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ABSTRACT	
	
This	work	contributes	to	add	to	efforts	to	fully	and	accurately	characterize	the	local	Monterey	Bay	
carbonate	system,	by	first	assessing	West	Coast	and	Monterey	Bay	regions	for	organic	alkalinity	
influence	and	then	using	predictive	algorithms.	Both	literature-based	algorithms	and	a	developed	
region-specific	MLR	were	utilized.	Findings	from	organic	alkalinity	analysis	of	NOAA	West	Coast	
Ocean	Acidification	cruise	data	showed	no	significant	influence,	while	results	from	a	filtered	
subset	of	MBARI	Biological	Oceanography	Group	(BOG)	data	were	less	conclusive.	The	small	
dataset	combined	with	evidence	of	organic	alkalinity	influence	in	the	near	shore	Elkhorn	Slough	
environment,	motivates	further	analysis	of	future	discrete	measurements	in	the	bay.	Of	four	pre-
existing	algorithms,	two	produced	reasonable	RMSE	values	when	applied	to	data	from	in	the	
Monterey	bay	system.	These	algorithms	were	LIAR/LIPHR	and	CANYON.	They	preformed	best	on	
data	from	2018,	which	coincided	with	the	start	of	sample	analysis	at	MBARI	facilities.	The	
development	of	a	region-specific	algorithm	elucidated	data	variance	within	the	BOG	dataset	most	
likely	caused	by	a	2012-2014	climatic	phenomenon	known	as	the	Blob.	Applying	all	algorithms	to	
a	unique	set	of	glider	data	(Rudnik,	2017),	showed	the	potential	for	high-resolution	carbonate	
system	depictions.	Although,	further	quantitative	validation	of	this	application	is	recommended,	
given	the	unavailability	of	2017	CalCOFI	data.		



INTRODUCTION	
	
There	is	growing	evidence	of	ocean	acidification	observations	in	the	open	ocean,	however	
detecting	similar	pH	declines	in	coastal	zones	proves	more	difficult.	In	coastal	environments,	
various	natural	and	anthropogenic	processes	can	alter	the	carbonate	chemistry	and	lead	to	a	
greater	variability	in	pH	(Waldbusser	and	Salisbury	2014;	Takeshita	et	al.	2015).	Coupling	this	
unpredictability	with	the	intrinsic	complexities	of	the	carbonate	system	underlines	the	
importance	of	fully	constraining	such	coastal	biogeochemical	cycles.	
	
The	carbonate	system	is	commonly	described	through	four	principal	components:	dissolved	
inorganic	carbon	(DIC),	pH,	partial	pressure	of	carbon	dioxide,	and	total	alkalinity	(TA).	The	
interrelationships	between	these	parameters	are	advantageous	in	the	context	of	carbon	system	
characterization.	Measurements	of	any	two	parameters	–	along	with	temperature,	pressure,	and	
salinity	–	allow	for	the	calculation	of	all	other	carbonate	system	components	(Dickson	et.	al.,	
2007).	However,	all	four	parameters	have	aspects	that	make	them	difficult	to	measure	and/or	
constrain.	For	example	pH	and	DIC	vary	with	salinity	and	temperature,	while	pCO2	can	be	greatly	
influenced	by	the	air-sea	CO2	exchange.		
	
TA	is	described	as	an	“unconstrained”	parameter,	meaning	it	does	not	vary	with	temperature	or	
salinity	and	thus	appealing	for	use	in	carbonate	calculation.	TA	in	marine	and	estuarine	waters	is	
defined	as	the	number	of	moles	of	hydrogen	ion	equivalent	to	the	excess	of	proton	acceptors	over	
proton	donors	within	the	system	(Hernandez-Ayon	et	al.,	2007):	
	
T-Alk	=	[HCO3-]	+	2[CO32-]	+	[OH-]	–	[H+]	+	[B(OH)4-]	+	[HPO42-]	+	2[PO43-]	+	[H3PO4]	+	[SiO(OH)3-]	
	
Generally	carbonate,	borate,	and	nutrient-related	species	are	the	main	contributors	to	total	
alkalinity,	and	contributions	from	organic	species	are	assumed	to	be	negligible	(Kim,	Lee,	&	Choi,	
2006;	Hernandez-Ayon	et	al.,	2007).	However,	studies	have	shown	that	organic	alkalinity	is	
sometimes	a	significant	fraction	of	total	alkalinity	in	estuarine	and	coastal	waters	(Cai	et	al.,	1998;	
Bradshaw	&	Brewer,	1988;	Kim,	Lee,	&	Choi,	2006;	Hunt,	Salisbury	&	Vandermark,	2011).	Possible	
sources	of	contributing	bases	include	humic	materials,	phytoplankton	exudates,	bacterial	cells,	
microalgae,	as	well	as	dissolved	and	suspended	organic	matter	(Cai	et	al.,	1998;	Hernandez-Ayon	
et	al.,	2007;	Kim,	Lee,	&	Choi,	2006;	Yang,	Byrne,	Lindemuth,	2015;	Kulinski	et	al.,	2014).	The	
addition	of	such	weak	organic	bases	to	seawater	leads	to	a	shift	in	the	contributions	of	inorganic	
species	and	can	also	increase	total	alkalinity	(Kulinski	et	al.,	2014).	Examples	of	organic	alkalinity	
offsets	and	resulting	miscalculations	can	vary	based	on	the	watershed,	the	greatest	of	which	was	
reported	in	the	Baltic	Sea.	This	work	showed	a	1.5-3%	organic	alkalinity	contribution	lead	to	a	27-
56%	offset	in	pCO2	values	and	0.4	difference	in	calculated	pH	(Kulinski	et	al.,	2014).		
	
