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Introduction

Science-based marine conservation policies require an understanding of primary production rates in the
ocean [1]. Although coastal areas represent only 5-10% of global surface area, they are estimated to
contribute as much as 10-30% of global primary production [2]. Currently, no observation system exists
with the resolution, frequency, and cost-effectiveness required to understand coastal ecosystem
production processes. The Chemical Sensors Group at the Monterey Bay Aquarium Research Institute
(MBARI) in Moss Landing, CA has been developing a solution: The Coastal Profiling Float (CPF).

The CPF is an oceanographic instrument platform optimized for making subsurface measurements in
coastal areas (see Figure 1). The current prototype (#3) measures water column conductivity,
temperature, depth, pH, nitrate, oxygen, fluorescence, backscatter, and optical radiation levels. Figure 2
depicts a typical mission profile. There are five phases in each profile: descent, drift, park (or anchor),
ascent, and surface data transmission. The CPF ascends by pumping oil from an inner bladder (within its
pressure housing) into two external bladders (exposed to the water) on either side. As the external
bladders expand, they displace more water. As a result, the buoyant force increases and the CPF rises.
Conversely, the CPF descends by pumping oil back into its inner bladder. The CPFs are designed with a
battery life of 2-3 years and MBARI envisions each one completing (on average) six profiles per day.

There are two challenges unique to CPFs that must be addressed. First, surface currents may push the
float onto shore. Second, the CPF will operate in relatively shallow areas (up to 500 meters in depth)
where there is a risk of unintentionally hitting the seafloor. Both challenges motivate the need for depth
control. To counteract surface drift, the CPF must descend to and maintain a depth where seaward
currents dominate. To avoid striking the seafloor, the depth control system must have minimal overshoot.
On top of these challenges, the limited battery life of the CPF necessitates the use of a low-energy pump
with a relatively small displacement and slow top pumping speed. Consequently, the depth control system
must also be energy efficient and respect pump speed constraints.

The author designed and simulated a depth control system for the CPF as part of his 2018 summer
internship with MBARI. What follows is an explanation of the design process and the theoretical results.
Section 1 presents the mathematical model of the CPF. Section 2 details the design of a discrete time, dual
lead compensator. Lastly, Section 3 describes why and how a reference governor was augmented to the
control system. It is the author’s hope that this work will help MBARI move the CPF project from the
development and prototyping phase into science data acquisition and nominal operations.



Biogeochemical Sensors

Electronics

Inner Oil Bladder (full) \

Outer Oil Bladder (empty)

Hydraulic Pump

Figure 1: The Coastal Profiling Float (Prototype 3)
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Figure 2: A Typical Mission Profile



Acronyms

CPF | Coastal Profiling Float NLTI | Non-Linear Time-Invariant
ODE | Ordinary Differential Equation SISO | Single Input, Single Output
LTI Linear Time-Invariant CH C-Sharp (programming language)
Constants
Term Definition Value Units
p Density of Sea Water 1025 kg/m3
g Gravitational Acceleration 9.807 m/s?
A Frontal Area 0.0324 m?
Co Drag Coefficient (3-dimesional) 0.9 -
m Mass = CPF Mass + Virtual Mass 47.5 kg
€ Estimated Pump Efficiency 0.6 -
6 Pump Displacement 1.56e-7 | m*/rev
Variables
Term Definition Units
Fs Buoyant Force N
Fw Weight Force N
Fo Drag Force N
AV Change in Volume of the External Bladders m3
d Depth m
d Velocity m/s
d Acceleration m/s?
w Pump Speed rev/s
x(t) State Vector -
u(t) Plant Input (a.k.a. the control signal) rev/s
y(t) Plant Output m
A State Matrix -
B Input Matrix -
C Output Matrix -
D Feedforward Matrix -
s Laplace Operator -
In n-dimensional Identity Matrix -
P(s) Continuous-Time Plant Transfer Function -
C(s) Continuous-Time Controller Transfer Function -
C(z2) Discrete-Time Controller Transfer Function -
di(t) Plant Input Disturbance rev/s
do(t) Plant Output (Depth) Disturbance m
n(t) Sensor Noise -




Section 1: The CPF Model

Non-Linear ODEs

Fo The CPF was modelled as a point mass with purely vertical motion.

Descending motion was given a positive sign because pressure increases

Fo with depth. 1 decibar of pressure was assumed to equal 1 m of depth.
+d Three forces were modelled: buoyancy (Fg), weight (Fw), and drag (Fp).
Fw The buoyant force can be thought of as being comprised of a constant

term and a variable term.
Figure 3: CPF Free Body Diagram

FB = FBconstant + FBvariable (2)

By assuming the constant term is equal to the weight of the CPF, the force model simplifies to:

F= —Fg .. —Fp (3)

where
Buariabte — P94V (4)
Fp = %pACDdZ (5)

AV denotes the change in volume of the CPF’s external bladders away from the volume necessary for
neutral buoyancy. In other words, if AV =0, the CPF is neutrally buoyant. If AV >0, the CPF will ascend and
if AV < 0, the CPF will descend. Let d denote depth, d denote velocity, and d denote acceleration. Then,
per Newton’s 2™ Law (SF = md):

—pgAv — %pACDdZ =md (6)
The mass includes an additional virtual mass factor of 25%. Solving equation (6) for d yields:
d= l(—lpACDdz - pgAV) (7)
m\ 2
The rate of change of the volume of the CPF’s external bladders (denoted as AV) is given by:
AV = 8w (8)

where € denotes estimated pump efficiency, § is pump displacement, and w is the pump speed.

Together, the non-linear, ordinary differential equation (ODE) (7) and the linear ODE (8) relate the plant
input (pump speed) to the plant output (a change in depth).
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Linearization

To take advantage of linear control design and analysis strategies, the model must linearized. Define the
state vector x(t) and the input u(t) as:

x1(t) d(t)
x(t) = |20 = | d@® u(t) = w(t) (9) - (10)
x3(t) AV (t)

The CPF model was linearized about an equilibrium point (xeq, Ueq) at which equations (7) and (8) equal
zero. This occurs at any depth when the CPF is motionless, neutrally buoyant, and with zero pump speed.
Restated equivalently, this occurs when d = AV = w = 0. Without loss of generality, the equilibrium
depth deq was simply chosen as zero. Define deviations about the equilibrium point as:

0x =X — Xeq (11)
SU = U — Uy (12)

By performing a Taylor Series expansion about (Xeq, Ueq) and discarding the non-linear terms (greater
than first order), the following LTI state space model is obtained:

6x(t) = Adx(t) + Béu(t) (13)
where A and B are Jacobian matrices:
Ofi Ofi Of o]
dx; 0x, 0Jx; ou
af, 0f, 0f; afs
A=|— — — B=|—== 14) — (15
axl axz ax3 au ( ) ( )
_axl axZ axZ_ 'au'

where f1= d, f, = Equation (7), and fs = Equation (8).

