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ABSTRACT 

To better understand the biogeochemical processes of the ocean, many Argo 

profiling floats equipped with biogeochemical (BGC) sensors have been deployed. This 

includes numerous floats in the Southern Ocean, an area that is extremely vital to our 

ocean ecosystem overall, yet has been massively under-sampled. Many of these floats are 

part of the SOCCOM project, a project that aims to better understand the Southern 

Ocean. All float data from the active SOCCOM fleet is currently managed at MBARI, 

and must be processed and corrected as it comes in.   

The number of active BGC floats is growing, however the sensors on these floats 

are still under development and any offsets and drifts apparent within the data due to 

sensor fouling must be corrected prior to scientific use. Until now, the data has been 

manually corrected by visually assessing it against deep reference fields to find change 

points from which to correct any sensor drifts and/or offsets. However, this is extremely 

time consuming, especially as the array of floats is growing, and includes a level of 

subjectivity, leading to an increased likelihood of over-correcting the data. Because of 

this, an autonomous method to find the optimal change-points has been implemented, 

which is being discussed in detail throughout this paper. 



 2 

 

INTRODUCTION 

To gather biogeochemical (BGC) data, many profiling floats within the Argo 

program are equipped with BGC sensors (Argo, 2018). The Argo program is a global 

array of free-drifting floats that profile up to 2000m depth every 10 days, and all gathered 

data is made publically available. They drift at a depth of 1000m for nine days, then 

descend to 2000m and finally collect a depth profile for all parameters as they ascend 

back to surface from depth. All Argo floats are equipped with Temperature, Salinity, and 

Pressure sensors, while the BGC Argo floats are equipped with additional pH, Nitrate, 

Oxygen, and bio-optics sensors.  

This gathered BGC data can help describe the biogeochemical processes 

occurring in the ocean, such as phytoplankton metabolism, carbon fluxes, and ocean 

acidification. The Southern Ocean is of particular interest in this regard, as it has a 

massive influence on the nutrient composition and distribution of the entire ocean 

ecosystem, and the effects of climate change are projected to be strongest here 

(SOCCOM, 2017). 

However, due to extreme weather conditions, as well as other factors such as cost 

and location, the Southern Ocean has been massively under sampled. To combat this 

issue, the SOCCOM, or Southern Ocean Carbon and Climate Observations and 

Modelling project was born. This project aims to have 200 active BGC Argo floats out in 

the Southern Ocean. Currently 108 BGC Argo floats are actively sampling the Southern 

Ocean as part of the SOCCOM project. All floats within the SOCCOM project perform 

the nominal Argo mission described above, and all data are managed at MBARI. 

 Profiling floats significantly reduced the costs of data collection. Floats can stay 

out in the ocean for around 5-10 years taking samples, without anyone having to go out 

themselves. However, since the sensors are not usually recovered or re-calibrated for the 

period the floats are active at sea, the sensor response may drift with time, and this drift 

needs to be corrected. 
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Until now, all the 

corrections for pH and nitrate 

data have been done manually 

for each individual float, 

meaning someone visually 

assesses the data against high-

quality reference datasets to 

derive any necessary 

adjustments. This has been 

working very well, as can be 

seen in figure 1a. When 

comparing the manually 

corrected float data to bottle 

measurements taken at the 

time of deployment, the 

relationship is very linear with a slope of one, showing the values align to each other. 

Additionally, the accuracy and precision for each parameter (based on float minus bottle 

difference statistics) for the fleet in figure 1b support that the manual corrections have 

been reliable. Accuracy here indicates the proximity of the manually corrected data to the 

true data, so the small values show that the two data sets are in very close proximity to 

each other. The small precision present shows that the corrected data does not deviate by 

much compared to the true data, as it represents the standard deviation between both data 

sets. This further confirms that the manual corrections have been accurate and reliable. 

However, correcting manually does pose some issues: it includes an inherent level 

of subjectivity, which increases the potential for over-correction, meaning real data 

signals could be smoothed out, and most importantly it is extremely time consuming, 

especially as the number of active floats is growing. Correcting the entire SOCCOM fleet 

could take multiple days or weeks, depending on how many trained operators are present 

and active. For these reasons an automated approach was created, in order to objectively 

correct incoming data at a much faster rate. 

 

a. 

 b. 