Therefore,	assessing	coastal	environments	for	organic	alkalinity	influence	allows	for	a	more	
accurate	representation	of	the	local	carbonate	system.		This	is	particularly	important	in	relation	to	
algorithm	development	efforts	that	aim	to	predict	carbonate	parameters	from	more	ubiquitous	
biogeochemical	properties.	Shipboard	measurements	of	are	often	isolated	and	sparse,	and	
autonomous	float	sensors	–	though	growing	in	location	and	number	–	can	only	currently	measure	
one	of	two	carbonate	parameters	required	to	constrain	to	system	(Fassbender	et	al.,	2016;	Carter	
et	al.,	2016).	Both	these	sources	lack	the	information	needed	for	comprehensive	carbonate	system	



characterization,	and	motivate	the	development	of	predictive	algorithms.	However,	these	
predictions	can	short,	given	intrinsic	inaccuracies	like	organic	alkalinity	influence.	
	
This	work	begins	to	fully	and	accurately	characterize	the	local	Monterey	Bay	carbonate	system.	
The	first	step	of	these	efforts	assessed	West	Coast	and	Monterey	Bay	regions	for	organic	alkalinity	
influence.	The	following	stage,	focused	on	utilizing	literature-based	algorithms	as	well	as	
developing	a	Multiple	Linear	Regression	approach	specific	to	the	Monterey	Bay	Region.	This	order	
of	investigation	lead	to	a	thorough	and	enhanced	understanding	of	the	local	carbonate	system.	
	
METHODS	
	
Organic	Alkalinity	Analysis	
	
Utilizing	a	progressively	narrowed	spatial	approach,	organic	alkalinity	influence	was	first	assessed	
along	the	entire	West	Coast	of	the	U.S.	and	then	constrained	to	the	Monterey	Bay	region	as	well	as	
near	shore	Elkhorn	Slough.	Datasets	for	this	assessment	came	from	NOAA	West	Coast	Ocean	
Acidification	(WCOA)	cruises	and	the	MBARI	Biological	Oceanography	Group	(BOG).		The	NOAA	
WCOA	dataset	included	data	from	three	viable	cruises	from	2011,	2013,	and	2016.	The	BOG	
dataset	includes	monthly	cruises	dating	back	to	2011,	however	this	study	only	focused	on	data	
from	December	2017	to	July	2018	as	this	period	contained	spectrophotometric	pH	values	
compared	to	previous	glass-electrode	pH	measurements.	Additionally,	the	more	recent	BOG	
dataset	did	not	yet	have	associated	silicate	and	nitrate	concentrations.	Average	nutrient	
concentrations,	by	depth,	from	the	previous	six	years	were	used	as	proxy	values	for	these	
variables.	July	2018	BOG	spectrophotometric	pH	data	was	run	on	two	systems	–	lab	and	ship-
based	–	to	compare	instrument	performance	as	well	as	any	data	variation	due	to	sample	
poisoning.	The	in-lab	system	used	an	Agilent	8453	diode	array	spectrophotometer,	while	ship-
based	analysis	was	run	on	a	Mini	MMS.		
	
Eleven	discrete	samples	from	Elkhorn	Slough	were	collected	at	morning	high	tide	from	May-July	
2018	at	two	stations	located	at	the	mouth	of	the	Salinas	River	–	L01,	and	further	back	in	Elkhorn	
Slough	–	L03	(Figure	1).	Coinciding	CTD	casts	also	occurred	during	each	sampling	event	in	
Elkhorn	Slough.	Each	water	sample	was	filtered	prior	to	analysis.	Filtering	times	varied,	however	
samples	from	L03	sat	for	at	least	an	additional	24	hours	compared	to	L01	stations,	given	the	
higher	level	of	suspended	particles	in	the	Slough	samples.	Carbonate	system	parameters	were	
analyzed	using	the	same	instrumentation	as	the	BOG	monitoring	cruise	data.		
	



	
Figure	1.	Map	of	Elkhorn	Slough,	CA	moorings	that	coincide	with	the	to	discrete	sampling	locations	at	L01	and	
L03.	(Johnson	et	al.,	2007)	
	
Calculated	total	alkalinity	was	found	using	the	CO2SYS	for	MATLAB	routine	by	van	Hueven	et	al.	
(2011)	and	then	compared	to	discrete	measurements.	Organic	alkalinity	significance	was	then	
determined	given	a	95%	confidence	interval	of	both	CO2SYS	calculation	errors	(James	Orr)	and	
discrete	measurement	uncertainty	(Table	1).	Given	the	greater	distance	from	shore	and	broader	
depth	profile,	median	alkalinity	at	each	station	was	additionally	determined	for	NOAA	WCOA	data.		
	
