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Abstract 

For robots to succeed in complex missions, they must be reliable in the face of 
subsystem failures and environmental challenges. In this paper, we focus on 
autonomous underwater vehicle (AUV) autonomy as it pertains to self-perception 
and health monitoring and argue that automatic classification of state-sensor data 
represents an important enabling capability. We apply an online Bayesian 
nonparametric topic modeling technique to AUV sensor data in order to 
automatically characterize its performance patterns, then demonstrate how in 
combination with operator-supplied semantic labels these patterns can be used for 
fault detection and diagnosis by means of a nearest-neighbor classifier. The method 
is evaluated using data collected by the Monterey Bay Aquarium Research 
Institute’s Tethys long-range AUV in three separate field deployments. Our results 
show that the proposed method is able to accurately identify and characterize 
patterns that correspond to various states of the AUV, and classify faults at a high 
rate of correct detection with a very low false detection rate. 

 

1 Introduction 

As the capabilities of autonomous underwater vehicles (AUVs) improve, the tasks they 
perform become more complex and require longer endurance and higher reliability. Current 
generation AUVs are limited in their ability to diagnose faults1 in hardware/software 
components and detect unforeseen events, such as unexpected interactions with the 
surrounding environment. In principle, AUVs equipped with the ability to diagnose faults 

                                                             
 

1 We define a fault as a deviation from expected behavior. 
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and reason about mitigation actions could improve their survivability and increase the 
value of individual deployments by replanning their mission in response to faults 
(Bellingham & Rajan, 2007). However, in practice system-level fault protection 
architectures implemented onboard most AUVs employ a rule-based emergency abort 
system that is triggered by specific events, such as critical subsystems becoming 
unresponsive, or the vehicle exceeding its maximum depth limit. This approach is 
expedient, but since the developers rarely have complete knowledge of the vehicle’s state 
and context, it is error-prone and generalizes poorly to the unexpected. 

The long-term goal of our project is to give the vehicle the ability to mitigate problems 
autonomously by developing an onboard fault protection system that responds 
automatically to a wide range of performance anomalies, including the unexpected. Here, 
we focus on fault detection and diagnosis, and argue that many of the limitations 
mentioned above can be alleviated by adopting a data-driven approach: (1) user specified 
conditions and thresholds that define operational normality are replaced by general 
characteristics of classes that are inferred from data, and (2), faults are automatically 
identified as distinct classes. 

Data-driven modeling techniques are increasingly prevalent in the domain of autonomous 
mobile robots. This domain presents fundamental modeling challenges due to its open-
ended nature—the environments in which autonomous robots operate and often the 
systems themselves change over time, and these changes introduce new operational 
modes and failures. Existing data-driven fault detection methods seem too rigid in this 
regard; in particular, methods that rely on annotated datasets and are incapable of 
growing structurally as more data becomes available, are incompatible with practical 
AUV operations, where the possibility of observing new performance modes must be 
considered. Hence, there is a need for automated modeling techniques that are not only 
capable of characterizing the system’s performance patterns accurately, but that can also 
adapt their complexity to incorporate new nominal and fault modes as they emerge. 

In this paper, we extend the application of an online Bayesian nonparametric2 (BNP) 
topic modeling technique based on Latent Dirichlet allocation (LDA; Blei, Ng, & 
Jordan, 2003; Girdhar et al., 2016) to the problem of fault diagnosis in AUV vertical 
plane flight. BNP topic models have been shown to be effective in identifying patterns 
in unstructured datasets and building models whose structure grows and adapts to data 
(Hjort, Holmes, Müller, & Walker, 2010). These models do not require prior annotation 
or labeling of the dataset—the patterns emerge from the natural structure of the data.  

                                                             
 

2 Here “nonparametric” implies that the number of classes is open-ended. 
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Our proposed approach is to use the BNP technique to build a model of the vehicle’s 
performance, including faults, directly from training datasets gathered in previous AUV 
operations, and then use this model for online fault detection and diagnosis by means of 
nearest-neighbor classifier based on the Kullback-Leibler (KL) divergence measure 
(Kullback & Leibler, 1951). The principal features of the method, are that it accepts 
data from multiple domains, it does not require prior labeling of the dataset, and it 
automatically infers the number of classes present in the data. Moreover, the method 
allows the complexity of the model to continue and grow as more data accumulates, 
making the incorporation of new modes of operation straightforward. Although 
demonstrated by an AUV in the paper, the method applies to any autonomous vehicle. 
Our results suggest that the proposed framework is capable of automatically extracting 
meaningful performance patterns directly from AUV field data with no a-priori 
knowledge and that distinct patterns relate to the various control policies executed 
onboard the AUV as well as to particular fault modes.  