This linearization was performed in the cpf_depth_control.m MATLAB file (see Appendix) with the
author-defined “symLin” function and verified by a hand derivation.

Going forward, the delta (8) notation is dropped for simplicity, but the reader is asked to remember that
any state or input value is relative to Xeq = [deq 0 0]" and ueq = 0.



State Space Model

The linearization yielded the following LTI SISO state space model:

x(t) = Ax(t) + Bu(t) (16)
y(t) = Cx(t) + Du(t) (17)
where
0 1 0 0
A=10 0 —211.6], B = 0 ] C=[1 0 0], D=0 (18) — (21)
0 0 0 9.36* 1078

The A matrix is a triple integrator and is thus unstable. This makes sense because linearizing the CPF about
a motionless equilibrium point negates the stabilizing effect of drag. In other words, this linearized state
space model is unstable because drag is not modelled. This is important to note because a real-world test
or Simulink simulation of a stabilizing controller with non-linear drag included will have less overshoot
than that predicted by this model.

The standard Kalman Rank Condition tests were used to determine that the model is both controllable
and observable.

Transfer Function Model

The state space model can be converted into the following plant transfer function P(s):

—1.9808 « 107>

s3

P(s)=C(sls—A)"B+D = (22)

where s denotes the Laplace operator and Is is a 3x3 identity matrix. This conversion was implemented
in the cpf_depth_control.m MATLAB file (see Appendix) via the “zpk” (zero-pole-gain) command.



Section 2: The Controller

Performance Requirements
There were three performance requirements for this project:

1. No more than 25% overshoot for a 1 m step command.
2. 150 second max settling time to stay within 5% of a 1 m step command.
3. Per the oil pump manufacturer, pump speed magnitude must never exceed 50 rev/s.

Dual Lead Compensator Expected Performance & Limitations

The author was asked to develop a dual lead compensator based on the recommendation of Prof. Stephen
Rock at Stanford University. Lead compensators have the benefit of being relatively easy to implement in
code, but they may not be robust against model parameter uncertainty due to their lack of integral
control. Additionally, they do not explicitly factor in constraints. A dual lead compensator has the
following format:

k(s +2)(s + 23)
‘O G G @3)

where k denotes the gain, z; denotes a zero, pi denotes a pole, and z; < p.

Figure 4 shows the architecture of the feedback system. This deterministic analysis accounted for the
presence of plant input disturbances di(t) and plant output disturbances do(t), but not sensor noise n(t).

d(®) do(t)
r(t) e(t) u(t) v(t)
C(s) —» P(s) —» y()
'@
n(t)
Figure 4: Feedback System Block Diagram. Image Source: [3]
Define the open loop transfer function as:
L(s) = P(s)C(s) (24)



When dealing with a SISO LTI system, there are four closed loop transfer functions that must be stable.

1.

The Plant Output Disturbance Sensitivity Function, S(s)

1

O

(25)

This describes the effect of a depth disturbance (e.g. obstacles, internal waves), denoted in
Figure 4 as do(t), on the depth of the CPF. The controller should completely reject these.

The Command and Noise Complementary Sensitivity Function, T(s)

L(s)

"=

=1-S5() (26)

This describes how the CPF’s depth responds to a reference command. However, this also
describes how the CPF’s depth responds to pressure sensor noise. Note that good reference
command tracking performance implies vulnerability to noise.

The Control Signal Sensitivity Function, CS(s)
CS(s) =C(s)*S(s) (27)

This describes how the pump speed signal, u(t), responds to reference commands, output
disturbances, and noise. The magnitude of its output must never exceed 50 revs/s.

The Plant Input Disturbance Sensitivity Function, SP(s)
SP(s) = 5(s) = P(s) (28)
This describes the effect of an input disturbance (e.g. electrical noise), denoted in Figure 4 as

di(t), on the depth of the CPF. The CPF is unlikely to experience this type of disturbance. Thus,
this transfer function need only be stable (asymptotic stability is not required).

Since L(s) contains three integrators, it is a “Type 3” system. Some key insights can now be made about
the theoretical performance and limitations of this feedback system.

1.

2.

3.

4,

The step response of T(s) will have zero steady state error.
See [3], Theorem 1.9 on page 34 for proof. Assumes the system remains close to linear.

The step response of T(s) must necessarily exhibit overshoot.
See [3], Theorem 6.3 (a) on page 188-189 for proof.

The step response of S(s) will have a steady state value of zero (desirable).
See [3], Corollary 1.10 on page 35. Assumes the system remains close to linear.

The step response of SP(s) will have a non-zero steady state value (undesirable).
See [3], Theorem 1.11 on page 35 for proof. This can be fixed by adding an integrator to C(s).
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5. The magnitude of S(s) must necessarily be greater than 1 over some frequency interval.
See [3], Theorem 6.15 on page 206. This means that depth disturbances over some frequency
interval will be amplified. The peak of S(s) must be kept acceptably small. This also implies that
the Nyquist plot must necessarily penetrate the unit circle centered at the critical point (-1,0).

With the performance expectations and limitations in mind, the following controller was designed:

—45(s + 0.015)(s + 0.001)

C(s) = (s 4+ 0.17)(s + 0.15)

(29)

LTI Continuous-Time Simulation

Figure 5 shows the unit step response of each of these transfer functions. The top left plot shows that the
150 second settling time specification is just barely violated, but the overshoot is unacceptable (40%). The
reader is reminded that overshoot will be reduced once drag is included in the simulation. The top right
plot confirms that the pump speed never exceeds * 50 revs/s. The bottom left plot demonstrates the
successful rejection of a 1 m depth disturbance. The bottom right plot shows that a 1 rev/s bias in pump
speed is NOT rejected and can seriously affect depth in the long term. However, this disturbance is unlikely
to occur and was deemed not concerning. The main takeaways here are that all four transfer functions
are indeed stable and performance expectations #1-4 were observed.

Command and Noise Response, T(s) Control Signal Response, CS(s)

155 20
o
@
T ! =
< 3
s 2

005 h=20
=

=

-40

0 ‘ | ‘ | ‘ |
0 50 100 150 200 250 300 350 0 20 40 60 80 100 120 140
Time (seconds) Time (seconds)
Output Disturbance Rejection, S(s) Input Disturbance Rejection, SP(s)

-10
E 0.5 E

= < -20
Qo Q.
[ [0
a o a

\/ <0

e ‘ o : e : ‘
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Figure 5: Unit Step Responses of the Four Closed Loop Transfer Functions (drag not simulated)



NLTI Continuous-Time Simulation

A Simulink model (cpf_model_continuous_controller.slx) was created to simulate system performance
with non-linear (quadratic) drag. The block diagram can be found in the Appendix. A comparison of the
command unit step responses and pump speeds is provided below in Figure 6. Observe, the overshoot
and settling time requirements are now satisfied while the pump speed commands are nearly identical.

