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ABSTRACT

We derive a physics-based model of nominal and faulty op-
eration for an electro-mechanical linear actuator, and use it
to perform fault isolation. We present a method to identify
model parameters directly from actuator performance mea-
surements, and demonstrate the approach on an unmanned
underwater vehicle mass-shifter. Our findings are twofold:
first, that the system is well-represented by the model, and
second, that the algorithm successfully isolated the faults.

1. INTRODUCTION

Unmanned underwater vehicles generally use electro-
mechanical actuators to perform flight control tasks – e.g.
thruster, elevator, rudder, mass-shifter, variable buoyancy
system, etc. – (Webb, Simonetti, & Jones, 2001; von Alt,
2003; Wernli, 2000). Model-based fault detection was dis-
cussed extensively in (Gertler, 1998; Patton, Frank, & Clark,
1989). Moseler and Isermann applied it to fault detection
of DC motors (Moseler & Isermann, 2000). Nandi et al.
extended this to condition monitoring (Nandi, Li, & Toliyat,
2006). More recently, Fagogenis et al. (Fagogenis, De Car-
olis, & Lane, 2016) used a Bayesian model with a hidden
switch variable to detect partial loss of thrust.

Kemp et al. (Kemp & Raanan, 2017) applied a steady-
state data-centric fault-detection approach on an electro-
mechanical linear actuator – a mass-shifter. The method
was subsequently extended with success to a thruster (Kemp,
2017). However, the method failed when applied to rudders
and elevators. Unlike thrusters and mass-shifters, which have
a well-defined operating point, rudders and elevators are in a
constant state of change.

One of the difficulties extending Kemp et al.’s approach
(Kemp & Raanan, 2017) to fault isolation can be illustrated
with an overload fault: when an obstacle stands in the way,
the servo-controller increases current until the obstacle is
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overcome – or until overload-protection circuitry shuts the
system down. Because the current is higher than usual, fault-
detection is straightforward. However, because of the time-
dependence, the decision boundary is unnecessarily large.
We observed similar limitations with a coupling fault, where
the motor and the mass become kinematically decoupled and
the gap between the two increases with time.

This paper presents a model-based approach to fault-isolation
of a linear actuator, and its specialization to a mass-shifter.
The paper is organized as follows. Section 2 describes the
electro-mechanical linear actuator model. Section 3 describes
the parameter identification procedure. Section 4 presents the
fault-isolation results. Section 5 discusses the results, and
Section 6 summarizes the paper.

2. MODEL

2.1. System Description

The system under consideration is a mass-shifter, an electro-
mechanical linear actuator that functions to move a large mass
- the vehicle battery – back-and-forth in order to adjust the
pitch of the vehicle. The mass-shifter under consideration
consists of a DC brushed motor with a planetary gear con-
nected to a large mass through a lead screw. The servo-
controller normally operates in constant velocity mode, using
position feedback from a quadrature encoder.

The motor shaft is connected to the load through a drive-train:
a gear box which matches the motor’s torque to the load’s, a
torque coupler which absorbs misalignments between the out-
put shaft and the load, a lead-screw which converts rotation
into linear motion, and a nut which connects the lead-screw
and the mass.

The mass is constrained to move along parallel rails on four
wheels – front and back, left and right. At either extremity,
the rails are terminated by hard travel limits – blocks of alu-
minum designed to stop the wheels.

The mass-shifter has two modes of failure. The first is a
current overload: because mass position is estimated from
the motor encoder, and because the travel limit protection is
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implemented in software, wheel slippage, encoder noise, or
back-driving can each cause a shift in the position estimate;
when this occurs, the limit protection is no longer effective.
The second mode of failure is a loss of coupling, which oc-
curs when the set-screw connecting the lead-screw to the nut
comes loose. Unlike the overload failure, coupling failures
occur suddenly.

To capture both nominal and faulty dynamics, we represent
the system with three state variables:

X =
[
ω φ ∆

]
(1)

where ω is the motor’s angular velocity (in radians/s), φ is the
motor’s angular position (in radians), and ∆ ≡ φ − Dx, the
gap between motor and mass position (in radians), where x is
mass position, and where the kinematic ratio D is such that
∆ is zero in nominal conditions.

2.2. Electrical Model

The model for a DC electrical motor is a voltage source Vs in
series with a source resistance Rs, a motor resistance Rm, an
inductance L, and a back-emf voltage that is proportional to
the motor’s angular velocity:

Vs = Ri+ L
di

dt
+Kmω (2)

where R is the sum of the two resistances and Km is the mo-
tor torque constant.