The paper is organized as follows: section II describes related work. In section III we 
introduce the topic modeling framework and its adaptation for modeling AUV sensor 
data, and present our approach for fault detection and diagnosis based on the topic-
model’s outputs. In section IV we apply the method to state-sensor data collected by 
the Monterey Bay Aquarium Research Institute’s Tethys-class long-range AUV 
(LRAUV) and demonstrate its ability to classify distinct performance patterns and 
diagnose faulty states. We summarize and discuss our results in section V and conclude 
in section VI. 

2 Related work 

Existing work on fault detection and diagnosis for underwater robotic systems can be 
divided into three main approaches: (1) rule-based, (2) model-based and (3) data-driven. 

2.1     Rule-based 

As mentioned above, automatic fault diagnosis has traditionally been performed using rule-
based systems that target precise signatures (e.g., using thresholds) to identify the 
symptoms of a fault. Although rule-based systems are intuitive and easy to implement, 
their detection capabilities are limited to previously encountered faults and potential 
contingencies anticipated by developers—if a new fault that endangers the vehicle is 
observed during operations, additional rules will often be added. This results in a fault 
protection system that is complex and difficult to maintain, lacks flexibility, and that relies 
on the quality and completeness of expert knowledge. 
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2.2     Model-based 

Model-based diagnosis has been successfully applied in a number of domains (Isermann, 
2005). These methods are generally based on linear approximations of the system’s 
dynamics and require models to be built for both nominal and faulty states; diagnosis 
proceeds by comparing model output with observed behavior and using various techniques 
to explain any discrepancies. A survey of fault detection strategies used onboard unmanned 
underwater vehicles has been presented by Antonelli (2003). Many of these strategies are 
model-based but tend to be restricted to subsystems, for example, the thrusters (Ferreira 
et al., 2011). Another approach is consistency-based diagnosis (Kleer & Williams, 1987), 
which has led to the development of Livingstone (Williams & Nayak, 1996; Kurien & 
Nayak, 2000), a widely deployed system-level diagnosis engine (Bajwa & Sweet, 2003; 
Hayden et al., 2004; Miguelanez et al., 2011). A limitation of Livingstone is that it does 
not support numeric representations of variables. One way to overcome this is to use 
particle filters (Freitas et al., 2004; Narasimhan et al., 2004). Although model-based 
approaches produce powerful tools to detect and identify faults, their design relies heavily 
on expert knowledge and therefore requires significant resources to develop and implement 
on-board complex systems. 

2.3     Data-driven  

Data-driven approaches leverage statistical methods to identify patterns in data generated 
by the system and use them to classify nominal and faulty states (Aldrich & Auret, 2013). 
An important dichotomy in data-driven fault detection distinguishes between supervised 
and unsupervised learning methods. In the supervised approach, a classifier is trained using 
annotated data containing both nominal and faulty conditions, and is then used to diagnose 
faults in data that has yet been labeled. In the unsupervised approach, the data are not 
labeled or only include examples of nominal performance, and the broad goal is to find 
patterns and structure within the data and classify them into groups (clusters). 

Data-driven techniques for fault detection and diagnosis in AUVs constitute a broad field 
of research and include implementations of artificial neural networks (ANN) (Healey, 1992; 
Ranganathan et al., 2001; Sun et al., 2016), support vector machines (SVM) (Antonelli et 
al., 2004; Zhang et al., 2014), and Bayesian belief networks (BBN) (Madsen et al., 2004; 
Shi et al., 2006). Nearly all of these implementations use supervised techniques and make 
a strong assumption that annotated data containing all fault types are available for 
training. However, in practice such data is typically absent and very expensive to produce.  