Depth
SN /A 202020 | 2| preoeessonmmonhr s omemommn e ey
i)
)
E
= —No Drag H
With Drag
-------- 25% Overshoot Req.
/ = = 150 s Settling Time Regq.
0 \ \ \ | | T
0 50 100 150 200 250 300 350
o Pump Speed
\ \ T
0 N

-10
o
2 20 3
g

-30 .

-40 ——No Drag H

With Drag
50 ‘ \ \ \ \ | |
0 50 100 150 200 250 300 350
Time [s]

Figure 6: Comparison of Responses With and Without Drag Simulated
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NLTI Discrete-Time Analysis

Discretization

The CPF measures water pressure once every 3 seconds. Due to this fact, the performance and stability
of a discretized version of the controller needed to be verified. The discretization was done via the

MATLAB c2d command with the “matched” method. The discrete controller transfer function was:

U(z) —29.072z% + 56.78z — 27.71

C(z) = = 30
@D =55 22— 12382z + 0.3829 (30)
Equation (30) was converted into the following difference equation for implementation in C#.
Uk = —2907ek + 56.783k_1 - 27.71@k_2 + 1.238uk_1 - 0.3829uk_2 (31)
where:
® Ui is the next pump speed command e g(isthe current depth error
® U is the previous pump speed ® e isthe previous depth error
command (initially 0) (initially 0)
® Uy is the previous, previous pump e e isthe previous, previous depth error
speed command (initially 0) (initially 0)

Command Unit Step Response

A Simulink model (cpf_model_with_discrete_controller.sIx) was created to simulate system performance
with non-linear (quadratic) drag. The block diagram of the difference equation can be found in the
Appendix. A comparison of the command unit step responses and pump speeds is provided below in
Figure 7. Observe, the continuous and discrete cases are nearly identical.

Depth
1.5 B
o 1r / e
Q
© —Continuous
Eo5- / Discrete o
-------- 25% Overshoot Req.
= = 150 s Settling Time Req.
0 | | | | \ I
0 50 100 150 200 250 300 350
Pump Speed
20 ‘ P Sp ‘
o/ T ——
@
4 /
>
220 1 .
L —Continuous
Discrete
-40 | | | \ \ T
0 50 100 150 200 250 300 350
Time [s]

Figure 7: Continuous vs. Discrete Controller Responses
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Stability Margins

Figure 8 is a Bode plot of the discrete open loop transfer function L(z). Note that the system has a gain
margin of 13.7 dB at 0.113 rad/s and a phase margin of 36.8 deg at 0.036 rad/s.

Bode Diagram
Gm =13.7 dB (at 0.113 rad/s) , Pm = 36.8 deg (at 0.036 rad/s)

200

=

()]

=)
|

=
(=)
o

Magnitude (dB)
(6]
o
|

o

/

-100 : . |
90 [~ T T T

B-180 \
=
()
n
©
@ 270 - i

-360 — Ll | | | P ol . . . L

108 10°° 107 ol 1072 107" 10° 10"
Frequency (rad/s)
Figure 8: Bode Plot of the Discrete Open Loop Transfer Function, L(z)
On top of indicating closed loop stability, Nyquist Plot of L(z), Stability Radius = 0.56816
3 T T T

the Nyquist plot in Figure 9 can also be
used to determine the peak of S(z). The
stability radius, or the distance from the
critical point (-1,0) to the closest point on
the Nyquist plot, was 0.568. The peak
magnitude of S(z) is determined by the
inverse: 1/0.568 = 1.76. As predicted, the
Nyquist plot penetrates the unit circle
centered at (-1,0).

Imaginary Axis

-3 -2 -1 0 1 2 3
Real Axis
Figure 9: Nyquist Plot of L(z)
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Bode Plots of S(z) and T(z)

Figure 10 is a Bode plot of both discrete depth disturbance sensitivity S(z) and command sensitivity T(z).
S(z) amplifies depth disturbances between approx. 0.004 Hz and 0.05 Hz. This matches performance
expectation #5. Its peak is 1.76 (4.91 dB) at 0.008 Hz, which corroborates the Nyquist plot. T(z) has a
peak of 1.65 (4.34 dB) at 0.004 Hz. The peak of S(z) and T(z) are both relatively small, indicating
robustness against resonant frequencies.

Bode Plot of S(z) and T(z)

50 T T T T

Magnitude (dB)

180 - +

Phase (deg)
o

-180 -

1077 10°® 107 107 1073 102 107" 10°
Frequency (Hz)

Figure 10: Bode Plots of S(z) and T(z)
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Section 3: The Reference Governor

Motivation & Simulation

Although its external bladders can displace an ample amount of water for depth control, the CPF is heavily
constrained by the oil pump’s speed limitation (* 50 revs/s). To illustrate this point, Figure 11 compares
3-meter depth change simulations with and without the pump speed constraint included in the Simulink
model. Observe, not only does control saturation result in failure to meet performance requirements, the
CPF may even start heading in the opposite direction! This is unacceptable and motivates the use of a
reference governor.

Depth
o * R ——
2.5 T -
T e
e —
e
— 15 P =
) T
Q 1
eI~ =
g 1
= o5t - _
e
0 Foeemennnnnnntt® _
With Pump Speed Constraints
| | EEEE— L No Pump Speed Constraints
= = Ref. Command ‘
1 | |
0 50 100 150
Pump Speed
20— ‘
(| S e —_—_.—— I
20 Frene -
o i 1
) |
> 40— 1§ —
(0] [ |
T S I e e e T T T el e e
60 —i i -
-80 — With Pump Speed Constraints | |
N No Pump Speed Constraints
= = Lower Pump Speed Limit
-100 : !
0 50 100 150
Time [s]

Figure 11: Comparison of Responses With and Without Pump Speed Constraints

Using a reference governor to handle constraints is an add-on strategy which has the benefit of leaving
the dual lead compensator intact. Based on a recommendation from Prof. Rock, a reference governor was
created to ramp the reference signal fed to the control loop. It does this at a maximum rate of 1.2 meters
every 3 seconds. This rate was determined to be safe through trial and error. If the magnitude of the
difference between the desired depth and the governed reference depth drops below 1.2, then the
governed reference depth is simply set to the desired depth. In other words, if the desired depth is 4 m
and the starting depth is zero, then the governed reference depth will be 1.2 m after 3 seconds, 2.4 m
after 6 seconds, 3.6 m after 9 seconds, and 4.0 m after 12 seconds. A Simulink model
(cpf_model_with_discrete_controller_and_ref_gov.slx) was created to simulate system performance. The
block diagram can be found in the Appendix. A simulation of three large depth changes is presented in
Figure 12. Observe, the CPF is now capable of tracking these large step commands because the pump
speed does not saturate. Furthermore, the reference governor has removed the overshoot.
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Figure 12: Comparison of Responses With and Without the Reference Governor
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C++ Implementation

A C++ script was created to demonstrate how the depth controller and reference governor combination
can be implemented. It is available in the Appendix. The script was validated by exporting the actual
reference depth commands and simulated depth measurements from MATLAB to .txt files and feeding
them into the C++ script. The resulting pump speed commands were them saved to another .txt file. Figure
13 below compares the Simulink reference governor plus dual lead compensator to the C++ reference
governor plus dual lead compensator. Observe, the results are equivalent.

