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ABSTRACT

Many Autonomous Underwater Vehicles (AUV) have high
rates of false-alarms because their health management re-
lies on user-generated rules. We suggest that the high false-
alarm rate could be substantially lowered if fault-detection
were based on actual actuator performance instead of heuris-
tics. We collected data on a critical AUV actuator, a mass-
shifter, in order to develop an unsupervised fault detector. We
found that a small number of features were sufficient to detect
known and novel faults with a high probability of detection
and a low false alarm rate. We also found that n-point false-
alarm reduction schemes performed poorly due to correlation
during actuator startup.

1. INTRODUCTION

Autonomous Underwater Vehicles (AUV) are regularly used
by military, oil & gas, and science customers, yet despite wide
operational adoption their reliability remains low. Griffiths
et al. (Griffiths, Millard, McPhail, Stevenson, & Challenor,
2003) analyzed 4 years of reliability of the Autosub AUV and
found a mean time-to-failure of order 10h; Brito et al. (Brito,
Smeed, & Griffiths, 2014) examined user-generated reliabil-
ity data on the Slocum gliders and found 40% failure rates;
Brito (Brito, 2015) examined the reliability of the Autosub-
LR and found 20h mean time-to-failure.

Available AUV reliability data does not discriminate between
actual faults and false alarms. A recent unpublished report
based on 10,000 hours of operational data on Tethys-class
AUVs suggested that 95% of the faults were false alarms
(Bellingham, 2014); of those, 60% originated with the actua-
tors, 35% with the control software, and 5% with the sensors.
This finding suggests that reliability could be improved by as
much as 20X by reducing the rate of false alarms.

One of the reasons for this high rate of false alarms is the near-
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universal dependence on user-generated health-management
rules. This approach is expedient but it is error-prone as it
relies on an incomplete picture of the vehicle’s state and con-
text.

A second reason is the relative rarity of faults: testing at 1Hz
for example when faults occur every 10 hours would require a
detector capable of handling events with a 3x10-5 probability
of occurrence. Because faults are rare events, there usually is
not enough data to train a classifier.

An alternative to supervised learning is unsupervised learn-
ing, where data groupings are found from regularities in the
data instead of user-generated labels. A common instance
of unsupervised learning is an anomaly detector, where the
detector is trained directly from the nominal data and its per-
formance is adjusted using a small amount of fault data.

Raanan et al. recently used topic modeling, a mixed-
membership Bayesian unsupervised learning technique, to
detect vertical plane failures (Raanan et al., 2016, 2017). Us-
ing no labels, the algorithm grouped the vehicle’s dynamical
data into clusters. These clusters were found to map one-
to-one with the vehicle’s dynamical states, including clusters
that mapped to faults.

Fagogenis et al. (Fagogenis, De Carolis, & Lane, 2016) used
a Bayesian model with a hidden switch variable to detect par-
tial loss of AUV thrust. As with Raanan et al., training used
the vehicle’s dynamical sensors, this time to create models of
the dynamics and an estimate of the switch variable.

Raanan et al. and Fagogenis et al. both targeted fault de-
tection based on changes in the vehicle’s dynamics. Here
we focus on the detection of actuator faults. Specifically, we
consider an AUV mass-shifter, the device that moves the ve-
hicle’s battery back and forth to change pitch, and create an
anomaly detector from its input and output current and ve-
locity under nominal and faulty conditions.

The paper is organized as follows. Section 2 describes the
mass-shifter, the data collection setup, the data processing,
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and the fault-detection algorithm. Section 3 presents the ex-
perimental results and the detector’s fault-detection perfor-
mance. Section 4 discusses the results, and Section 5 presents
our conclusions.

2. METHODS

2.1. System Description

The vehicle under consideration is a Tethys-class Long-
Range Autonomous Underwater Vehicle (LRAUV).
LRAUVs perform unmanned basin-scale oceanographic
measurements, and have an operational envelope of 21 days
(Bellingham et al., 2010).