In this paper, we have chosen to focus on the use of unsupervised learning algorithms that 
impose as few a-priori assumptions about the data as possible. The framework presented 
here is based on Latent Dirichlet allocation (LDA) (Blei et al., 2003), a probabilistic topic 
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model used to discover patterns in an unstructured collection of discrete data. Although 
LDA was originally developed for semantic analysis of text documents, it has since been 
applied in the domain of robotics to model context in a humanoid robot (Celikkanat et al., 
2014), for activity analysis (Duckworth, Al-Omari, Charles, Hogg, & Cohn, 2017), and 
autonomous exploration (Girdhar, Giguère, & Dudek, 2013). 

Following Blei, Griffiths, Jordan, & Tenenbaum, (2004), we use a BNP extension to LDA 
to enable the topic model to automatically adapt its complexity and infer the number of 
groups, or clusters, present in a dataset. We have chosen to use this method over other 
algorithms that can infer the number of clusters from the data, such as Spectral Clustering 
(Von Luxburg, 2007), and Affinity Propagation (Frey & Dueck, 2007), mainly because it 
is a fully Bayesian generative probabilistic model. As such, the method offers an inherent 
uncertainty criterion for estimating the clustering quality of the model and its ability to 
generalize to unseen data. Furthermore, similar BNP methods have been shown to produce 
meaningful results when used for automatic classification of seafloor imagery (Steinberg 
et al., 2011) and chemical sensor data (Jakuba et al., 2011) collected by AUVs. Of 
particular relevance to this study is the work by Girdhar et al. (2016), which introduced 
an online variant of BNP-LDA, for automatic scene characterization and anomaly 
detection in image and video data collected in unstructured underwater environments. 

3 Approach 

In this section, we introduce the BNP topic modeling framework and its adaptation for 
modeling AUV sensor data, and present our approach for online fault detection and 
diagnosis. An overview of the proposed framework is shown in Figure 1. As shown, the 
approach is divided in two stages: (1) training, where we apply the BNP topic modeling 
technique to AUV sensor data gathered in previous operations in order to build a model 
of the vehicle’s performance, and (2), monitoring, where we use the learned model for 
online fault detection and diagnosis by means of nearest-neighbor classifier based on the 
KL divergence measure. 
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Figure 1: Overview of our proposed technique for fault detection using probabilistic topic models. Training 
(offline): given a collection of training datasets containing observations of state-sensor data, we process 
the data to extract discrete features (state-words) and group them in temporal neighborhoods (see section 
3.2). We apply the BNP topic modeling algorithm to learn the AUV’s performance patterns (topics; 
section 3.3) and compute estimates of the model’s uncertainty to identify anomalous observations (section 
3.4). Finally, we inspect the trained model and ascribe semantic meaning to the topics (section 3.5). 
Monitoring (online): given new incoming observations, we extract state-words and group them in temporal 
neighborhoods. We compute the similarity between each temporal neighborhood and the topics learned 
from the training datasets using KL, and classify the temporal neighborhoods using the semantic labels 
associated with the most similar topic (i.e., the nearest-neighbor; section 3.6). 
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3.1 Latent Dirichlet allocation (LDA) 

LDA (Blei et al., 2003) is a generative mixed-membership model originally used for 
semantic analysis of text corpora. The basic assumption made in LDA is that each group 
of observations (documents) is generated from a random mixture of latent components 
(topics)—each topic is a distribution over the collection’s vocabulary. Formally, given a 
collection of 𝐷 documents composed from a vocabulary 𝑉 , the LDA generative process is 
as follows: 

1. For each topic 𝑘 = 1 … 𝐾: 

a. 𝜙& ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽) 

2. For each document 𝑑 ∈ 𝐷: 

a. 𝜃2 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼  

b. For each word 𝑤5 ∈ 𝑑: 

i. 𝑧5 ~ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝜃2  

ii. 𝑤5 ~ 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝜙89
 

where 𝑥 ~ 𝑌  indicates that random variable 𝑥 is sampled from distribution 𝑌 , and 𝛼 and 𝛽 
are the hyperparameters for the Dirichlet priors from which the discrete distributions are 
sampled. Each word 𝑤5 is a discrete element from a fixed vocabulary indexed by 1, … , 𝑉 , 
each 𝑧5 represents the topic responsible for generating the word instance 𝑤5, and is indexed 
by {1, … , 𝐾}. Each 𝜃2 is a document-specific distribution over topics (can be seen as a 
low-dimensional representation of the 𝑑th document), and 𝜙& specifies the distribution of 
the 𝑘th topic over the vocabulary words. 