Table	1.	Reported	error	associated	with	CO2SYS	input	parameters	for	use	in	error	propagation	calculations	to	
determine	significant	organic	alkalinity	

Input	Parameter	 Reported	Error	 Source	

Salinity	 0.002	PSS-78	 NOAA	WCOA	Metadata	
Temperature	 0.001ºC	 NOAA	WCOA	Metadata	
Pressure	 1	dbar	 NOAA	WCOA	Metadata	
Silicon		 1	umol/kg	 NOAA	WCOA	Metadata	
Phosphate	 0.02	umol/kg	 NOAA	WCOA	Metadata	
TA	 0.1%	 Empirically	determined+	

pH	 0.01	(for	values	>7.8)	 Carter	et	al.,	2017	
DIC	 0.1%	 Empirically	determined+	
	
Algorithm	Testing	and	Development	
	
Four	literature-based	algorithms	were	assessed	for	applicability	to	the	Monterey	Bay	region	
(Table	2).	Each	algorithm	was	compared	against	both	the	NOAA	WCOA	and	BOG	datasets	for	

																																																								
+	Five	error	scenarios	were	tested	to	determine	how	many	remaining	measurements	would	be	viable	for	
organic	alkalinity	analysis.	These	error	values	were	determined	to	be	sufficiently	conservative,	while	not	
over-eliminating	data	points.	



applicability,	by	assessing	closeness	between	actual	and	calculated	values	for	associated	
carbonate	system	parameters.		
	
Table	2.	Literature-based	algorithms	references	and	methods.	Parameter	abbreviations	are	as	follows;	T-
temperature,	S-salinity,	O-oxygen,	P-pressure,	θ-potential	temperature,	NO3—nitrate,	Si-silicate	

Algorithm	
Name	 Method	 Source	

Geographic	
Region	&	
Training	
Dataset	

Parameters	

Input	 Output	

Gray	 Linear	 Gray	et	al.,	
2011	

Monterey	Bay,	
CA	 S	 TA	

Alin	 MLR	 Alin	et	al.,	
2012	

Southern	CA	 T,	S,	O	 pH,	ΩAr,	ΩCa,	TA,	
DIC,	Carbonate	

LIAR,	
LINR,	
LIPHR	

MLR	 Carter	et	al.,	
2017	

Global,	
GLODAP	

T,	S,	O,	θ,	
NO3-,	Si	

TA,	pH,	NO3-	

CANYON	 Neural	
Network	

Sauzéde	et	
al.,	2016	

Global,	
GLODAP	

Lat,	Lon,	
Date,	P,	T,	S,	
O	

TA,	pH,	pCO2,	
NO3-,	PO43-	

		
A	Monterey	Bay	region-specific,	multiple	linear	regression	(MLR)-based	algorithm	was	also	
developed	using	a	fit	regression	model.	Multiple	combinations	of	variables	(temperature,	salinity,	
oxygen,	NO3-,	pressure,	density,	and	potential	density)	were	tested	using	stepwise	regressions	to	
determined	the	strongest	predictive	variables	for	estimating	pH,	TA,	DIC,	and	[NO3-]	(similar	to	
methods	in	Carter	et	al.,	2017	and	Alin	et	al.,	2012).	The	calibration	data	for	this	algorithm	
development	came	from	monthly	BOG	cruises	from	2011	through	July	of	2018.		The	training	
versus	validation	split	of	data	was	75%	to	25%,	respectively.		
	
Predictive	input	variables	were	determined	based	on	those	used	in	the	literature,	as	well	as	what	
measurements	would	hypothetically	be	taken	on	coastal	profiling	floats	if/when	deployed	in	the	
future.	All	independent	variables	were	tested	for	collinearity	using	pairwise	regression	and	a	
variance	inflation	factor	test	(VIF)	with	an	upper	cutoff	value	of	5.	Variables	deemed	collinear	
were	eliminated.	A	robust	linear	regression	was	used	(designed	to	overcome	limitations	of	
traditional	parametric	and	non-parametric	methods)	to	determine	the	ultimate	set	of	predictive	
variables	as	well	as	the	final	resulting	RMSE	values.	
	
An	application	of	this	region-specific	developed	algorithm	was	tested	using	a	selection	of	
autonomous	glider	data	taken	along	line	CalCOFI	station	line	66	(Figures	2)	during	the	spring	and	
summer	of	2017	(David	Rudnik,	2017).	Measurements	of	temperature,	salinity,	oxygen,	and	
pressure	from	the	glider	data	were	used	as	input	variables	to	generate	predictive	contour	plots	of	
various	carbonate	parameters	such	as	TA	and	aragonite	saturation	state	(ΩAr).		
	
Initial	validation	of	this	application	was	accomplished	by	plotting	discrete	data	measurements	
taken	from	the	NOAA	WCOA	2016	cruise	data	overtop	the	produced	contour	plots.	This	was	
purely	a	qualitative	approach	given	that	the	year	and	geographic	location	of	the	data	sources	did	
not	coincide	(Figure	3).	Results	were	then	assessed	through	a	visual	comparison	of	contour	colors.	



						 	
Figure	2.	(A)	California	Cooperative	Oceanic	Fisheries	Investigations	(CalCOFI)	sample	pattern	outlining	sampling	stations.	Red	ellipse	indicates	location	of	
line	66	and	the	basic	trajectory	of	the	glider.	(B)	Location	and	trajectories	of	selected	glider	transects.		

	
Figure	3.		Mapped	comparison	of	2017	D.	Rudnik	glider	data	and	Monterey	Bay	stations	from	the	2016	NOAA	WCOA	cruise.