LRAUVs have 6 actuators (Figure 1): a thruster, elevator
and rudder combination for control of the vertical and hor-
izontal planes, an internal mass-shifter for pitch control, a
variable buoyancy system, and a drop-weight for emergency
recovery. The vehicle carries a standard suite of naviga-
tional sensors: depth, 9-axis inertial measurement unit, 3-
axis ground-referenced velocity, and a mast-mounted GPS for
geo-referencing while at the surface. Communication with
the vehicle is done over satellite through an Iridium modem.

The LRAUV’s health management system consists of a set of
fault-detection and fault-recovery components spread across
the individual subsystems, with a common escalation archi-
tecture (Kieft et al., 2011). Each component detects faults
based on a certain set of threshold-based conditions, and
fault-recovery is attempted if the threshold is crossed n con-
secutive times. If fault-recovery fails, the vehicle ascends to
the surface and communicates with a remote operator who
then determines whether to clear the fault or abort the mis-
sion. Based on 10,000 mission hours, it was found that 95%
of the faults are false-alarms and readily cleared by the oper-
ator (Bellingham, 2014).

Figure 1. Cutaway of the Long-Range AUV. The mass-shifter
(yellow) sits in the vehicle housing.

The focus of this paper is the mass-shifter. The mass-shifter
is one of the vehicle’s critical sub-systems: although it has a
high record of reliability, its failures can cause vehicle loss.

The mass-shifter consists of a DC brushed motor with a plan-
etary gear connected to the battery through a lead screw (Fig-
ure 2). The motor’s servo-controller runs in constant ve-
locity mode using motor encoder counts for feedback. The
known modes of failure of the mass-shifter are current over-
load, where the tray runs into its travel limit, and loosening

of the screw securing the battery to the lead screw, which re-
leases the battery from any constraints.

Figure 2. Front view of the LRAUV’s mass-shifter: The mo-
tor is in the foreground, and a lead screw connects the battery
to the motor shaft.

2.2. Data Collection

We instrumented a mass-shifter using high-resolution sen-
sors. We used a National Instruments shunt current sensor in-
line with the motor (NI-DAQ 9227), a National Instruments
voltage sensors across the motor terminals (NI-DAQ 9229),
an absolute battery tray position sensor (Tensor Solutions
SP1-4 analog string potentiometer, powered by 10V isolated
supply, sampled by NI-DAQ 9229), and a pair of vibration ac-
celerometers mounted on the battery tray (PCB-Piezotronics
622B01 and 333B40 ICP 1-axis piezo accelerometers, sam-
pled by IEPE-enabled NI-DAQ 9234). Sensor data was
passed through 100 dB anti-aliasing filters at the Nyquist fre-
quency, and sampled at 24 bits. Time-synchronization was
maintained by a National Instruments Compact-DAQ 9174
chassis.

We collected data in three cases:

• Nominal operation: the mass-shifter was commanded to
move in forward or in reverse between two positions.

• Known faults: Limit fault, a current overload condition,
was simulated by starting adjacent to a travel limit, and
motion was commanded until the servo-controller de-
tected a current overload and de-energized the actuator.
Set-screw fault was simulated by loosening the screws
connecting the lead screw to the battery tray.

• Novel faults: new failure modes were created to assess
the detector’s response to novelty. We simulated two
modes: Sensor fault, where the position sensor was dis-
connected, and Config fault, where an inadvertent con-
figuration file parameter change was simulated, specifi-
cally setting the commanded velocity to 50% and 150%
of nominal.

Data was collected in the following order: nominal, limit
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fault, nominal, setscrew fault, nominal, sensor fault, nomi-
nal, speed configuration fault. Each set was repeated for 5
pitch values. The entire sequence was repeated twice. A total
of 5000 seconds of steady-state data was collected, equivalent
to 500 hours of at-sea operation.

2.3. Data Processing

Data was processed as follows:

• Current was segmented into startup transient, steady-
state, and stop transient. Transient data was discarded,
and steady-state current was segmented into non-
overlapping 100ms sections. The mean and standard
deviation were computed over each segment. The effect
of pitch was removed:

I = Inot corrected −K · θ (1)

where the coefficient K = 1.07mA/deg was calculated by
linear regression of the nominal current versus pitch. A
total of 50,000 data points were generated.