The LDA generative process results in the joint probability distribution: 

 
P 𝒘, 𝒛, 𝜃, 𝜙 𝛼, 𝛽 = P 𝜙 𝛽 P 𝜃 𝛼 P 𝒛 𝜃 P(𝒘|𝜙8) (1) 

where the variables 𝒛, 𝜃 and 𝜙 are unknown (latent). To learn them, LDA reverses the 
generative process by expressing the conditional posterior distribution of the latent 
variables given the observed data: 

 

P 𝒛, 𝜃, 𝜙 𝒘, 𝛼, 𝛽 = P 𝜃, 𝜙, 𝒛, 𝒘 𝛼, 𝛽
P 𝒘 𝛼, 𝛽

 (2) 

Approximate inference techniques such as variational inference (Blei et al., 2003) or 
collapsed Gibbs sampling (Griffiths & Steyvers, 2004) are then used to resolve the 
posterior. 
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3.2 Data pre-processing 

Extending the topic modeling framework to AUV sensor data requires that the general 
idea of a textual word be replaced by discrete features we refer to as state-words. To 
generate a vocabulary of state-words, we discretize each of the N signals, 𝑺 = 𝑠? ?=1

A , 
used to describe the AUV’s state into 𝑚? non-overlapping bins3, and concatenate them 
into a vocabulary of size 𝑉 = 𝑚?

A
?=1 . To extract state-words from a given signal 𝑠?, we 

map each element of 𝑠? to its closest corresponding state-word in the vocabulary (Figure 
2). When no measurement is available for a given sensor (missing data), no word is 
generated. This process can be viewed as a transformation of a time-series made of 
heterogeneous data (e.g., numeric, Boolean or text), to a common domain space. 
 
 

 

                                                             
 

3 In this work, we use equal-width-binning, however, any binning approach is valid. 

 
 

Figure 2: An illustration of the state-word extraction process. (a) Each signal (s) used to describe the 
AUV’s state is discritized using m non-overlapping bins. (b) The bins are concatenated into a vocabulary 
of size V. (c) Each discretized element of s is mapped to its closest corresponding state-word in the 
vocabulary and the word count is incremented. 
 

(a) 

(b) 

(c) 
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3.3 Online Bayesian nonparametric topic modeling 

Observations made by robotic systems are generally continuous in nature, and so the 
descriptors used to compute the topic labels must account for temporal dependencies that 
may exist between the data. Following Girdhar et al., (2013; 2016), we address this issue 
by generalizing the idea of a document to a temporal cell and computing the topic labels 
for a state-word within a cell in the context of its neighboring cells. Given a sequence of 
observations of the AUV’s state we extract state-words 𝒘, each with a corresponding time-
step 𝑡. Similar to Girdhar et al. (2016), we model the likelihood of the observed data in 
terms of the latent topic label variables 𝒛, which denote the underlying state of the vehicle: 

 

P 𝑤 𝑡 = P 𝑤 𝑧 = 𝑘 P(𝑧 = 𝑘|𝑡)
&∈CDEF9GH

 (3) 

Here the distribution over vocabulary words 𝜙& ≡ P 𝑤 𝑧 = 𝑘  models the appearance of 
the topic 𝑘 , as it is shared across all temporal coordinates. The second part of the 
equation 𝜃J ≡ P(𝑧 = 𝑘|𝑡) models the distribution of the topic labels within the temporal 
neighborhood of time-step 𝑡. 

We make no a-priori assumptions about the number of latent topics. Instead, we adopt a 
BNP approach and assume that there is an infinite number of them, but only a finite 
number is needed to explain the observed data. We use a method similar to the Chinese 
Restaurant Process (CRP; Teh & Jordan, 2010) to learn the active4 topic labels 𝐾KLJ5MN 
directly from the data and specify a CRP prior 𝛾 over the infinite groupings to control the 
growth of the number of labels so as to favor the lowest number that can adequately 
explain the data (Blei et al., 2010; Gershman & Blei, 2012). The algorithm models whether 
an observation is best explained by an existing topic, or by a new, previously unseen topic, 
thus allowing the model to grow automatically with the size and complexity of the data.  