Figure 1. Manually corrected data versus bottle collected data for 
pH and Nitrate parameters. a. Manually corrected float data versus 
bottle collected data for both parameters. b. Fleet average accuracy 
and precision (SD) for both parameters. 
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METHODS 

CORRECTION PROCESS 

To correct data in any manner, whether manually or autonomously, there is a 

correction process that is being followed. First, the raw float data is extracted at depth 

between 1400 – 1500m. This data is then cleaned, meaning all bad data is removed as to 

not interfere with the correction. Since the data has not been corrected yet, the gathered 

data has not yet been categorized as good or bad. Therefore, bad data here refers to 

unavailable data that is being signified by a value of -1e10, by which it can easily be 

found and removed from the data set. Getting the data at depth is important since 

parameters such as nitrate or pH are more stable in this region. This is because there are 

less processes that penetrate deeper into the ocean, while those that do are usually slower 

and much easier to predict, resulting in much more predictable and stable parameter data. 

In contrast, those occurring near the surface, such as seasonal cycles, atmosphere 

exchanges, photosynthesis, and more can occur very fast and lead to more rapid and 

unpredictable changes in these parameters. Therefore, by using data at depth, we can 

better assess where the drift is occurring with a lesser chance of removing real data. Also, 

since we cannot readily re-calibrate the sensors, it is important to have a reliable 

reference to compare and correct this data to. For this we can compute deep reference 

fields using Locally Interpolated Regressions (LIRs) for pH (LIPHR) and nitrate (LINR; 

Carter et al., 2017). 

These algorithms were fit to high-quality shipboard data (GLODAP v2 REFXXX; 

Olsen et al., 2016) and produce deep-sea reference fields based on available Temperature, 

Oxygen, and Salinity data for a certain depth and location specified. These have been 

shown to be very accurate, especially at depth where parameters are more stable and 

processes are better known, with error estimates of 0.006 pH units for pH and 0.47 

µmol/kg for nitrate (Carter et al., 2017). Therefore, using LIR data allows the raw float 

data to be compared and corrected to a reliable standard. 
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Also, as seen in the 

analysis when comparing raw 

float data to LIR data in figure 

2, they are often extremely 

similar, besides there being an 

offset or drift of some kind 

present in the raw data. This 

drift is what must be corrected 

for through this process. 

Once the reference data 

has been generated, the 

residuals are computed by 

subtracting the reference from 

the raw float data for that specified depth. From these residuals, the change points are 

then computed by some method. Change points are defined as abrupt shifts in the 

parameters of a distribution or in the coefficients of a regression model (Beaulieu, Chen, 

Sarmiento, 2012). For this process, the change points are found using the residuals which 

show how much the raw data is offset from the reference data. If the offset is changing 

over time, then a drift is occurring, which the change points capture. This step has been 

done manually up until this point, meaning the best change points are visually assessed 

by trained operators, but has now been automated, as described in the following section. 

After the change points have been found by either method, the offsets and drifts 

between these change points are calculated using least squares regression by the SAGE 

GUI, which stands for SOCCOM Assessment and Graphical Evaluation. This is software 

that was recently developed at MBARI and is continually being refined. SAGE can also 

store the generated correction values.  

Lastly, this correction is applied to all depths for the float being corrected, since it 

is assumed that if a drift or offset is present at depth for a sensor, this same drift or offset 

will be present as the sensor rises to the surface. 

 

Figure 2. Raw nitrate float data plotted with deep-sea reference 
LINR data for floats 12573SOOCN and 9096SOOCN, at depth 
1400 to 1500m. 
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AUTOMATED CHANGE-POINT DETECTION 

Since manual change-point detection presents many disadvantages, as mentioned 

beforehand, this process of change-point detection has been automated. The automation 

has been primarily written in MATLAB, and it is planned to be integrated into the SAGE 

GUI for permanent use. 

To find the best change-point locations statistically in the residual data set, 

MATLAB’s built-in ischange function was used. As described on the MathWorks 

website, the ischange function finds points of distinct change in a series by iteratively 

minimizing the sum of the cost functions of each segment between potential change-

points (MathWorks, 2018). 

