a given survey is divided into sections, each section containing 

some amount of points along a single ROV navigation path that is easy to deal 

with algorithmically. These sections overlap each other and must be aligned to 

account for uncertainty in the INS pose and error in the sensor to INS offsets.  

Figure 2: Example of two overlapping sections 
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Current Method of Data Alignment 

Traditionally the alignment between sections was done using a gridded cross-

correlation method. In this technique, each section is gridded, and each grid 

subdivision receives an X, Y, and Z value that is representative of all the points 

contained in that grid. The gridded representation of each section in a crossing are 

then superimposed on each other, and the difference between these representative 

values calculated in the X, Y, and Z direction, the difference between these values 

for various amounts of translation in each direction along the three axes. This 

gridding technique takes the native 3D bathymetry data and forces it into a 2D 

representation instead of working with the raw 3D data. Furthermore, it is only 

able to consider alignments using translation ignoring any potential angular error 

in the data. 

Given the lack of angular adjustments in the gridded cross-correlation method, 

small errors in alignment have always been present in the data. These errors were 

not large enough to cause any issues with the 5cm scale multibeam sonar data, but 

in the 1cm LiDAR data misalignment of even a few millimeters can cause 

artifacts in the data. In Figure 3 the artifacts caused by data misalignment can be 

seen in the LiDAR data (on the right). The dark smudges parallel to the survey 

Figure 3: LiDAR misalignment artifacts compared to multibeam sonar 
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path, and the tearing perpendicular to the path are caused by the poor alignment. It 

is important to note that the same errors exist in the sonar data (on the left) but 

cannot be seen due to the lower data resolution. 

Ideally, the alignment of data would be performed with an algorithm that uses the 

real 3D data and considers not only linear translation but also angular rotation 

when finding a best fit solution. 

MATERIALS AND METHODS 

The goal of this project was to align two overlapping sections of survey data. 

Each pair of sections with an overlap can then be aligned, and the transformation 

to get a good alignment saved. An overall solution can then be found using all the 

transformations from a given mission. 

In each pair of sections there is a section that will stay static, and a section that 

will move to align with the static section. The static section is the target section, 

and the section that moves is the source section. 

3D Alignment Algorithms 

There are many algorithms for aligning point clouds, and much work has been 

done in the field of robotics with the aim of producing point clouds for use in 

Simultaneous Localization And Mapping (SLAM)[1]. The most popular and 

efficient is called the Iterative Closest Point (ICP) algorithm [2]. Given a rough 

alignment of the source and target clouds, ICP performs fine alignment by 

iteratively transforming the source cloud to minimize the sum of the squared 

distance between corresponding points in the two clouds. 

There are many versions of ICP with varying effectiveness and efficiency on 

various types of point cloud data[3], but the most basic point-to-point ICP 

algorithm was chosen for the bathymetry data. The point-to-point method was 

chosen because it required the least amount of data translation, and its generic 

nature leads to good results without extensive testing.  
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3D Data Representation 

Both the sonar and the LiDAR produce data that is a collection of points in 3D 

space. Normally this data is called a point cloud, and the first challenge was to get 

the MB-System data into a point cloud representation. Implementing a translation 

between the native MB-System format and a more standard point cloud format 

allowed the use of a wide array of open-source algorithms for working on point 

clouds.  

Seafloor survey data is collected from a moving platform with positional data 

completely reliant on the INS. The raw soundings need to be transformed from a 

measure of angle and distance into a latitude, longitude, and depth based on the 

pose of the survey vehicle and the sensor offsets. Fortunately, MB-System already 

contained the code to perform these calculations. The existing code was used to 

take the raw survey data and create a vector of points with coordinates in latitude, 

longitude, and meters of depth. 

Next, the point clouds were created from these vectors but in a local cartesian 

reference frame. This reference frame was created using the software library 

PROJ4 [4], transforming the lat-long coordinates for each point into a Cartesian 

coordinate system with the origin located on the center sensor location of the 

source section. 

Figure 4: Source and Target points clouds in a local cartesian reference frame 
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Rough Alignment 

Once the data is loaded into source and target point clouds, with coordinates in a 

local Cartesian reference frame, the first step is to get a rough alignment. Since 

the ICP algorithm finds the local minima of fitness, the two sections must be 

“close” to start. The definition of close depends on the data, but generally, the 

alignment must be closer to the true solution than any possible false solution. 

There are many ways to do this using the point cloud data, but since we already 

have a translation alignment from the gridded cross-correlation method associated 

with every crossing, that was used instead. MB-System stores the translations as a 

movement in meters along the X, Y, and Z axis. Since these axes are preserved 

between the world reference frame and the local frame, these translations are 

combined into a homogeneous transformation matrix (4x4 affine matrix) and 

applied to the source section.  

Fine Alignment 

Once the rough alignment is applied to the source the translation matrix used is 

retained, and ICP is started. Several implementations of the basic point-to-point 

ICP were tested, and the Point Cloud Library (PCL) [5] implementation was 

chosen. PCL is an open source library that provides a suite of tools for working 

with 3D point data. Not only does it provide an ICP implementation, but it also 

provides a convenient point cloud class, search algorithms for finding points, 

geometric algorithms, and simple visualization routines. 

Since the PCL is open source and written in C++, the ICP implementation was 

inherited as the base of a custom alignment class. This allowed for the 

reimplementation of specific parts of the algorithm. The method of measuring 

fitness between the source and target sections was re-implemented, and several 

other methods were added to ease the interoperability between PCL and MB-

System. 