• Position was processed similarly to current except for
pitch de-trending.

• Mean velocity and standard deviation were calculated us-
ing centered differencing of the mean position. Analysis
of error vs sampling period indicated that the measure-
ment error was 0.5µm/s at 10Hz.

• Voltage was processed identically to current. Since mo-
tor voltage is linearly dependent on current and velocity,
it was not used by the detector.

• Vibration: Compared with the current spectrogram, the
vibration spectral lines were diffuse and less numerous,
and were not retained.

2.4. Anomaly Detector

There is a reasonable expectation that steady-state data should
be clustered and representable by a multi-variate Gaussian
model. A multi-variate Gaussian model represents the data
with a Gaussian probability density:

f(X) =
1√

det(2πΣ)
exp (−1

2
(X − X̄)+Σ−1(X − X̄))

(2)

where the mean X̄ and covariance Σ of the distribution are
computed from a training set containing N nominal data
points:

X̄ =
1

N

N∑
i=1

Xi

Σ =
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)+.

(3)

Testing for normality can be done a number of ways (Mardia,
1980). We used an approach where the probability of occur-
rence outside regions of increasing Mahalanobis distance is
compared with the normal distribution.

The decision whether a measurement is nominal or faulty is
based on whether it falls inside or outside the decision bound-
ary:

f(X) = threshold. (4)

The decision boundary of a Gaussian detector is an ellipsoid.

To determine the threshold, we used a mixture of nominal and
faulty data the development set and created a grid of thresh-
old values. For each value, we computed the probability of
detection Pd (probability that a fault is detected as a fault i.e.
that it falls outside the decision boundary), the probability of
false-alarm Pfa (probability that nominal data falls inside the
decision boundary), and a score defined by:

F =
2

1
Pd

+ 1
1−Pfa

, (5)

and selected the threshold that optimized the score.

Performance was measured by computing Pfa and Pd on a
third set, the test set, consisting of a mixture of nominal and
faulty data.

Performance was also measured on a fourth set, the novelty
set, consisting of faults not seen by the detector during train-
ing. Because all novelty data is faulty, the relevant perfor-
mance metric is Pd.

To create the training, development, and test sets, data was
randomized and split according to:

• Training set: 60% of the nominal data, used to train the
detector.

• Development set: 20% of the nominal data and 50% of
the faulty data, used to optimize parameters.

• Test set: remaining 20% of the nominal data and remain-
ing 50% of the faulty data, used to measure performance
on new data.

Randomization was done using independent random permu-
tations of the data. This procedure is appropriate because, ex-
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cept for the data during startup, consecutive samples showed
no correlations.The novelty set was not randomized.

A common method to increasing the mean time-to-false-
alarm (TTFA) is to use n consecutive detections before calling
an alarm:

TTFA =
1

Pfa(n)
(6)

where Pfa(n) is the probability of encountering n consecu-
tive false alarms. To measure Pfa(n), we went over each file,
counted the number of points part of a block of n or more
false-alarms, and divided this by the total number of points.

An upper bound on the TTFA is provided by uncorrelated
data. In this case, the probability of occurrence of n consec-
utive false-alarms is:

Pfa(n) = (Pfa)n uncorrelated data (7)

i.e. the TTFA increases exponentially fast with n.

We used a second anomaly detector to assess the perfor-
mance of the Gaussian detector. We used a 1-class Support
Vector Machine (Schölkopf, Platt, Shawe-Taylor, Smola, &
Williamson, 2001), which maps data into a high-dimensional
feature space via a kernel, and then iteratively finds the sur-
face that maximizes the margin between nominal and faulty
data. We used a Gaussian kernel because it produces more
robust classification models than other functions like polyno-
mial or sigmoidal kernels (Bounsiar & Madden, 2014).

The 1-class SVM has two hyper-parameters. To select their
value we performed a grid search where for each parameter
pair we computed the decision boundary using the training
set, then computed the score described in Equation (5) using
the development set, and finally kept the parameter pair that
optimized the score.