Reference Governor Comparison

30 = T
-------- Actual Reference Command
251 —— Simulink Governed Ref. Cmd. |
C++ Governed Ref. Cmd.
20 - B

[meters]
o
I

-
o O
—_L_ﬁ%

0 { ! \
0 500 1000 1500
50 Pump Speed Comparison
I
. — Simulink
| | C++
| ] |
| | !
—_ | 1 |
B | ! \
2 0 — B S — i B ——
2 f {
= j ]
| )
l
|
]
-50 | !
0 500 1000 1500
Time [s]

Figure 13: Simulink vs. C++ Controller Responses
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Suggested Future Work

Add Integral Control

There are two practical reasons for why this should be done. First, adding integral control would improve
robustness against model parameter uncertainty (e.g. the drag coefficient) by removing any steady state
error. Second, and more importantly, this will allow the CPF to reject large depth disturbances. Currently,
this control system can only reject depth disturbances if the pump speed does not saturate. If it saturates,
steady state error results. Figure 14 below illustrates this point. Att =50 s, a 1.7 m step disturbance is
introduced. Notice that the pump speed almost saturates (49.4 revs/s), but the disturbance is completely
rejected by t = 250 s. However, at t = 300 s, a 2 m step disturbance is introduced. The pump speed
saturates and fails to bring the CPF back to the reference depth. This can also happen with smaller
disturbances if the CPF is changing depth at the same time (i.e. when the depth error signal is not zero).

Depth
2 \ I i
——CPF Depth
I . S R I R AR . W R Reference Command | |
1.5
[N -
9
[}
E 05 i
0
05 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Pump Speed
60 p‘ P T I
__________________________ ——Pump Speed
= = Upper Pump Speed Limit
0
@
@ _
2
20 | | | | | | | | |
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Figure 14: Simulation Showing Failure to Reject Large Depth Disturbances

Design and Simulate a Pressure Sensor Noise Filter

The stochastic nature of the pressure sensor noise is a reality that needs to be handled before this depth
control system can go to sea. Median and/or moving average filters would likely provide the simplest fix.
More complex, but higher performance, solutions are the Kalman filter or the Savitsky-Golay filter. The
author recommends the use of a Kalman filter because it minimizes estimation error variance and would
open the door to more advanced control techniques such as the Linear Quadratic Regulator (LQR).
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Conclusion

The performance requirements for the depth control system of MBARI’s CPF are more demanding than
those of an open ocean float. Specifically, overshoot must be minimized to avoid striking the sea floor and
to take advantage of seaward currents. On top of this, the controller must not violate the oil pump’s
relatively-tight max speed constraint. To meet these specifications, a dual lead compensator with
reference governor control strategy was proposed, evaluated in MATLAB and Simulink, and finally tested
in C++. Although this code is ready to be ported to C# and implemented on the CPF, the author believes
that the addition of integral control and a pressure sensor noise filter are required before this system is
ready for the ocean. The CPF project stands to completely change the way we understand coastal
ecosystem processes, enabling us to make more effective policy decisions regarding marine resource
conservation. It is the hope of the author that this internship project helps MBARI move closer to achieving
that goal.

Acknowledgements

First, | would like to thank my mentor, Gene Massion, for opening the door to the world of ocean
engineering for me. Had Gene not encouraged me to pursue this bonus internship project, | would have
missed out on a fantastic and practical learning experience. Gene’s emphasis on a disciplined approach to
engineering is a lesson | take with me to future projects. Second, | would like to thank both Dr. George
Matsumoto and Linda Kuhnz for coordinating MBARI’s intern program. It is clear that they genuinely care
about the professional growth and well-being of the interns through their support every step of the way.
Third, | would like to thank all the MBARI staff, especially Eric Martin, Brian Kieft, and Carole Sakamoto. |
had a terrific time working in the Chemical Sensors Lab, in the LRAUV Lab, and on the R/V Paragon with
you all. Fourth, | would like to thank the David & Lucile Packard Foundation without whose generous
support none of this would have been possible. Last, but definitely not least, | would like to thank my
fellow 2018 summer interns. | am so proud of the fact that we completed everything on our list of summer
adventure plans and | can easily say that this was one of the best summers I've ever had. It was wonderful
getting to know you all and | do hope that we stay in touch.

18



References

[1] J. H. Ryther, “Photosynthesis and fish production in the sea”. Science, 166, pp. 72-76, 1969

[2] Benway, et. al. (Editors), “An interdisciplinary science plan for research in North American
continental margin systems.” Report of the Coastal CARbon Synthesis (CCARS) community
workshop, August 19-21, 2014, Ocean Carbon and Biogeochemistry Program and North
American Carbon Program, pp. 68, 2015

[3] J.S. Freudenberg, A First Graduate Course in Feedback Control. University of Michigan
Department of Electrical Engineering and Computer Science, EECS 565 Textbook, 2018.

[4] G. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems. Addison-
Wesley Publishing Company, 3™ Edition, 1994.

19



Appendix

A.1 MATLAB Script
A.2 Simulink Model
A.3 C++ Implementation

20



9/26/18 1:47 PM C:\Users\Brian\...\cpf depth control.m 1 of

11

O J o U bd W DN

O b o D D DD DR DWW W W WwWwwwwww NN MNdDNMdNNdN PR PR PR EREEREEREEREERE e
O W 00 J oy U W N EFEF O WOWwJOo Ul WNE O WOWwW-Jo Uld WDNRE O WOoJOo Ud WwWwhEFE O v

o°

AUTHOR : Brian Ha
MENTOR : Gene Massion
DATE CREATED : 2018-07-11
LAST REVISED : 2018-09-26

o0 o0 o° o o° oP

MBARI GROUP : Chemical Sensors Lab
PROJECT : Coastal Profiling Float (CPF) Depth Control
% Clean Up

close all
clear variables

clc
% Plot Formatting
yellow = [0.9290, 0.6940, 0.1250]; % Custom Plot Color Codes

axisLabelFontSize = 15;
titleFontSize = 17;
legendFontSize = 14;

o°

FHEAAAE AR A R R A R A R R A R A R R A

o°

Section 1: The CPF Model

o°

FHAF ARSI R A A A

o

5 Float Parameters

floatLength = 1.016; [m] This is equal to 40 in.

floatDiameter = 0.2032; % [m] This is equal to 8 in.
PlatformArea = (pi/4) * floatDiameter”2; % [m"2]. Cylinder frontal area.
PlatformMass = 38; % [kgl

VirtualMassFactor = 1.25; % Accounts for water being dragged
m = PlatformMass * VirtualMassFactor; % [kgl

o°

pumpDisplacement = 1.56e-7; [m"3/rev] Per Oildyne spec sheet

pumpEff = 0.6;

samplingPeriod = 3; % [s] New pressure meas. every 3 S

% Constraints

upperPumpSpeedLimit = 50; % [revs/s] This is equal to 3000 rpm.
lowerPumpSpeedLimit = -50; % [revs/s]
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51 % Assumptions

52 densitySW = 1025;
compressibility.