Finally, we use the online collapsed Gibbs sampler proposed by Girdhar & Dudek (2015), 
which equally divides computational resources between computing the posterior topic 
distribution of recent observations and updating topic labels for older ones. Consequently, 
the algorithm works to maintain the model at a nearly converged state at any given time. 

3.4 Uncertainty estimation and novelty detection 

During the training phase, we monitor the uncertainty in the topic model’s predictions by 
computing the per-word perplexity score for each time-step. The per-word perplexity score 
for a set of state-words observed at a time-step 𝑡 is defined as: 
                                                             

 
4A label 𝑘 is active if there is at least one observation assigned to it. 
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perplexity 𝑡 =  exp −
log P(𝑤5|𝑡)

QF
5

𝑊J
 (4) 

where Wt is the number of state-words in time-step t, wi refers to the ith state-word, and 
the term P(𝑤5|𝑡) is computed using Eq. 3. Observations that contain prevalent state-words 
that have been associated by the model with a topic in previous observations (i.e., 
“learned”) produce a low perplexity score, whereas observations that contain rare or 
previously unobserved state-words that are poorly represented within the model produce 
a high perplexity score. Thus, we use the perplexity score not only to measure convergence 
and overall quality of the topic model, but also to identify novel or anomalous information 
that the topic model was not previously exposed to. 

3.5 Semantic labeling of topics 

Topics derived from a sequence of observations of the AUV’s state represent the latent 
processes that are responsible for generating those states. As such, these topics should 
correspond to the control policies or behaviors that are executed onboard the AUV, and 
capture the dynamic relationship between these control policies and the AUV’s 
performance. In this respect, the topic modeling framework can be used to generate a model 
of the AUV’s performance directly from training data.  

We apply the BNP topic modeling algorithm to a collection of training datasets to learn 
the performance patterns that correspond to nominal states of the AUV, as well as to 
specific faults. Once the training process is complete, we analyze the trained topic-model 
and ascribe semantic meaning to each of the learned topics. This is a necessary step that 
allows us to use the trained topic-model for classification. The correspondence between a 
learned topic and a class (e.g., a control policy or a fault) can be determined qualitatively, 
or quantitatively if the dataset is annotated. We provide a mathematically rigorous method 
for evaluating the correspondence between a topic and a class for the latter case.  

Given a series of operator-supplied class labels corresponding to each time-step, we 
compute the marginal probability distribution that defines the topic label proportions for 
that class: 

 

P 𝑧 = 𝑘 𝑐𝑙𝑎𝑠𝑠 = P(𝑧 = 𝑘|𝑡)
𝑇LUKVV	J∈WEXDYY

 (5) 

where 𝑇LUKVV is the index of all time steps belonging to that class and P(𝑧 = 𝑘|𝑡) is the 
topic label distribution of each time step 𝑡 . We then use Bayes’ rule to reverse 
P 𝑧 = 𝑘 𝑐𝑙𝑎𝑠𝑠 , and compute the conditional probability 
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P 𝑐𝑙𝑎𝑠𝑠 𝑧 = 𝑘 = P(𝑧 = 𝑘|𝑐𝑙𝑎𝑠𝑠)P(𝑐𝑙𝑎𝑠𝑠)
P(𝑧 = 𝑘)

 (6) 

which defines the probability of the class given the topic label. We define P 𝑐𝑙𝑎𝑠𝑠  to be 
𝑇LUKVV / 𝑇 , where 𝑇  is the total number of time steps, and calculate P(𝑧 = 𝑘) using Eq. 
5 and substituting 𝑇LUKVV with 𝑇 . 

3.6 Online fault detection and diagnosis 

We hypothesize that a topic model trained on previously observed examples of nominal 
performance and faults can be used to compute a robust estimate of the vehicle’s state in 
new, previously unseen observations. Given a trained and semantically labelled topic-model 
Φ, we monitor the health of the system online by measuring the similarity between the 
learned topic distributions 𝜙& ∈ Φ, and the distribution of state-words extracted from each 
incoming observation over the defined vocabulary V. If a distribution of state-words from 
a given observation is most similar to a topic 𝜙& that corresponds to a faulty state, then a 
fault is identified.  