3. RESULTS

Figure 3 shows the actuator current vs time before process-
ing. Current started with a 500mA / 250ms startup transient,
followed by steady-state at 20mA, and ended with a 500mA
/ 250ms decay transient. Velocity (Figure 4) exhibited an un-
dershoot during the initial rise, followed by steady-state at
0.7mm/s steady-state. The velocity overshoot was observed
in the string-pot velocity but not in the motor encoder’s, in-
dicating differential motion between motor shaft and mass
at startup possibly due to a temporary deformation of the
mass-shifter wheels. The current spectrogram (Figure 5) had
showed a series of spectral lines. Lines were observed at the
fundamental, 1st harmonic, and 7th harmonic of the motor
revolution rate (67rps). Multiple lines were also observed at
non-integer multiples, believed to originate with the motor

gearhead. Spectral information, albeit useful for diagnostic,
was not used for anomaly detection.

Figure 3. Current versus time. The insert shows details of the
startup transient.

Figure 4. Velocity versus time.

Figure 6 shows the current vs velocity under nominal condi-
tions at pitch = 0. The two clusters correspond to forward mo-
tion (upper quadrant) and reverse (lower quadrant). The first
second of motion is shown with orange stars: as explained in
the previous paragraph, the tail is due to string-pot velocity
overshoot.

Testing for normality of the data was done by comparing the
fraction of nominal points outside the Mahalanobis distance

D(X) =
√

(X − X̄)+Σ−1(X − X̄) (8)

with the prediction for a 2D Gaussian

P (D(X) > A) = exp (−1

2
A2). (9)

The two curves diverged at A=2.5, indicating that 95% of the
points were well-represented by a normal distribution. The

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Figure 5. Current spectrogram. Red arrows correspond to
harmonics of the motor rate.

Figure 6. Current vs velocity under nominal conditions at
pitch=0. Data corresponding to the first second of motion is
shown with orange stars. Top right: forward. Bottom left:
reverse.

remaining 5% corresponded mostly to string-pot undershoot
during startup.

Figure 7 shows the complete set of nominal and faulty data
under all pitch conditions in the forward direction, and the
decision boundary the reverse direction data is a mirror im-
age and is not shown. We observed the following:

• The nominal data was well-clustered. As explained
above, it is well modeled by a 2D Gaussian except for
the 5% of the data associated with string-pot startup un-
dershoots.

• The limit fault data spread from the nominal cluster to-
ward high current/low velocity. This is as expected be-
cause the actuator is pressing against a hard mechani-
cal stop. Most of the data fell well outside the decision
boundary, indicating a high probability of detection.

• Careful examination of the set-screw fault data indicated

that separation did not occur when the actuator pushed
against gravity. Since in this case the fault was not ex-
pressed, this data was discarded. The remaining data fell
around the velocity = 0 line, well outside the decision
boundary.

• The speed fault data had two clusters, one at 50% of
nominal velocity, one at 150% – as expected. Most of
the data fell outside the decision boundary.

• The sensor fault data had a single cluster at zero velocity,
well outside the decision boundary.

Figure 7. Distributions of features under nominal and faulty
conditions, and Gaussian model decision boundary. Color
coding is detailed in the legend box.

For comparison, Figure 8 shows the 1-class SVM decision
boundary. The performance is comparable, except that the
SVM gives more importance to the 5% of points in the tail.
As a result, the SVM has a slightly smaller rate of false-alarm
but a smaller probability of detection.

Figure 8. Decision boundary for 1-class SVM.

Figure 9 shows the ROC curve and the optimal threshold loca-
tion for the Gaussian model and comparison with the 1-class
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SVM. The optimal threshold was 6x10-3, corresponding to a
Mahalanobis distance of 3.

Figure 9. ROC curve for the Gaussian detector (red), and
comparison with a 1-class SVM (blue). Optimal performance
occurred near Pd = 0.9. (red and blue circles). The insert
shows a zoom around the optimal section.

Table I shows that the single-point Pfa and Pd of the two
detectors was comparable: Pfa 2% and Pd 90% on the test
set, and Pd 90% on the novelty set.