A	
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RESULTS	&	DISCUSSION	
	
Organic	Alkalinity	
	
1.	NOAA	West	Coast	Ocean	Acidification	(NOAA	WCOA)	Cruises	
Adhering	to	rather	conservative	uncertainties	related	to	pH,	total	alkalinity,	and	DIC	
measurements	as	well	as	a	95%	confidence	interval,	less	than	10	stations	per	cruise	year	showed	
evidence	of	statistically	significant	organic	alkalinity	presence	(Figure	4).	These	stations	were	also	
located	close	to	one	another,	and	generally	showed	median	organic	alkalinity	values	less	than	5	
umol/kg.	These	low	median	values	as	well	as	geographic	clustering	indicate	that	what	could	be	
proposed	as	“organic	alkalinity”	input,	is	more	likely	a	result	of	instrument	or	analyst	error.	
	

	
Figure	4.	Mapped	locations	of	significant	organic	alkalinity	stations	from	three	years	of	NOAA	WCOA	cruise	

data.	Coloring	of	each	circle	indicates	the	median	organic	alkalinity	input	per	station;	black	circles	indicate	

stations	with	greater	than	5	umol/kg	influence.	

	
However,	it	is	notable	that	significant	station	locations	somewhat	coincided	with	the	starting	
locations	of	each	cruise	(ie.	Baja	California		–	2016	start	local	in	San	Diego,	CA;	OR	coast	–	2013	
leg2	start	local	in	Newport,	OR).	The	2011	cruise,	which	showed	the	highest	median	organic	
alkalinity	values,	also	occurred	following	a	period	of	peak	Columbia	River	discharge,	in	June-July	
of	that	year	(Figure	5).	This	high	flow	could	explain	the	more	numerous	and	spread	out	nature	of	
the	significant	organic	alkalinity	data	associated	with	the	2011	cruise.	



	
Figure	5.	(A)	Location	and	flow	of	two	major	rivers	along	the	coast	of	Western	Washington,	relative	to	NOAA	

WCOA	2011	significant	organic	alkalinity	stations.	(B)	Sourced	from	Evans	et	al.,	2013;	Columbia	River	

discharge	in	2011.	Teal	shaded	rectangle	indicates	timing	of	the	2011	WCOA	cruise.		

	
2.	Biological	Oceanography	Group	Cruises	–	Monterey	Bay	
Resulting	organic	alkalinity	analysis	in	Monterey	Bay	showed	six	significantly	influenced	data	
points	from	the	BOG	2017-2018	limited	dataset	(Figure	6).	The	most	significantly	influenced	
samples	were	all	located	in	the	same	station	within	Monterey	Bay	[M01]	and	came	from	the	same	
cruise	[BOG	34017].	This	trend	most	likely	indicates	a	lack	of	significant	organic	alkalinity	
presence	in	the	Bay	and	instead	a	reflection	of	an	isolated	instance	of	instrument	and/or	user	
error.	It	should	be	noted	that	the	concentration	of	organic	alkalinity	generally	tends	to	decrease	
with	distance	from	shore	and	with	depth.	
	
However,	these	findings	are	not	entirely	conclusive.	The	data	points	only	span	a	period	of	6	
months	and	the	nutrient	concentration	values	used	as	input	variables	were	average	values,	rather	
than	actual	in-situ	measurements.	Follow	up	organic	alkalinity	analysis	using	more	and	accurate	
input	data	would	help	elucidate	the	extent	of	the	influence	in	Monterey	Bay.		
	
3.	Elkhorn	Slough	
Similar	to	the	BOG	dataset,	the	samples	taken	from	Elkhorn	Slough	were	awaiting	nutrient	
concentration	measurements	prior	to	conducting	to	organic	alkalinity	analysis.	Therefore	organic	
alkalinity	influence	cannot	be	fully	characterized.	However,	previous	studies	confirm	the	influence	
of	organic	alkalinity	in	Elkhorn	Slough	(McLaughlin	et	al.,	2017).		
	
Results	show	indication	of	high	organic	alkalinity	influence	within	the	slough.	All	but	one	of	the	
discrete	samples	at	station	L03	had	statistically	significant	delta	values	when	comparing	
measured	and	calculated	alkalinity	(Figure	7).	Samples	from	L01	–	located	at	the	Salinas	River	
(Figure	1)	–	lacked	this	significant	difference	likely	due	to	the	high	flow	and	exchange	with	Bay	
waters	experienced	at	the	river	mouth.			



	 	
Figure	6.	(A)	Mapped	locations	and	values	of	median	organic	alkalinity	influence	at	stations	from	BOG	dataset,	(B)	as	well	as	associated	depth	profiles	for	
these	significant	stations.	Depth	profiles	show	the	difference	between	measured	and	calculated	total	alkalinity	that	indicate	organic	alkalinity	influence	–	
which	are	statistically	significant	–	while	the	map	shows	actual	organic	alkalinity	values	in	μmol/kg.		
	