53 g = 9.807;

54 velFreeStream = 0.1;

55 kinematicViscosity = 13.60e-7;

o°

[kg/m"3] This is for seawater. Ignores ¥

[m/s”2] Gravitational acceleration.
[m/s] This is equal to 10 cm/s.
[m"2/s]. Taken from http://web.mit. ¥
edu/seawater/2017 MIT Seawater Property Tables r2a.pdf

56

57

58 % Estimation of drag coefficient range

o° o oP

59 Re = velFreeStream*floatDiameter/kinematicViscosity; % Just checking Reynolds ¥
Number. ..

60

61 % CdMin is interpolated below from the values (based on frontal area)

62 % given for a flat-faced cylinder on Table 7.3 (page 491) of Fluid

63 % Mechanics, 7th Ed. by Frank M. White. Copyright 2011. Available at

64 % https://hellcareers.files.wordpress.com/2016/01/fluid-mechanics-seventh-edition- ¥
by-frank-m-white.pdf.

65

66 CdMin = (0.99 - 0.87)/(8 - 4) * (floatLength/floatDiameter - 4) + 0.87;

67

68 CdMax = 1.5; % Taken from Laughlin Barker's paper (2014 MBARI intern).

69

70 Cd = CdMin; % User can set this to either CdMax or CdMin

71

72

73 % Equilibrium Point
74 x_eq = [0;0;0];
0;

75 u_eq

76

77 % Symbolic Linearization about Equilibrium (via Taylor Series Expansion)

78 [Aeq, Beq] = symLin(x eq, u_eq, densitySW, Cd, PlatformArea, g, m, ¥
pumpDisplacement, pumpEff) ;

79 C = [1 0 0];

80 D = 0;

81

82 disp ('CPF Model')

83 P = ss(Aeq, Beq, C, D)

84

85

86

87

88

89

90

91

92

93

94 % Kalman Controllability Test

95 disp ('KALMAN CONTROLLABILITY TEST')

{

Linearization about Equilibrium by hand calculation (for verification)
[0 1 0; 0 densitySwW*Cd*PlatformArea*x eq(2)/m -densitySW*g/m; 0 0 0];
[0; O0; pumpDisplacement*pumpEff];

o°  oe

W
Il

ss(A,B,C,D);

o° O
I
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96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

disp ([ 'Rank of Controllability Matrix = ', num2str(rank(ctrb(P)))])
disp('If rank = 3, system is fully controllable.')

disp(' ")

% Kalman Observability Test

disp ('KALMAN OBSERVABILITY TEST')

disp ([ 'Rank of Observability Matrix = ', num2str (rank (obsv(P)))])
disp('If rank = 3, system is fully observable.')
disp(' ")

o°

FHEAAAE AR A R R A R A R A R R R A

o

5 Section 2: The Controller

o°

FHAF AR A A A A A A A

o°

The Dual Lead Compensator

s = tf('s");

disp('Continuous Controller, C(s) = ")

C = -45*(s+0.015) *(s+0.001) / ((s+0.17)* (s+0.15));
zpk (C)

o°

Important Transfer Functions

L = tf(P)*C; % Open-Loop Transfer Function
S = minreal (1/(1 + L)); Plant Output Disturbance Sensitivity Function
T = minreal (1 - S); Command and Noise Sensitivity Function

CS = minreal (C*S);
SP = minreal (S*P) ;

Control Signal Sensitivity Function

o® o° o° o°

Plant Input Disturbance Sensivity Function

o°

o°
=
3
H
Q
O
Z
=)
H
2
a
o
a
0n
|
3
—
=
[al
n
—
=
@)
=
i
—
H
o
2

o°

o°

Unit Step Responses of the Four Closed Loop Transfer Functions

)

referenceCommandSize = 1; % [m]

figure (1)

opt = stepDataOptions( 'StepAmplitude', referenceCommandSize');
subplot(2,2,1)

step (T, opt)
[y, t] = step(T, opt);
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146 hold on
147 plot(0:5:150, 1.25*referenceCommandSize*ones(l, length([0:5:150])),

148 plot ([150:5:t(end)], 1.05*referenceCommandSize*ones(l, length([150:5:t(end)])), ¥

r--")

149 plot ([150:5:t(end)], 0.95*referenceCommandSize*ones(l, length([150:5:t(end)])), ¥

r--")

150 grid on

151 title('Command and Noise Response, T(s)', 'FontSize', titleFontSize)
152 xlabel('Time', 'FontSize', axisLabelFontSize)

153 ylabel ('Depth [m]', 'FontSize', axisLabelFontSize)

154

155

156 subplot(2,2,2)

157 step(CS, opt)

158 [y, t] = step(C*S);

159 hold on

160 plot(t, upperPumpSpeedLimit*ones(l, length(t)), 'r--")

161 plot(t, lowerPumpSpeedLimit*ones(l, length(t)), 'r--")

162 grid on

163 title('Control Signal Response, CS(s)', 'FontSize', titleFontSize)
164 xlabel('Time', 'FontSize', axisLabelFontSize)

165 ylabel ('Pump Speed [revs/s]', 'FontSize', axisLabelFontSize)
166

167

168 subplot(2,2,3)

169 step(S, opt)

170 grid on

171 title('Output Disturbance Rejection, S(s)', 'FontSize', titleFontSize)

172 xlabel ('Time', 'FontSize', axisLabelFontSize)

173 ylabel ('Depth [m]', 'FontSize', axisLabelFontSize)
174

175

176 subplot(2,2,4)

177 step(SP, opt)

178 grid on

179 title('Input Disturbance Rejection, SP(s)', 'FontSize', titleFontSize)

180 xlabel('Time', 'FontSize', axisLabelFontSize)

181 ylabel ('Depth [m]', 'FontSize', axisLabelFontSize)

182

183 set(findall (gcf, 'type', 'line'), 'linewidth',6 2)

184 set(findall (gcf, 'type', 'axes'), 'FontSize', axisLabelFontSize)
185

186

187

193 referenceCommandSize = 1; % [m]
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194 referenceCommandTime = 0;

195 outputDisturbanceSize = 0;
196 outputDisturbanceTime 0
197 tFinal = 350;

198

199

200 [depth 1ti, time 1ti] = step(T, tFinal);