Most DC motors are controlled by a cascaded controller,
where the inner loop controls current and the outer loop con-
trols motor velocity. In position mode, the vehicle application
issues a commanded position xcmd, which is converted into a
commanded velocity profile. We consider a trapezoidal pro-
file, i.e. a constant acceleration phase, followed by a constant
velocity phase, and ending with constant deceleration phase.
Commanded acceleration, deceleration, and velocity are typ-
ically uploaded to the controller firmware at power-up.

For efficiency reasons, the input to the motor is a PWM volt-
age train rather than a DC current – the implicit assumption
being that the motor inductance is large enough to smooth
the current. We assume this, and replace the motor equation
2 with its time-averaged version:

V = Ri+Kmω (3)

where V is the time-averaged source voltage - equal to the
PWM duty cycle times the source voltage. This is the first
model equation.

2.3. Mechanical Model

The mechanical model of the motor is:

J
dω

dt
= Kmi− τload (4)

where J is the effective moment of inertia, which accounts
for the motor shaft, the gear box, and the mass’ inertia, and
τload is the torque applied to the motor shaft by the load. The
load has a component due to friction – motor, drive train, and
mass – and one due to gravity. We assume Coulomb friction,
and make the small vehicle pitch approximation:

τload = A+Bθ (5)

where A is the zero-pitch friction, B is the friction slope, and
θ is the pitch of the vehicle. This is the second model equa-
tion.

2.4. Nominal Model

The nominal model consists of the electrical and mechanical
models above, augmented by the dynamics introduced by the
servo-controller and the effect of voltage saturation.

The outer loop uses a PI controller to command current:

icmd = Kp(ωcmd − ω) +Ki

∫ t

tref

dt′(ωcmd − ω) (6)

where icmd is the commanded current, ωcmd is the com-
manded speed, Kp and Ki are the proportional and integral
gains, and where the error integral is initialized to 0 at tref .
Because the inner loop responds much faster than the outer
loop, to a good approximation i = icmd, with the caveat that
the source voltage cannot exceed the supply voltage Vmax

(i.e. the PWM duty cycle cannot exceed 100%):

V ≤ Vmax (7)

Combining these gives the nominal model:
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J
dω

dt
= Kmi− τload

dφ

dt
= ω

d∆

dt
= 0

i =

icmd(ω) Ricmd +Kmω ≤ Vmax

Vmax −Kmω

R
otherwise

icmd ≡ Kp(ωcmd − ω) +Ki

∫ t

tref

dt′(ωcmd − ω)

τload = A+Bθ

(8)

2.5. Current Overload Model

When contact with the travel limit occurs, the servo-controller
increases the output torque in order to maintain speed. The
extra torque causes both compression of the wheel and de-
formation of the mass assembly. Wheel compression is non-
linear due to variable contact effects and wheel composition;
we model it with a quadratic dependence. Mass assembly
deformation is essentially linear with motor position.

To capture these effects, let x be the coordinate of the mass
along the rail, and let xc be the position when contact is first
made. The model is the same as the nominal model, except
that:

τload = (A+Bθ) + C(x− xc)2 whenx > xc

d∆

dt
= Eω

(9)

where C is the stiffness constant, and when the assembly
compressibility E accounts for the linear deformation of the
mass assembly.

2.6. Loss of Coupling Model

After the coupling fails, φ and x are no longer related
kinematically. Assuming that the mass-shifter is non-
backdriveable, the gap between motor and mass position
increases linearly, the moment of inertia decreases, and the
friction is smaller and independent of vehicle pitch:

J ′
dω

dt
= Kmi− τload

dφ

dt
= ω

d∆

dt
= ω

τload = A′

(10)

where J ′ and A′ are the moment of inertia and zero pitch
friction without the load.

3. PARAMETER IDENTIFICATION

Parameter identification is done using a combination of man-
ufacturer data (Maxon A-max 22-110138 motor; Maxon
GP 22B-110357 planetary gear head; Nook lead-screw with
1mm/rotation pitch), direct measurements, pre-set values,
and model identification. Table 1 summarizes the parameters,
their values, and how they were determined.

parameter name value method
Rm motor resistance 20.2Ω manuf
Km torque constant 21.2mNm/A manuf
D kinematic ratio 5.28e5rad/m manuf
Vmax supply voltage 15.1V measure
wcmd commanded speed 410rad/s preset
αcmd commanded accel 6e4rad/s2 preset
Kp proportional gain 1.1e-3 As/rad ID
Ki integral gain 0.45 A/rad ID
J moment of inertia 4.7e-7kgm2 ID
A zero pitch friction 4.6e-4Nm ID
B friction slope 2.3e-5Nm/deg ID
Rs source resistance 0.8Ω ID
C stiffness constant 85N/m ID
E assembly compressibility 0.48 ID
A′ decoupled friction 3.4e-4Nm ID
J ′ decoupled inertia 4.6e-7kgm2 ID

Table 1. Model parameters.