In order to find the optimal number of change points for a particular float’s 

record, the ischange function is iteratively called on a range of values for the number of 

change points it should find, ranging from 1 until a specified cutoff maximum. The 

determination of the cutoff is pulled from Jones 1995, which states that the number of 

fitting parameters, k, must be smaller than the sample size of the data set, n, divided by 4 

minus 1 (Jones, 1995). Using the value (n/4 – 1) as the cutoff maximum accounts for this 

qualification, ensuring that the sample size of the data set is large enough for a correction 

to be run. If it is not met, it means that not enough data is currently available for a change 

point correction scheme to be imposed on that float, and it will be excluded from the 

process until sufficient data is added.  

Once a set of change points has been computed for each iteration, the quality of 

the resulting model generated from each respective set of change points was assessed 

using the Bayesian Information Criteria (BIC). 

BIC equation 
 
 
 
 
         n = number of data points (n residuals)  
    SSR = sum of squared residuals 
        K = number of model parameters ((# change points + 1) * 2 + 2) 
             * One change point divides 2 regions each with a slope and intercept, so the number must be doubled 
         α = threshold cap on mean anomaly (representative of sensor accuracy)  

       = 0.004 for pH, 0.3 for NO3 
 

𝐵𝐼𝐶 = 	 log )
𝑆𝑆𝑅
𝑛

+ 𝛼/0 +
𝐾 log 𝑛
𝑛
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The BIC is a statistical index that penalizes for too many change points, giving a 

good balance between goodness of fit and number of fitting parameters. This means that 

as the number of change points increases, even if the fit improves and the residuals get 

smaller, there may be too many change points, making it non-optimal. By using BIC as a 

determinant for the optimal number of change points, we are accounting for this issue. 

The associated change points of the iteration giving the lowest BIC are then stored and 

used to correct the data later-on, since a lower BIC corresponds to a more optimal model. 

By combining the use of ischange, which statistically finds the best location of 

change points for a given number of change points, and BIC, which finds the best balance 

between number of change points and goodness of fit, we can objectively find the 

optimal number and location of change points for that specific data set, while reducing 

the possibility of over-correction. 

 

RESULTS 

EXAMPLE CORRECTION 

Figure 3 shows an 

example nitrate correction 

for float 9313SOOCN, one 

of the SOCCOM floats 

that has been sampling the 

Southern Ocean for almost 

four years.  

Figure 3a shows 

BIC values versus the 

number of change points. 

It becomes visible that as 

the number of change points increases past an optimal value chosen, in this case four, the 

BIC starts increasing in value, penalizing for too many change points. This implies an 

optimal balance using the chosen value of four change points. Using these optimal 

 

Figure 3. Example nitrate correction for float 9313SOOCN. The dotted 
orange vertical lines in b.-e. indicate change point locations. a. BIC 
values versus number of change points. b.  Raw float data plotted with 
LINR data. c. Residuals of raw data minus LINR data. d. Corrected data 
plotted with LINR data. e. Residuals of corrected data minus LINR data. 
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change points, whose locations are indicated by the spotted orange vertical lines in figure 

3b-e, the corrected data is computed by finding the slopes and intercepts between them in 

the raw float data set, and by these removing the drift from the raw data set.  

When looking at the plot in figure 3b showing the raw data versus the LINR data 

that was computed at depth, one can see how similar they are in structure, besides being 

separated by an initial offset of -1 at profile 3 which increases with time, meaning the 

sensor is drifting. Figure 3c shows these offsets, where the increasing drift of the raw 

data from the LINR becomes more noticeable. From this data set the change points are 

detected. The following plot in figure 3d shows the corrected data versus the LINR, 

which now match up very well. This becomes more apparent through the final plot in 

figure 3e showing the residuals computed by subtracting the LINR data from the newly 

corrected data. The residuals are within a range of plus or minus 0.5 µmol/kg on average, 

showing how closely the corrected data matches the reference, implying a good 

correction. 

 

METHOD COMPARISON 

When comparing the manual method to 

the autonomous (auto) method in table 1 for 

the same float 9313SOOCN used above, an 

improvement in the autonomous method is 

visible. The BIC value for the autonomous 

method is -1.8, which is slightly lower than 

that of the manual of -1.6. This difference of 

0.2 is notable, since the autonomous method 

distinguished the best BIC value even to such a small scale (figure 3a). This shows that 

the autonomous method always finds the lowest BIC value possible for a given data set.  