201 [time ¢, ~, ~, depth ¢, ~, ctrl ¢, ~] = sim¥

('cpf model with continuous controller');

202

203 figure (2)

204 subplot(2,1,1)

205 plot(time 1ti, depth 1ti)

206 hold on

207 plot(time c, depth ¢, 'color', yellow)

208 plot(0:5:150, 1.25*referenceCommandSize*ones(l, length([0:5:150])), 'ri ")

209 plot(150:5:time c(end), l.05*referenceCommandSize*ones(l, length(150:5:time c ¥
(end))), 'r--")

210 plot(150:5:time c(end), 0.95*referenceCommandSize*ones(l, length(150:5:time c ¥
(end))), 'r--")

211 grid on

212 legend({ 'No Drag', 'With Drag', '25% Overshoot Reqg.', '150 s Settling Time Reqg.'}, ¥
'"location', 'southeast', 'FontSize', legendFontSize)

213 title('Depth', 'FontSize', titleFontSize)

’

o0 o0 o° oo

214 ylabel (' [meters]', 'FontSize', axisLabelFontSize)
215

216

217 [ctrl 1ti, time 1ti] = step(CS, tFinal);

218 subplot(2,1,2)

219 plot(time 1ti, ctrl 1ti);

220 hold on

221 plot(time ¢, ctrl ¢, 'color', yellow)

222 grid on

223 legend({ 'No Drag', 'With Drag'}, 'location', 'southeast', 'FontSize',K6 ¥
legendFontSize)

224 title('Pump Speed', 'FontSize', titleFontSize)

225 ylabel (' [revs/s]', 'FontSize', axisLabelFontSize)
226 xlabel ('Time [s]', 'FontSize', axisLabelFontSize)
227

228 set(findall (gcf, 'type', 'line'), 'linewidth',6 2)
229 set(findall (gcf, 'type', 'axes'), 'FontSize', axisLabelFontSize)
230

231

232

233 & ============= =================
234 NLTI, CONTINUOUS-TIME vs. DISCRETE-TIME COMPARISON
235 % ==================================================
236

237 % Discretization

238 disp('Discrete Controller, C(z) = ")

o\°

o\°
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239 Cz = c2d(C, samplingPeriod, 'matched')

240 Pz = c2d (P, samplingPeriod, 'zoh');

241 Lz = tf(Pz)*Cz; % Open-Loop Transfer Function

242 Sz = minreal (1/(1 + Lz)); % Plant Output Disturbance Sensitivity Function
243 Tz = minreal(l - Sz); % Command and Noise Sensitivity Function

244 CSz = minreal (Cz*Sz); % Control Signal Sensitivity Function

245 SPz = minreal (Sz*Pz); % Plant Input Disturbance Sensivity Function
246

247

248 % Simulation

249 referenceCommandSize2 = 0; % [m]

250 referenceCommandTime2 = 0; % [s]

251 referenceCommandSize3 = 0; % [m]

252 referenceCommandTime3 = 0; % [s]

253 [time 4, ~, ~, depth d, ~, ctrl d, ~, ~] = sim¥

('cpf model with discrete controller');

254

255

256 figure (3)

257 subplot(2,1,1)

258 plot(time c, depth c);

259 hold on

260 plot(time d, depth d, 'color', yellow)

261 plot(0:5:150, 1.25*referenceCommandSize*ones (1, length([0:5:150])), 'r:")
262 plot(150:5:time c(end), 1l.05*referenceCommandSize*ones(l, length(150:5:time c ¥
(end))), 'r--")

263 plot(150:5:time c(end), 0.95*referenceCommandSize*ones(l, length(150:5:time c ¥
(end))), 'r--")

264 legend({ 'Continuous', 'Discrete', '25% Overshoot Reqg.', '1l50 s Settling Timek¥
Reg.'}, 'location', 'southeast', 'FontSize', legendFontSize)

265 grid on

266 ylabel (' [meters]', 'FontSize', axisLabelFontSize)

267 title('Depth', 'FontSize', titleFontSize)

268

269

270 subplot(2,1,2)

271 plot(time ¢, ctrl c);

272 hold on

273 stairs(time d, ctrl d, 'linewidth', 2, 'color',6 yellow)

274 legend({ 'Continuous', 'Discrete'}, 'location', 'southeast', 'FontSize',K6 ¥
legendFontSize)

275 grid on

276 title('Pump Speed', 'FontSize', titleFontSize)

277 xlabel('Time [s]', 'FontSize', axisLabelFontSize)

278 ylabel (' [revs/s]', 'FontSize', axisLabelFontSize)

279

280 set(findall (gcf, 'type', 'line'), 'linewidth', 2)

281 set(findall (gcf, 'type', 'axes'), 'FontSize', axisLabelFontSize)

282

283

[}

% Bode Plot of the Open Loop Transfer Function, L (z)
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284 figure (4)

285 margin (Lz)

286 grid on

287 set(findall (gcf, 'type', 'line'), 'linewidth',6 2)

288 set (findall (gcf, 'type', 'axes'), 'FontSize', axisLabelFontSize)
289

290

291 % Nyquist Plot of the Open Loop Transfer Function, L(z)

292 figure (5)

293 nyquist (Lz)

294

295 % Draw a black unit circle

296 circle = -1+ (-s+1)/(s+1);

297 omegac = logspace(-3,3,400);

298 [reC,imC] = nyquist(circle,omegac);
299 reC = squeeze (reC);

300 imC = squeeze (imC) ;

301 hold on

302 plot(reC,imC, 'k-"',reC,-imC, "k-")
303
304 %
305 % centered at the critical point that is avoided by the Nyquist plot
306 [mag,~] = bode(Sz);

307 mag = squeeze (mag) ;

308 stab_rad = 1/max(mag);

309

310 axis([-3 3 -3 3])

311 axis('equal')

312 set(findall (gcf, 'type', 'line'), 'linewidth',6 2)

313 set(findall (gcf, 'type', 'axes'), 'FontSize', axisLabelFontSize)

calculate stability radius as the radius of the circle

314 title(['Nyquist Plot of L(z), Stability Radius = ', num2str(stab rad)], 'FontSize',6 ¥
titleFontSize)

315

316

317 % Bode Plot of S(z) and T(z)

318 figure (6)

319 options = bodeoptions( 'cstprefs');
320 options.FreqUnits = 'Hz';

321 options.Xlabel.FontSize
322 options.Ylabel.FontSize
323 %options.MagUnits = 'abs';

324 bode (Sz, options)

325 hold on

326 bode (Tz, options)

327 grid on

328 title('Bode Plot of S(z) and T(z)', 'FontSize', titleFontSize)
329 legend({'S(z)', 'T(z)'}, 'FontSize', legendFontSize)

330

331 set(findall (gcf, 'type', 'line'), 'linewidth', 2)