		
Figure	7.	Differences	between	measured	and	calculated	total	alkalinity	for	Elkhorn	Slough	samples.	Starred	points	indicate	samples	with	statistically	
significant	differences	indicative	of	organic	alkalinity	influence.	L03	is	located	at	the	mouth	of	the	Salinas	River,	L01	is	further	up	the	slough	(see	Figure	1)

A	 B	



Algorithm	Testing	and	Development	
	
1.	Literature	Based	Algorithms	
Resulting	RMSE	values	showed	that	pre-established	algorithms	predict	TA	and	pH	
relatively	well	when	applied	to	the	NOAA	WCOA	dataset,	while	less	so	when	applied	to	BOG	
data	(Tables	3	&	4).	For	WCOA	applications,	the	LIAR	and	LIPHR	algorithms	(Carter	et	al.,	
2017)	had	the	lowest	RMSE	values	across	all	years	(Tables	3	&	4).	It	was	found	that	LIPHR	
was	particularly	effective	when	used	without	the	newly	incorporated	date-specific	ocean	
acidification	adjustment	[Carter	et	al.,	2017]	(Table	4).	
	
Table	3.	Total	Alkalinity	estimation	RMSE	results	for	literature	algorithms	on	NOAA	WCOA	cruise	data	

and	MBARI	BOG	data.	Notably	high	and	low	values	are	highlighted	in	blue	and	orange,	respectively.		

BOG	 WCOA	
Year	 Algorithm	 	 	 Year	 Algorithm	 	 	
	 Gray	 Alin	 LIAR	 CANYON	 	 Gray		 Alin	 LIAR	 CANYON	
2011	 34.50	 16.48	 10.34	 	9.69	 2011	 16.64	 25.65	 7.82	 12.77	
2012	 43.47	 20.26	 8.92	 9.84	 	 	 	 	 	
2013	 42.28	 33.17	 29.21	 34.29	 2013	 9.65	 27.31	 22.40	 19.26	
2014	 35.47	 29.47	 29.11	 29.40	 	 	 	 	 	
2015	 40.86	 19.73	 18.99	 12.59	 	 	 	 	 	
2016	 41.60	 14.10	 11.75	 11.42	 2016	 14.38	 83.22	 10.22	 19.47	
2017	 37.35	 20.19	 15.05	 12.27	 	 	 	 	 	
2018	 34.49	 15.33	 11.17	 7.60	 	 	 	 	 	
	
	
Table	4.	pH	estimation	RMSE	results	for	literature	based	algorithms.	Reported	LIPHR	values	

correspond	to	algorithm	use	that	negates	the	date-specific	application	incorporated	into	the	most	

recent	update	(Carter	et.	al,	2017).	Notably	values	are	highlighted	in	orange.	

BOG	 WCOA	
Year	 Algorithm	 	 Year	 Algorithm	
	 Alin	 LIPHR	 LIPHR	

(dates)	
CANYON	 	 Alin		 LIPHR	 CANYON	

2015	 	0.180	 0.053	 	0.034	 0.039	 2011	 	0.045	 0.030	 0.046	
2016	 	0.138	 0.064	 0.069	 0.069	 2013	 	0.049	 0.053	 0.067	
2017	 	0.220	 0.097	 0.101	 0.123	 2016	 	0.045	 0.037	 0.039	
2018	 	0.214	 0.021	 0.022	 0.032	 	 	 	 	
	
There	are	three	notable	observations	that	explain	the	comparably	worse	performance	of	
the	literature-based	algorithms	when	applied	to	the	BOG	data.	The	first	is	the	incongruity	
between	the	algorithms’	geographic	extent	and	BOG	monitoring.	These	cruises	include	five	
stations	within	the	Bay.	In	comparison,	LIAR,	LIPHR,	and	CANYON	algorithms	were	all	
trained	on	a	global	dataset	and	Alin	et	al.,	2012	was	developed	for	Southern	California,	with	
Monterey	Bay	at	the	northern	limit	of	the	training	data	boundary.	Additionally	Gray	et	al.,	
2011	is	a	simplistic	linear	model	based	off	data	found	at	just	one	mooring	in	Monterey	Bay.		



Secondly,	there	is	a	noticeable	improvement	in	RMSE	values	for	both	TA	and	pH	
predictions	in	2018	(Tables	3	&	4).	The	visual	comparison	between	actual	and	predicted	
values	of	total	alkalinity	across	years,	further	highlights	this	improvement	(Figure	8).		A	
possible	explanation	for	this	change	is	a	difference	in	lab	settings.	Starting	in	early	2018,	
MBARI	staff	and	facilities	began	running	biogeochemical	analyses	(i.e.	pH,	DIC,	TA,	etc)	on	
all	BOG	samples.	Prior	to	this,	the	analytical	work	was	done	at	UC	Davis,	Bodega	Bay.	
Additionally,	2018	data	showed	a	smaller	range	in	actual	TA	values,	which	could	be	due	to	
the	shift	to	MBARI	labs	or	yearly	variation	(Figure	8).		
	

	
Figure	8.	Performance	of	TA-predicting	literature	algorithms	when	applied	to	BOG	dataset.	Dotted	
black	line	indicates	1:1	relationship	between	predicted	(calculated)	and	measured	values.	
	
2.	Monterey	Bay-Specific	Algorithm	Development	
The	third	and	final	observation	of	BOG-applied	algorithm	performance	coincided	with	the	
development	of	the	Monterey	Bay	region-specific	algorithms.	Initial	TA-focused	MLR	
development	resulted	with	lower	r-squared	values	when	compared	to	other	parameters.	
Inspecting	the	relationship	between	predicted	values	and	the	validation	dataset	showed	a	
distinct	section	of	the	data	that	fell	below	the	1:1	relationship	cluster	(Figure	9A).	A	likely	
explanation	for	this	irregularity	was	the	presence	of	multiple	water	sources	within	the	BOG	
data.	Physical	characteristics	(i.e.	temperature,	salinity,	depth),	collection	location,	and	
cruise	couldn’t	distinguish	multiple	sources.	Instead,	the	physical	oceanography	of	
Monterey	Bay	and	a	unique	climatic	event	provided	insight.		
	