Table 1. Detection algorithm performance.

Set Gaussian 1-class SVM
Pd% Pfa% Pd% Pfa%

Dev Set 92 2.6 91 1.7
Test Set 91 2.2 90 1.8
Novelty Set 92 - 86 -

We examined the effect of additional features and found it to
be negligible. For an electric motor, voltage is linearly re-
lated to current and velocity i.e. it adds little information.
We found that the current and velocity standard deviations
were well-clustered during nominal operation, and that they
changed on certain faults, however because the mean current
and velocity already provided good separation between nom-
inal and faulty data, the effect on Pd and Pfa was negligible.

Figure 10 shows the mean number of samples required to
encounter n consecutive false-alarms versus n. The Gaus-
sian model and 1-class SVM performed similarly, but neither
achieved the growth predicted for uncorrelated data (Equation
7).

4. DISCUSSION

4.1. Summary

We developed an anomaly detector for a mass-shifter using
its current (input) and velocity (output). To do so we col-
lected current-velocity data under nominal, faulty, and novel

Figure 10. Mean number of samples versus detection latency
for the Gaussian model (blue) and the 1-class SVM (red). The
uncorrelated case is shown in black.

conditions, and developed a Gaussian anomaly detector. The
detector achieved a 90% probability of fault detection and a
2% false-alarm rate. We compared this to a 1-class SVM and
found comparable performance. We measured the mean time-
to-false-alarm versus number of consecutive false alarms and
found that the improvement fell short of the uncorrelated
case.

4.2. Performance

The detector’s performance is surprisingly good considering
that the feature space is only two-dimensional. The funda-
mental reason for this is that the mass-shifter operates in a
highly structured environment with a single set point: it has 1
degree of freedom, it runs closed-loop control on one of the
two features, and the input is measured. Additionally, fluc-
tuations due to friction, gear tooth engagement torque, and
small shape variations along the screw are small. Under those
conditions, even a detector with a simple decision boundary
like a Gaussian detector is expected to capture most of the
nominal data with a low Pfa.

4.3. Temporal Correlation

We found that the mean time-to-false-alarm only increased
20-fold as the criterion changed from 1 to 8 consecutive false-
alarms. The expected change assuming uncorrelated data is
1011, indicating that the false-alarms were temporally corre-
lated.

As discussed in the results section, a velocity undershoot
was observed during the startup transient. This overshoot
lasted anywhere from 0.5 to 1.5 seconds depending on pitch
and direction of motion, and sometimes was absent. During
the overshoot, the feature vector moved outside the decision
boundary, producing a sequence of 5 to 15 consecutive false
alarms.
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Because the longest observed sequence was 15, one could ar-
gue that anything over n=15 should be sufficient to eliminate
false-alarms. The difficulty with this argument is that in ac-
tual operation the duration of motion ranges anywhere from 1
to 30s, i.e. the strategy is not viable over the full operational
range.

Although the performance of the detector is encouraging, im-
provements to its short-duration performance are desirable.
Such improvements could be achieved using time-series fore-
casting algorithms such as auto-regressive models.

4.4. Application to Other Actuators

We are in the process of extending this approach to the
LRAUV’s other actuators. The methodology is expected to
work unchanged on the thruster and on the variable buoyancy
system, since both are driven by DC motors and operate in
highly structured environments around a small number of set
points.

The methodology however will require adaption in order to be
applicable to the rudder and elevator. Like the mass-shifter,
these actuators run off DC motors but because the set point is
continuously updated, their steady-state current and velocity
cannot be used. Alternative features capable of capturing sys-
tem dynamics with a small number of parameters will have to
be devised instead.

5. CONCLUSION

We developed an unsupervised anomaly detector for a mass-
shifter using its input (current) and output (velocity). The
detector achieved 90% probability of fault detection and 2%
false-alarm rate. Despite the good single-point performance,
we found that the n-point false-alarm rate scaled poorly with
n due to correlation during actuator startup. Improvements to
the short-duration performance could be achieved with time-
series forecasting.
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