332 set(findall (gcf, 'type', 'axes'), 'FontSize', axisLabelFontSize)

axisLabelFontSize;

axisLabelFontSize;
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333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

o°

SRR R i

% Section 3: The Reference Governor

o°

SRR R R i

o°

Simulation Demonstrating Ability to Track Large Reference Commands

startingDepth = 0; S [m]
referenceCommandSize = 10; S [m]
referenceCommandTime = 1; % [s]
referenceCommandSize2 = 20; S [m]
referenceCommandTime?2 = 400; $ [s]
referenceCommandSize3 = -25; % [m]
referenceCommandTime3 = 900; % [s]
outputDisturbanceSize = 0; % [m]
outputDisturbanceTime = 0;

outputDisturbanceSize2 = 0; % [m]
outputDisturbanceTime2 = 0;

tFinal = 1500; % [s]
maxSetPointIncrement = 0.40; S [m]
maxSetPointDecrement = -1l*maxSetPointIncrement; % [m]
[time d, ~, ref d, depth d, vel d, ctrl d, delta vol d, error d] = sim ¥

('cpf model with discrete controller');

358

[time gov, ~, ref, ref gov, depth gov, vel gov, ctrl gov, delta vol gov, ¥

governed error] = sim('cpf model with discrete controller and ref gov');

359
360
361
362
363
364
365
366
367

figure (7)

subplot(3,1,1)

plot (time d, ref d, 'k:'")

hold on

plot (time d, depth d)

plot (time gov, depth gov, 'color', yellow)

legend ({ 'True Ref. Depth', 'No Ref. Gov.', 'With Ref. Gov.'}, 'location', ¥

'southeast', 'FontSize', legendFontSize)

368
369
370
371
372
373
374
375
376
377

grid on
title('Depth', 'FontSize', titleFontSize)
ylabel (' [meters]', 'FontSize', axisLabelFontSize)

subplot (3,1,2)

plot (time d, ref d)

hold on

stairs (time gov, ref gov, 'color', yellow, 'linewidth', 2)

legend ({ 'No Ref. Gov.', 'With Ref. Gov.'}, 'location', 'northeast', 'FontSize', ¥

legendFontSize)

378

grid on
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379
380
381
382
383
384
385
386
387

title('Reference Command', 'FontSize', titleFontSize)

ylabel (' [meters]', 'FontSize', axisLabelFontSize)

subplot (3,1, 3)

stairs(time d, ctrl d, 'linewidth', 2)

hold on

stairs (time gov, ctrl gov, 'color', yellow, 'linewidth',6 2)

legend ({'No Ref. Gov.', 'With Ref. Gov.'}, 'location', 'northeast',

legendFontSize)

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

grid on
title('Pump Speed', 'FontSize', titleFontSize)
xlabel ('Time [s]', 'FontSize', axisLabelFontSize)

ylabel ('[revs/s]', 'FontSize', axisLabelFontSize)

set (findall (gcf, 'type', 'line'), 'linewidth',6 2)
set (findall (gcf, 'type', 'axes'), 'FontSize', axisLabelFontSize)

figure (8)

subplot(3,1,1)

plot (time d, vel d)

hold on

plot (time gov, vel gov, 'color', yellow)

legend ({ 'No Ref. Gov.', 'With Ref. Gov.'}, 'location', 'northeast',

legendFontSize)

404
405
4006
407
408
409
410
411
412
413
414
415

grid on

ylabel (' [meters/s]', 'FontSize', axisLabelFontSize)
title('Velocity', 'FontSize', titleFontSize)

subplot(3,1,2)

plot (time d, delta vol d)

hold on

plot (time gov, delta vol gov, 'color', yellow)
grid on

ylabel (' [meters”3]', 'FontSize', axisLabelFontSize)

legend ({ 'No Ref. Gov.', 'With Ref. Gov.'}, 'location', 'northeast',

legendFontSize)

416
417
418
419
420
421
422
423
424
425

title('Delta Volume', 'FontSize', titleFontSize)

subplot (3,1, 3)

plot (time d, error d)

hold on

plot (time gov, governed error, 'color', yellow)
grid on

xlabel ('Time [s]', 'FontSize', axisLabelFontSize)

ylabel (' [meters]', 'FontSize', axisLabelFontSize)

'FontSize', K

'FontSize', ¥

'FontSize', ¥
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426 legend({ 'No Ref. Gov.', 'With Ref. Gov.'}, 'location', 'northeast', 'FontSize', ¥

legendFontSize)
427 title('Depth Error Signal', 'FontSize', titleFontSize)
428

429 set(findall (gcf, 'type', 'line'), 'linewidth',6 2)

430 set(findall (gcf, 'type', 'axes'), 'FontSize', axisLabelFontSize)
431

432

433 % Simulation Showing Failure to Reject Large Depth Disturbances
434 referenceCommandSize = 0;
435 referenceCommandTime = 0

[a—

436 referenceCommandSize2 =

~.

437 referenceCommandTime?2 =
438 referenceCommandSize3 =
439 referenceCommandTime3 =
440 outputDisturbanceSize =

U P O O O O ~
. ~

441 outputDisturbanceTime = 50
442 outputDisturbanceSize2 = 2;
443 outputDisturbanceTime2 = 3
444 tFinal = 500;

445

446 [time gov, ~, ref, ~, depth gov, ~, ctrl gov, ~, ~] = sim ¥
('cpf model with discrete controller and ref gov');

447

448 figure(9)

449 subplot(2,1,1)

450 plot (time gov, depth gow)

451 hold on

452 plot (time gov, ref, 'k:')

453 grid on

454 title('Depth', 'FontSize', titleFontSize)

455 ylabel (' [meters]', 'FontSize', axisLabelFontSize)

A d° O O O O O o° o° o° o°
nwon 5 03 03 n 3 03

e S e e e

456 legend({ 'CPF Depth', 'Reference Command'}, 'FontSize', legendFontSize)
457

458 subplot(2,1,2)

459 plot (time gov, ctrl gov)

460 hold on

461 plot (time gov, upperPumpSpeedLimit*ones(l, length(time gov)), r--")

462 grid on

463 legend({ 'Pump Speed', 'Upper Pump Speed Limit'}, 'FontSize', legendFontSize)
464 title('Pump Speed', 'FontSize', titleFontSize)

465 xlabel ('Time [s]', 'FontSize', axisLabelFontSize)

466 ylabel ('[revs/s]', 'FontSize', axisLabelFontSize)

467

468 set(findall (gcf, 'type', 'line'), 'linewidth',6 2)

469 set(findall (gcf, 'type', 'axes'), 'FontSize', axisLabelFontSize)

470

471

472

473
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474
475
476

o

% Functions
function [A, B] = symLin(x eq, u eq, densitySW, Cd, area, grav, mass, ¥

pumpDisplacement, pumpEff)