In	the	Monterey	Bay,	there	are	two	major	offshore,	southward-flowing	current	systems	–	
the	California	Current	and	the	California	Undercurrent	(CUC).	Normally,	the	two	are	best	
distinguished	by	depth;	the	undercurrent	generally	exists	below	150m	(Breaker	&	
Broenkow,	1994).	However,	in	the	winter	when	persistent	northwesterly	winds	that



usually	promote	upwelling	weaken	an	can	cause	“a	reversal	in	the	coastal	ocean	to	northward	flow	at	the		
surface”(Gangopadhyay	et	al.,	2011),	which	some	authors	refer	to	as	the	Davidson	current	and	others	recognize	as	the	
surfacing	of	the	CUC.		
	
Starting	in	early	2013,	California	experienced	an	abnormally	long	drought	due	to	a	climatic	event	colloquially	known	as	‘The	
Blob’.	This	period	was	caused	by	a	robust	increase	in	the	magnitude	and	persistence	of	a	high-pressure	system,	nicknamed	the	
Ridiculously	Resilient	Ridge	(RRR),	that	formed	along	the	western	coast	of	the	United	States	and	weakened	upwelling	
promoting	winds	(Swain	et	al.,	2016).	Normally	a	subseasonal	occurrence	in	the	winter	months,	the	RRR	intensified	and	
lengthened	the	period	of	weak	upwelling	and	caused	the	persistence	of	a	large	swath	of	warm	water	–	The	Blob	(Swain	et	al.,	
2014;	Swain	et	al.,	2016).	
	

	
Figure	9.	Performance	of	TA-predicting	developed	algorithm	when	applied	to	BOG	dataset.	(A)	Includes	all	data	years,	2011-2018.	Colors	
distinguish	sections	of	data.	Red	–	low	predicted	TA	values,	low	actual	TA	measurements;	yellow	–	high	predicted	TA	values,	high	actual	TA	
measurements;	blue	–	low	predicted	TA	values,	high	predicted	TA	measurements.	(B)	Excludes	data	from	2013	and	2014	Blob	years.

A	 B	



Given	the	relationship	between	CUC	flow	and	upwelling	dynamics,	it’s	likely	that	the	RRR	situation	
also	caused	CUC	surfacing	to	persist	longer	than	in	normal	years.	Thus	the	BOG	data	from	this	
period	was	able	to	depict	a	normally	subtle	and	seasonal	variation.	As	the	CUC	surfaces	it	brings	
up	deep	water	with	likely	higher	TA	concentrations.	This,	in	addition	to	the	presence	of	unusually	
warm	waters	along	the	coast	offer	reasons	as	to	why	multiple	water	sources	–	and	differing	TA	
values	–	showed	up	in	the	BOG	TA	dataset.	Filtering	the	BOG	data	to	exclude	data	from	the	drought	
period	of	2013-2014	(based	on	precipitation	data	–	Figure	10),	confirms	this	theory.	With	the	
Blob-exclusion	the	visual	patterns	of	the	data	improved	(Figure	9B),	as	well	as	the	RMSE	and	r-
squared	values	(Table	5).	Returning	to	the	literature	TA-predicting	algorithms,	their	performance	
also	noticeably	worsened	during	the	Blob-anomaly	years	of	2013	and	2014	(Table	3,	Figure	8).		
	

	
Figure	10.	Monthly	precipitation	data	from	2012	to	2016	for	the	state	of	California,	in	comparison	to	long-
term	mean.	(NOAA).	Orange	rectangle	indicates	drought	period.		
	
Algorithm	development	for	other	carbonate	parameters	(NO3,	pH,	and	DIC)	produced	successful	
RMSE	values	and	did	not	run	into	the	same	issues	as	total	alkalinity	(Table	5).	Because	the	
physical	characteristics	of	the	CUC	are	nearly	identical	to	those	of	the	California	Current	and	
parameters	like	pH	and	DIC	tend	to	vary	more	with	temperature	and	salinity,	the	persistent	
surfacing	event	likely	did	not	have	an	impact.	Resulting	input	variables	and	coefficients	for	these	
parameters	are	presented	in	Table	5.		
	