By default, the PCL implementation of ICP measures its fitness by using the sum 

of the square distances between every point in the target section and the nearest 

point in the source section. Since every crossing overlaps by a different amount, 
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this leads to a large amount of variation in fitness numbers that can not be 

compared between different crossings. A crossing with a large percentage overlap 

would have a very small fitness value, while a crossing with a small amount of 

overlap would have a large fitness value despite both being aligned correctly. To 

fit this issue, the distance was only measured between points that PCL had tagged 

as correspondence points, points that match between sections. This means that 

only points in the overlapping region are considered when calculating fitness. 

This gives a fitness value that can be compared between different datasets. These 

correspondence points are chosen by PCL initially based on distance; further 

filtering of correspondences is done by distance and enforcing a one-to-one 

relationship. 

The PCL is then allowed to iterate the ICP algorithm a certain number of times, or 

until the fitness falls below a certain threshold, or the difference between two 

successive transformations falls below a threshold. These three parameters are 

configurable on a per-project basis and by default are 50, 0.0001m2, and 0.001m 

respectively. Once any of these conditions are met the final transformation matrix 

is obtained by getting the ICP transformation matrix from PCL and multiplying it 

with the rough alignment matrix. 

Figure 5: Aligned sections with correspondences highlighted in green and red in the overlapping region. 
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The program then outputs the results as a single comma-separated line with the 

matrix, the transformation as both translation and Euler angle rotations, and some 

information such as some correspondence points used, and time spent in ICP. 

RESULTS 

This MB-System version of ICP using PCL was used to process two surveys. 

Both surveys consisted of several hundred crossings and were processed using 

eight threads on an eight-core x86 processor, with each crossing taking from 1 to 

120 seconds to process. The results were then analyzed using the R statistical 

software package. The distribution of fitness results before and after running ICP 

was plotted as a density plot. A density plot was also created to show the 

distribution of translation and rotation magnitudes required for alignment. Recall 

that fitness is the sum of the squared distance between corresponding points in the 

target and source sections 

The first was a survey in Santa Monica conducted from the R/V Rachel Carson 

using ROV Ventana on the 19th of May 2018. It consisted of 931 crossings, and 

there were known issues with alignment due to some hardware issues on the 

mapping sled. Using the gridded cross-correlation method only, the fitness of the 

crossings had a mean score of 0.025m2 with a standard deviation of 0.1. After 

running ICP, the mean score was 0.0013m2 with a standard deviation of 0.0019. 

Figure 6: Fitness distribution of the Santa Monica survey before (green) and after (blue) 
performing ICP algorithm 
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The second survey was conducted in Monterey Bay on an underwater feature 

named Sponge Ridge. The survey was conducted from the R/V Rachel Carson 

using ROV Ventana on the 26th of June 2018. This survey was smaller with only 

97 crossings, but the hardware problems in the system were corrected resulting in 

much better rough alignments. Using rough alignments, the mean fitness value 

was 0.00056m2 with a standard deviation of 0.00134. After running ICP, the mean 

score was 0.00027m2 with a standard deviation of 0.00029. 

 

It is also interesting to look at the distribution of adjustments made to obtain the 

correct alignment. The distribution of translations and rotations for the 97 

crossings in the sponge ridge survey can be seen in Figure 8. The mean is marked 

in green and the first standard deviation marked in red on each plot. As expected 

the majority of both the translation and rotation is on and around the X and Y axis 

(latitude and longitude). This is expected since INS drift will affect those 

directions most. Error in Z translation is dominated by the depth meter, and 

rotational error about the Z-axis is dominated by the compass heading. Both these 

sensors should be much more accurate over time than the other INS 

measurements. 

Figure 7: Fitness distribution of the Sponge Ridge survey before (green) and after (blue) performing 
ICP algorithm 
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Figure 8: Distribution of translation and rotation correction for crossing in the Sponge Ridge survey 

DISCUSSION AND FUTURE WORK 

MB-System is an open source and comprehensive ocean-floor mapping software 

suite that is maintained at MBARI. The eventual goal is to fully integrate the ICP 

algorithm into the MB-NavAdjust module that is responsible for aligning data and 

solving for a navigation solution. As the code currently exists, it can be called to 

perform ICP on a single crossing or to process an entire project, and the output on 

standard-out can be parsed for the alignment solution. Eventually, the code should 

be used as a library and called from within MB-NavAdjust and distributed with 

future versions of MB-System. 
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The alignments created using ICP are currently performed in the local reference 

frame, and the adjustments are described as translations and rotations about the 

local X, Y, and Z axes. These are roughly aligned with latitude and longitude, but 

not aligned with the axes of the sensors. Ideally, transformations would be 

produced using the sensor as the origin, with X/Y/Z rotations representing Roll, 

Pitch, and Yaw. Knowing the transformation from a frame where the origin is on 

the sensor in the source and also in the target section would lend to the calculation 

of sensor offsets and an overall navigation solution. 

CONCLUSIONS/RECOMMENDATIONS 

In the two surveys processed the mean fitness was cut roughly in half, and the 

standard deviation substantially reduced. This shows that the alignment of 

bathymetry data collected with the low-altitude mapping system can be improved 

by using point-cloud based algorithms which consider translation and rotation. It 

also serves as a starting point to integrate the PCL into the larger MB-System to 

allow direct analysis of the 3D data with six degrees of freedom instead of forcing 

the data into a gridded representation. With some additional work, the alignments 

obtained from ICP alignments could be used to solve for sensor offsets and a 

better navigation solution. 
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