477 % Calculates the Jacobian A and B matrices about x eg and u eqg
478

479 % Part I of II: Symbolic Calculation of General Jacobian
480

481 % Symbolic State Vector, x

482 position = sym('position');

483 velocity = sym('velocity');

484 delta volume = sym('delta volume');

485

486 x = [position; velocity; delta volume];

487

488 % Symbolic Input Vector, u

489 motor speed = sym('motor speed'); % [rev/s]

490

491 u = [motor speed];

492

493 % Non-Linear ODEs

494 x dot(l,1) = velocity;

495 x dot(2,1) = (-0.5*densitySW*area*Cd*velocity”2 - densitySW*grav*delta volume) ¥
/mass;

496 x dot(3,1) = motor speed*pumpDisplacement*pumpEff;

497

498 A = jacobian(x dot, x);

499 B = jacobian(x dot, u);

500

501 % Part II of II: Calculation of Jacobian at x eq and u eq
502 position = x eq(l);

503 velocity = x _eq(2);

504 delta volume = x eq(3);

505

506 motor speed = u_eq;

507

508 A = eval(subs (d));

509 B = eval (subs(B));

510

511

end



Appendix A.2: Simulink Models
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High Level Block Diagram - Plant - Drag Force Calculation
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High Level Block Diagram - Plant = Delta Buoyant Force Calculation
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High Level Block Diagram - Reference Governor
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#include <iostream>
#include <cmath>
#include <fstream>

using namespace std;

// Dual Lead Compensator Values

const double currentErrorGain = -29.07;

const double prevErrorGain = 56.78;

const double prevPrevErrorGain = -27.71;

const double prevPumpSpeedGain = 1.238;

const double prevPrevPumpSpeedGain = -0.3829;

const double pumpSpeedUpperLimit = 50.0; // [revs/s]
const double pumpSpeedLowerLimit = -50.0; // [revs/s]
static double currentPressureError = 0.0;

static double prevPressurekError = 0.0;

static double prevPrevPressurekError = 0.0;

static double nextPumpSpeedCmd = 0.0;

static double prevPumpSpeedCmd = 0.0;

static double prevPrevPumpSpeedCmd = 0.0;

// Reference Governor Values

const double maxSetPointIncrement = 1.2; // [decibar]

-1.2; // [decibar]
static double integrator; // [decibar]

const double maxSetPointDecrement

void InitializeGovernor (double startingPressure)

{

integrator = startingPressure;

double ReferenceGovernor (double desiredPressureSetPoint)

{
// AUTHOR: Brian Ha (2018 Summer Intern)

double setPointDelta; // [decibar]

cout << "TARGET PRESSURE = " << desiredPressureSetPoint << " decibar; "

// If the integrator value is within 1.2 decibar of the target pressure,
// set it equal to the target pressure.
if (abs(desiredPressureSetPoint - integrator) <= maxSetPointIncrement)

{
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51 integrator = desiredPressureSetPoint;

52 }

53 // If not, increment/decrement the integrator

54 else

55 {

56 setPointDelta = desiredPressureSetPoint - integrator;

57

58 // Limit how quickly the integrator can increment/decrement.

59 if (setPointDelta > maxSetPointIncrement)

60 {

61 setPointDelta = maxSetPointIncrement;

62 }

63 else if (setPointDelta < maxSetPointDecrement)

64 {

65 setPointDelta = maxSetPointDecrement;

66 }

67

68 integrator = integrator + setPointDelta;

69 }

70

71 cout << "INTEGRATOR = " << integrator << " decibar; "

72

73 return integrator;

74}

75

76

77 double DepthController (double governedPressureSetPoint, double¥
currentPlatformPressure)

78 |

79 // AUTHOR: Brian Ha (2018 Summer Intern)

80

81 // Calculate current pressure error

82 currentPressureError = governedPressureSetPoint - currentPlatformPressure;

83 cout << "PRESSURE ERROR = " << currentPressureError << " decibar; "

84

85

86 // Calculate the next pump speed command.

87 nextPumpSpeedCmd = ((currentErrorGain * currentPressureError) +

88 (prevErrorGain * prevPressureError) +

89 (prevPrevErrorGain * prevPrevPressureError) +

90 (prevPumpSpeedGain * prevPumpSpeedCmd) +

91 (prevPrevPumpSpeedGain * prevPrevPumpSpeedCmd)) ;

92

93

94 // Limit pump speed command magnitude to 50 revs/sec.

95 1if (nextPumpSpeedCmd > pumpSpeedUpperLimit)

96 {

97 nextPumpSpeedCmd = pumpSpeedUpperLimit;

98 }

99 else if (nextPumpSpeedCmd < pumpSpeedLowerLimit)
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int

nextPumpSpeedCmd = pumpSpeedLowerLimit;

// Deadband
if (nextPumpSpeedCmd < 0.05 && nextPumpSpeedCmd > -0.05)
{

nextPumpSpeedCmd = 0.0;

// Set historical values for next function call
prevPrevPumpSpeedCmd = prevPumpSpeedCmd;
prevPrevPressurekError = prevPressureError;
prevPumpSpeedCmd = nextPumpSpeedCmd;
prevPressureError = currentPressureError;

// Convert from rev/sec to counts/sec
//nextPumpSpeedCmd = nextPumpSpeedCmd * COUNTSperREV;

// Return next pump speed command [counts/sec].
cout << "PUMP SPEED COMMAND: " << nextPumpSpeedCmd << "
return (nextPumpSpeedCmd) ;

main () {

double desiredPressureSetPoint;

double currentPlatformPressure;

double governedPressureSetPoint; // [decibar]
double startingPressure = 0.0; // [decibar]

// Setup File I/0

ifstream measuredPressures ( "pressures.txt");
ifstream targetPressures("target pressures.txt");
ofstream pumpSpeeds ( "pump speeds.txt");

ofstream governedTargetPressures ( "governed target pressures.txt");

// Initialize the integrator to the pressure at the current depth

InitializeGovernor (startingPressure) ;

// Read each value in the pressures.txt file, one at a time

while (measuredPressures >> currentPlatformPressure)

{

[revs/s]"

<< endl;

// Read each value in the target pressures.txt file, one at a time

targetPressures >> desiredPressureSetPoint;
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150

151 // Run the Reference Governor

152 governedPressureSetPoint = ReferenceGovernor (desiredPressureSetPoint) ;
153

154 // Write the governed target pressure to the governed target pressures file
155 governedTargetPressures << governedPressureSetPoint << endl;

156

157 // Run the Dual Lead Compensator

158 nextPumpSpeedCmd = DepthController (governedPressureSetPoint, ¥
currentPlatformPressure) ;

159

160 // Write the next pump speed command to the ctrl signals.txt file.
161 pumpSpeeds << nextPumpSpeedCmd << endl;

162

163 }

164

165 // Close the output files.

166 pumpSpeeds.close () ;

167 governedTargetPressures.close () ;

168

169

170 return 0;

171 }