Table	5.	Monterey	Bay	region-specific	developed	algorithms	for	multiple	carbonate	system	parameters.	All	
algorithms	use	a	MLR	approach	that	multiply	various	input	variables	by	determined	coefficients.		
	 NO3	 pH	 DIC	 TA		
Input	variables	 x1	=	salinity	

x2	=	temp	
x3	=	oxygen	

x1	=	salinity	
x2	=	temp	
x3	=	oxygen	

x1	=	salinity	
x2	=	temp	
x3	=	oxygen	

x1	=	salinity	
x2	=	temp	
x3	=	oxygen	
x5	=	pressure	

Coefficients	 -120.5522	 7.2541	 10.7688	 282113.1513	
5.0704	 -0.0022	 -0.1046	 258.6002	
-1.8327	 0.0203	 0.0193	 -53.2659	

-0.0746	 0.0018	 0.0015	
0.0117	
-280.7689	

RMSE	 1.9083	 0.0513	 19.9039	 7.0073A	
R2	 0.9578	 0.8959	 0.9340	 0.9127B	
A	Prior	to	data	filtering	value	=	9.5404	 	 	
B	Prior	to	data	filtering	value	=	0.6674	
	
3.	Algorithm	Applications	
Application	of	these	algorithms	to	D.	Rudnik	2017	glider	data	produced	high-resolution	contour	
plots	of	carbonate	system	behavior	in	the	Monterey	Bay.	However,	an	exact	validation	of	these	
algorithms’	effectiveness	was	not	possible	at	the	time	of	this	work.		Though	the	trajectory	of	the	
glider	data	followed	CalCOFI	sampling	line	66,	this	data	was	unavailable	in	the	summer	of	2018.	
Instead,	the	relative	geographic	proximity	of	NOAA	WCOA	data	to	Rudnik	glider	transect	1	(Figure	
3),	allowed	for	a	reasonable	qualitative	assessment.			
	



	 	
Figure	11.	(A)	Contour	plot	of	total	alkalinity	for	D.	Rudnik	glider	transect	1	(3/28/17	-	4/13/17).	Subplots	
show	results	of	literature	algorithms	and	developed	MLR	approach.	Plotted	circles	correspond	to	discrete	data	
from	the	2016	NOAA	WCOA	cruise.	(B)	Shows	the	same	data,	but	provides	an	easier	visual	comparison	
between	glider	and	NOAA	data.	Per	their	application,	Alin	et	al.	2012	and	LIAR	plots	exclude	surface	waters.		
	
Visual	comparison	of	contour	plots	produced	by	the	algorithms	to	NOAA	WCOA	data	shows	that	
the	discrete	data	agreed	best	with	the	developed	MLR	and	CANYON	algorithms	(Figure	11).	These	
results	are	in	alignment	with	the	low	RMSE	values	produced	when	the	CANYON	algorithm	was	
applied	to	the	BOG	dataset.	Additionally,	the	developed	algorithm	was	trained	on	the	BOG	dataset,	
and	therefore	should	be	best	suited	for	the	Monterey	Bay	region	when	compared	to	the	other	
literature	algorithms.	There	is	some	agreement	between	the	NOAA	data	and	the	applications	of	
the	other	two	literature	algorithms.	However,	this	agreement	appears	to	only	occur	at	depth,	most	
likely	due	to	complex	variability	of	surface	waters.	According	to	their	publications,	the	LIAR	and	
Alin	et	al.	algorithms	are	recommended	for	predicting	measurements	only	below	the	ocean	
surface	(Carter	et.	al.,	2017;	Alin	et	al.,	2012).		
		
Even	though	LIAR	produced	relatively	low	RMSE	values	when	applied	to	the	BOG	dataset,	the	
LIAR	application	showed	the	greatest	disagreement	in	the	contour	plots	(Table	2,	Figure	11).	In	
addition	to	surface	complexity,	nutrient	levels	also	uniquely	influence	LIAR.	Unlike	the	other	four	
literature	algorithms,	LIAR	includes	nitrate	and	silicate	as	input	variables	–	levels	of	which	can	
vary	based	on	upwelling	conditions	(Carter	et	al.,	2017).		
	
The	resolution	of	the	glider	data	was	able	to	depict	upwelling	patterns	–	a	contour	plot	of	glider	
transect	2	explicitly	illustrates	the	rise	of	deep,	undersaturated	(ΩAr	<	1)	water	rising	to	the	
surface	(Figure	13).	The	timeline	of	glider	data	also	coincides	with	the	onset	of	upwelling	on	April	



26,	2017	(Peterson	et	al.,	2017;	Figure	12).	Since	upwelling	introduces	nutrient-rich	water	up	into	
the	water	column,	this	could	explain	LIAR’s	greater	disagreement	in	shallower	waters.		
	

		
Figure	12.	NOAA	Pacific	Fisheries	Environmental	Laboratory	daily	averages	of	upwelling	indices.	Data	are	
derived	from	synoptic	(6-hourly)	sea	level	pressure	gridded	fields	by	PFEL	for	15	positions	along	the	west	coast	
of	North	America.	Position	of	these	data	is	36ºN	and	122ºW	–	coordinates	of	Monterey	Bay.		
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Figure	13.	Contour	plots	of	aragonite	saturation	state	(ΩAr).	Plots	were	developed	after	applying	the	developed	
MLR	algorithm	to	D.	Rudnik	glider	data.	X-axis	indicates	both	distance	from	shore	and	sampling	time.	
Transect	locations	correspond	to	map	shown	in	Figure	2B.		
	
Applying	algorithms	to	this	glider	data	offers	a	unique	opportunity	to	generate	high-resolution	
depictions	of	the	Monterey	Bay	carbonate	system.	Although,	this	application	should	be	cautionary	
given	the	lack	of	a	full	quantitative	validation.	Another	hesitation	in	applying	these	algorithms	to	
the	glider	data,	ties	back	to	the	organic	alkalinity	assessment	of	Monterey	Bay.	Because	the	
influence	of	organic	alkalinity	could	not	be	fully	characterized,	predicted	TA	outputs	grom	
algorithms	could	be	underestimates.	Particularly	at	near	shore	areas,	where	Elkhorn	Slough	
waters	feed	into	the	Bay	and	there	are	greater	organic	alkalinity	sources	(i.e.	humic	substances	
and	suspended	solids).	