3.1. Nominal Model Parameters

We measured motor current using a shunt resistor in-line with
the motor (NI-DAQ 9227), a voltage sensors across the mo-
tor terminals (NI-DAQ 9229), and an absolute position sensor
connected to the moving mass (Tensor Solutions SP1-4 sam-
pled by NI-DAQ 9229). The measured voltage is the motor’s,
i.e. source voltage minus source resistance loss:

Vmeasured = V −Rs ∗ i (11)

Data was passed through 100 dB anti-aliasing filters at the
Nyquist frequency, and sampled at 1600 samples per second
at 24 bits. Time-synchronization between the channels was
maintained by a National Instruments Compact-DAQ 9174
chassis.
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The servo controller (AllMotion EZSV23) used a quadra-
ture encoder to close the loop on velocity (Maxon MR-M,
32 counts per revolution).

Figures 1-3 shows motor voltage, motor current, and motor
speed vs time during nominal operation. Speed was calcu-
lated from the current and voltage as:

ωmeasured = (Vmeasured −Rm ∗ i)/Km (12)

Four phases were observed:

• 0-7ms: acceleration – rapid increase of the current, volt-
age, and speed.

• 7-50ms: voltage saturation.

• 50-300ms: stabilization

• 300ms ++: steady-state.

Different factors are active in each phase; this allows for se-
quential identification of the parameters.

During the saturation phase, the source voltage is constant.
Accordingly, the source resistance Rs is equal to the slope of
the measured voltage versus current. Because the equation of
motion for ω is first order and linear, the solution is a saturated
exponential:

ω = ωo(1− exp(−t/τ)) where τ = RJ/Km
2 (13)

where ωo is the steady-state angular velocity. This relation-
ship allows the moment of inertia J to be derived directly
from the time constant.

During the stabilization phase, the source is not saturated.
The equation of motion for ω is second order and linear, i.e. it
admits closed-form expressions for the oscillation frequency
and decay time:

τdecay = 2J/(KmKp)

ω2
oscillation = KmKi/J − 1/τ2

(14)

allowing the proportional gain Kp to be derived from the first
equation, and the integral gain Ki from the second.

During the steady-state phase, the load is proportional to cur-
rent. The zero-pitch friction A and friction slope B can be
found by linear regression of torque versus pitch.

3.2. Overload Model Parameters

Figure 4 shows motor current vs distance after contact with
the travel limit is made (x = 0). As described by the overload
model, the increase is nearly quadratic. The stiffness constant

Figure 1. Motor voltage versus time.

Figure 2. Motor current versus time.

C was derived by fitting the data to a quadratic model (solid
line).

3.3. Coupling Fault Model Parameters

The dynamics after a coupling fault unfolds similarly as in the
nominal case, the only difference being the values of A and
J. A′ and J ′ were found using the same procedure as above:
J ′ from the voltage saturation phase, and A′ from the steady-
state phase.

Figure 5 shows how the gap ∆ changes before and after a cou-
pling fault. Delta was calculated by integrating motor speed
(Equation 12) minus the absolute position sensor reading:

∆measured = (

∫ t

tref

dtωmeasured)−D ∗ xmeasured (15)

Except for a 0.4mm of backlash, ∆ is approximately zero
in nominal operations. After the coupling fault, ∆ increases
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Figure 3. Motor speed versus time.

Figure 4. Current overload model.

linearly with time, reflecting the fact that the motor is turning
at constant speed while the mass stays in place.

4. FAULT ISOLATION

Figures 6 and 7 show projections of the nominal and faulty
data in feature space. The first figure shows the current and
speed projection, and the second the delta and speed projec-
tion.

When nominal (black dots), speed and current are clustered
and delta is small. This reflects the steady-state which is
reached in nominal conditions.

The overload fault (blue dots) is also clustered in speed, but
the current is spread across a large range. This reflects the
current increase required to maintain speed. The gap ∆ also
increases, which combined with the fact that motor speed is
maintained, indicates that substantial mechanical deforma-
tion, of order 2-3 mm, is taking place. The deformation was
confirmed visually, and is reflected in the overload model.

Figure 5. Delta before and after a coupling fault.

The current vs speed plot for the coupling fault is nearly indis-
tinguishable from that in the nominal case. This is consistent
with the small modification of the parameters. A much larger
difference is observed in the gap ∆ vs speed plot, where con-
sistent with Figure 5, ∆ increases linearly with time.