What is more noticeable is that the number of change points for the autonomous 

method in comparison to the manual method was halved, from 8 change points to 4 

change points. This is a big difference, since it shows that manually the data may have 

been over-corrected. When looking at the change point locations, the optimal change 

Table 1. Statistics for float 9313SOOCN 
nitrate corrections comparing manual method 
to auto method.  
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points are very similar to four of those chosen manually, within a maximum range of 10 

change points apart. The other four, however, were not chosen to be necessary or optimal 

by the autonomous method, showing that although they are usable, they are not necessary 

to perform a good correction. 

The average residuals are slightly better for the manual method, since more 

change points have been chosen, allowing for a tighter fit. However, when taking the fit 

as well as the number of change points into account, the autonomous method chose only 

four. And as shown in figure 3e, the calculated residuals after correction using these four 

change points are within +/- 0.5 µmol/kg which is considered to be within the accuracy of 

the sensor. 

 

OVERALL METHOD COMPARISON 

 

 

 

 

This newly implemented approach to change point detection has been tested and 

run on approximately 60 floats for pH, and approximately 80 floats for nitrate within the 

SOCCOM fleet. Comparing both methods over all these floats for each parameter 

separately, as seen in the statistics table in figure 4a, the average BIC value for both pH 

b. 
a. 

Figure 4. Comparison statistics between manual and auto correction methods for all available SOCCOM 
floats. a. Statistic table, showing each average value for both pH and Nitrate data. b. Histograms for both pH 
and Nitrate data statistics: number of floats versus BIC in the top two charts, number of floats versus number 
of change points in the bottom two charts. 
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and nitrate is lower for the auto versus the manual method. Also, as seen by the charts in 

figure 4b, the spread of the BIC values is smaller in the auto method than the manual. 

This further confirms that the autonomous method is finding more optimal values, and 

does this more consistently by computing them statistically.  

Another noticeable difference is that, on average, the auto method almost halves 

the number of change points chosen in the manual method. Such a result may imply that 

manually the data has been over-corrected, and that the sensors are better than thought 

when visually assessing the data.  However, some of this discrepancy can be attributed to 

the manual assessment imposing multiple offsets during the first part of the record 

instead of a single offset with a drift. 

 

DISCUSSION 

Both the manual and autonomous change point detection methods work very well, 

giving us accurate and usable results. However, given the disadvantages of the manual 

method, implementing and using an autonomous method is much more sustainable in the 

long run.  

As shown in the results, the autonomous method on average halved the number of 

change points used, and has a narrower and lower range of BIC values. The autonomous 

method calculates the statistics very consistently over all floats, allowing for this 

narrower spread, whereas the manual method may vary depending on which operator is 

assessing the data, as well as many other conditions that may influence the operator. 

When correcting autonomously, the corrections are also much more objective, since they 

are entirely computed based on optimal statistics, thus removing the inherent level of 

subjectivity present when manually correcting data. 

The biggest advantage of automating the correction process is time consumption, 

since even if manually correcting data results in accurate, scientific quality-data, it takes a 

lot of time to produce. Analyzing all incoming float data, where there are currently over 

100 active floats and the number is growing, and continuously re-visiting floats to 

account for newly added profiles, takes a lot of time. Correcting all the floats can take 
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hours, days, weeks, or even months, depending on how many operators are trained, 

present, and available to work on this task. In contrast, the autonomous method can run 

its corrections and find the optimal values for all the floats available for both pH and 

nitrate in under 20 minutes, and no operator is required to do anything in that time. The 

autonomous method not only optimizes the corrected data, but saves hours and weeks’ 

worth of work that can now be used freely to accomplish other research or tasks.  

Due to its advantages, this automated process will be integrated into the SAGE 

GUI at MBARI in order to support the selection of change points while the data is being 

corrected. However, before full automation is implemented, its performance will be 

closely monitored for a period of time, and improvements and optimizations will be 

added as needed. If desired, this process can also be applied to many other devices that 

take depth profiles, as well as other parameters, such as oxygen data.  

 

CONCLUSION 

In conclusion, automating the correction process for incoming float data has 

shown to be more reliable and consistent, and it is much more effective in time 

consumption. It is a program that can be easily modified and applied to different devices 

or parameters if needed, proving to be very versatile and easily applicable.  

With this, processing and correcting incoming data can be much more efficient, 

allowing for the active fleet to grow in number, without having to spend additional hours 

to maintain the corrected data. 
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