CONCLUSIONS	&	RECOMMENDATIONS	
	
Organic	Alkalinity	
	
Because	the	WCOA	NOAA	organic	alkalinity	analysis	was	only	able	to	report	+5	umol/kg	median	
organic	alkalinity	from	95%	confidence	interval	and	the	location	of	significant	stations	were	
clustered	on	top	of	one	another,	the	shown	organic	alkalinity	is	most	likely	not	significant	and	
instead	some	instrument/analyst	error.	Therefore,	organic	alkalinity	is	not	a	concern	in	these	
coastal	ocean	areas.	However,	looking	at	near	shore	estuarine	environments	did	show	more	
likelihood	organic	alkalinity	presence.		
	
A	small	subset	of	Monterey	Bay	data	did	not	indicate	any	conclusive	influence	of	organic	alkalinity,	
though	sampling	from	Elkhorn	Slough	did	show	significant	results.	To	fully	confirm	the	impact	of	
organic	alkalinity	on	the	Bay	system,	actual	nutrient	levels	of	the	discrete	samples	should	be	
implemented	into	the	analysis.	Additionally,	analyzing	BOG	data	for	a	longer	time	frame	than	the	6	
months	between	2017	and	2018	would	be	highly	recommended.	
	
Algorithm	Testing	and	Development	
	
The	pre-existing	algorithms	sourced	from	the	literature,	showed	successful	application	to	the	
NOAA	WCOA	dataset,	which	shows	that	they	extrapolate	well	into	the	coastal	areas	along	the	West	
Coast	of	North	America.	However,	these	algorithms	did	not	show	convincing	application	to	
predicting	TA	and	pH	in	the	Monterey	Bay	region	prior	to	2018.	From	2011-2017	resulting	RMSE	
values	were	rather	high.	The	subsequent	improvement	in	2018,	when	samples	began	being	
analyzed	at	MBARI	facilities,	indicates	that	future	data	points	from	the	BOG	dataset	could	be	
successfully	incorporated	into	algorithm	predictions.	
	
Development	of	a	Monterey	Bay-specific	MLR	algorithm	revealed	that	the	BOG	dataset	captured	a	
prolonged	shift	in	coastal	current	dynamics	during	the	2012-2014	Blob	phenomenon.	The	Blob	
dynamics	likely	extended	surfacing	of	the	California	Undercurrent	–	a	normally	seasonal	
occurrence	–	and	upshifted	total	alkalinity	measurements	in	the	BOG	dataset.	Filtering	out	these	
values	produced	successful	RMSE	values	from	the	developed	algorithm,	though	is	a	helpful	
reminder	that	algorithm	predictions	cannot	account	for	all	of	the	variability	inherent	in	
environmental	processes.		
	
Applying	all	algorithms	to	the	pioneering	2017	glider	data	generated	detailed	depictions	of	the	
Monterey	Bay	carbonate	system	in	the	form	of	contour	plots.	These	plots	allowed	for	initial	
qualitative	confirmation,	showing	that	the	developed	and	CANYON	algorithms	effectively	predicts	
carbonate	parameters	in	Monterey	Bay.		
	
Future	Work	
	
SFSU	provided	discrete	samples	from	San	Francisco	Bay	for	similar	organic	alkalinity	
investigation,	and	initial	analysis	was	also	conducted	in	the	summer	of	2018.	A	similar	ecosystem	
that	is	surrounded	by	metropolitan	areas,	the	SF	Bay	is	another	environment	where	organic	
alkalinity	could	have	a	significant	influence.	Continued	sampling	and	a	full	organic	alkalinity	



assessment	would	provide	an	interesting	context	in	characterizing	the	carbonate	system	of	bay	
environments	along	the	coast	of	Northern	California.		
	
The	developed	algorithm	work	did	not	entail	a	thorough	quantitative	validation	when	applied	to	
the	D.	Rudnik	glider	data.	At	the	time,	CalCOFI	line	66	data	from	2017	was	unavailable,	though	it	is	
now	readily	available	through	the	group’s	hydrographic	database	(1949-2017,	
http://calcofi.org/ccdata.html).	Using	this	data	to	validate	the	application	of	both	the	developed	
and	literature-based	algorithms	to	the	glider	data	would	provide	a	constructive	follow-through	on	
this	work,	and	motivate	further	applications.	This	would	be	especially	useful	in	collaboration	with	
the	efforts	of	the	chemical	sensor	group	at	MBARI	as	well	as	future	glider	deployments.		
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SUPPLEMENTAL	FIGURES	

	
Figure	S1.	Performance	of	TA-predicting	literature	algorithms	when	applied	to	NOAA	WCOA	dataset.	Dotted	
black	line	indicates	1:1	relationship	between	predicted	(calculated)	and	measured	values.		
	

	
Figure	S2.	Performance	of	pH-predicting	literature	algorithms	when	applied	to	NOAA	WCOA	dataset.	Dotted	
black	line	indicates	1:1	relationship	between	predicted	(calculated)	and	measured	values.	LIPHR	values	are	
plotted	twice	to	compare	the	difference	when	using	the	date-specific	application	and	when	not.		