Figure 6. Current and speed in nominal and faulty conditions

4.1. Time-Dependent Mixture Model

To perform fault isolation, we represented the system as a
time-dependent mixture of faulty and nominal components.
The mean was computed by propagating the respective equa-
tion of motion forward in time. The variance was assumed
constant. The likelihood of a component was determined by
the residual between prediction and measurement.

Let Xi(t) be the state predicted by model i at time t, let Y (t)
be the measurement, and let H(Xi(t)) be the predicted mea-
surement. We computed the residual ε as:

εi =
√

[Y (t)−H(Xi(t)]+Σ−1[Y (t)−H(Xi(t))] (16)
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Figure 7. Delta and speed in nominal and faulty conditions

For simplicity, we assumed that the covariance Σ was diago-
nal and the same for each model.

Figures 8, 9, and 10 show the residual of each model in three
cases: no faults (i.e. nominal data), overload fault, and cou-
pling fault. In all cases, the fault was detected at t=3s.

Nominal case (Figure 8): the coupling fault model and the
overload fault model both have high residuals that increase
with time. For the coupling fault model, the high residual is
due to its prediction of a large gap (∆); for the overload fault
model, it is due to its prediction of high current.

If one were to assume Gaussian mixtures, P ∝ exp(−0.5ε2),
the high values of the residuals would indicate astronomically
small probabilities of either fault.

Overload fault case (Figure 9): both the nominal and the
coupling fault models have high residuals. For the nominal
model, this is due to its failure to explain the high current; for
the coupling fault model, it is due to both its predicted high
∆ and its failure to predict a high current.

The nominal and the overload models have similar residuals
for about 1s after the fault is detected. This is due to a com-
bination of factors, and will be discussed in the next section.

Coupling fault case (Figure 10: both the nominal and the
overload fault models have high residuals. For the nominal
model this is due to its failure to explain the large gap; for
the overload fault model, it is due to both its predicted high
current, and its failure to predict a large gap.

5. DISCUSSION

5.1. Short Time Ambiguity

For a brief time after an overload fault, the nominal and the
overload fault models have similar residuals (Figure 9). This
is due to a combination of factors:

Figure 8. Fault isolation method applied to nominal data.

Figure 9. Fault isolation method applied to an overload fault.

• Initialization error. When the models are invoked, they
are initialized with the latest state estimate; estimation
error causes artificial transient behavior.

• Variability. Variability from run to run, particularly due
to small misalignments of the mass, cause absolute posi-
tion sensor errors. As a result, the actual location where
contact with the travel limit tab first occurs is variable.

• Detection time delay. The overload model assumes that
the torque due to the travel limit is a function of the dis-
tance traveled after contact. As explained above, the lo-
cation of the point of contact is uncertain. To overcome
this, we made the assumption that detection is immedi-
ate, and initialized the model under the assumption that
x = xc at initialization. The delay between detection and
actual contact introduces a prediction error.

• Modeling error. We assumed that the force against the
travel limit increases quadratically. Figure 4 shows that
this is a fair but imperfect assumption.
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Figure 10. Fault isolation method applied to a coupling fault.

5.2. Parameter Identification

Prediction quality is a function of parameter selection. The
three models are described by 16 parameter, 10 of which were
derived by data fitting. The approach we followed is mini-
malist and partitioned, i.e. as few parameters as the physics
requires, and sequential parameter identification using inde-
pendent data. We believe that this procedure is robust, and
that it leads to models that fit the data remarkably well. The
drawbacks are that it is manual, and not adaptive.

5.3. Next Steps

We’re in the process of improving the method using analytical
redundancies, and of developing a hardware implementation
for an autonomous vehicle:

• Current and voltage provide an estimate of angular
speed; they therefore provide a redundant position es-
timate that can be used to isolate position sensor faults.

• The commanded current can be estimated from the time
history of angular velocity, i.e. it provides a redundant
current estimate.

• The quadrature encoder data currently used by the servo
controller can be used as an independent position mea-
surement.

• A strap-down system that implements this algorithm is
under development for an autonomous underwater vehi-
cle. The system is expected to undergo sea-trials in 2019.

6. CONCLUSION

We developed a model-based framework for fault-isolation
of an electro-mechanical linear actuator, and tested its perfor-
mance on a mass-shifter. We derived physics-based models of
the system’s nominal operation, of an overload fault, and of a
coupling fault. We developed a sequential procedure for pa-
rameter identification, and used experimental data to populate

the models. We implemented fault-isolation using a mixture
of time-dependent components, whose parameters are com-
puted from the models. We found that 1-the models accu-
rately represented the system, and 2- that they isolated the
correct faults successfully. We are in the process of adding
analytical redundancies to the system, and are developing a
hardware implementation for an autonomous underwater ve-
hicle.
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