We use the symmetrized Kullback-Leibler (KL) divergence to measure the similarity 
between two distributions 𝑝 and 𝑞: 

 
𝐾𝐿 𝑝, 𝑞 = 1

2
[𝐷 𝑝, 𝑞 + 𝐷 𝑞, 𝑝 ] (7) 

where: 

 

𝐷 𝑃 , 𝑄 = 𝑃5

`

5=1
log2

𝑃5
𝑄5

 (8) 

The most relevant topic is the one that minimizes KL (i.e., the nearest-neighbor). A similar 
approach has also been used in other studies for facial recognition (Shakhnarovich et al., 
2002), audio classification of bird species (Briggs et al., 2009), and event recognition in 
video (Khokhar et al., 2011). 
 

4 Experimental results 

We conducted experiments using the Monterey Bay Aquarium Research Institute’s Tethys-
class LRAUVs (Figure 3; Bellingham et al., 2010; Hobson et al., 2012). Three datasets 
were collected separately in 2013, 2015 and 2016. The 2013 and 2015 datasets include 
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examples of nominal performance of the LRAUV as well as failures (critical faults) of the 
vehicle’s mass-shifting system that caused the vehicle to collide with the seabed. The 2016 
dataset was chosen because it includes examples of nominal performance of the LRAUV 
in various states and a new control policy. 

 
Evaluation was done in two steps: first, we used the 2013 data as a training set for the 
topic-model. We evaluated the model’s performance during the training phase using the 
perplexity measure (Eq. 4) and evaluated the correspondence between the outputted topics 
and the executed control policies and faults using our proposed method for topic labeling 
(Eq. 5-6). Then, we used the 2015 and 2016 datasets as test sets to evaluate the 
classification performance of the trained topic-model on unseen data. We used the 2015 
test set to evaluate the method’s ability to accurately classify a fault, and the 2016 test 
set to evaluate classification accuracy on a fault-free control. 

Table 1 lists the state-sensor signals and data-products that were used as inputs to the 
model. 

 
 

 
 

Figure 3: The Tethys LRAUV is 2.3 m long and 0.3 m in diameter. The vehicle is controlled by a 
propeller, traditional elevator and rudder control surfaces, a variable buoyancy system (VBS), and 
an actuated mass-shifter. Photo credit: Kip Evans. 
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4.1 Training dataset 

We post-processed state-sensor data and onboard data-products that were collected by the 
LRAUV during a scientific field campaign in Monterey Bay, California, between September 
09-14, 2013. During the initial part of the deployment the vehicle correctly executed a 
series of vertical profiles using 4 control policies (Figure 4a): Float-on-surface (purple), 
Pitch (yo-yo trajectory; blue), Surface (ascend to surface; orange), and Depth (hover at 
depth; green). At 22:22 UTC as the vehicle was descending on a yo-yo dive, a rupture of 
the mass-shifter lead-screw caused the battery-mass to shift all the way forward. As a 
result, the AUV, now extremely nose heavy, was unable to correct its downward attitude 
and collided with the bottom. At 23:15 UTC the vehicle’s software (Kieft et al., 2011) 
identified the problem as a “failure to ascend” fault and triggered the AUV’s safety 
behaviors. However, these actions failed to bring the vehicle to the surface, and so the 
LRAUV remained on the bottom for 27 hours and was eventually located on the beach 
near Rio Del Mar, California, 8 km away from its last reported position. 

We processed this dataset using the BNP topic modeling framework: we extracted state-
words (𝑉 =356) from the dataset, which included 62,920 observations, and ran the 
algorithm to compute topic distributions for each time step. We determined the value of 
the hyperparameters by running the model with a range of choices α ∈ {0.01, 0.1, 1, 5}, β 
∈ {0.01, 0.1, 1, 5}, and γ ∈ {1𝑒-6, 1𝑒-5, 1𝑒-4} and selected the combnation that minimized 
the avarege perplexity score (Eq. 4). After the model was trained, we evaluated the 
correspondence between the learned topics and the control policies (Eq. 5-6) using a time-

Table 1: AUV State-Sensor Signals and Data-Products 

Numerical  Boolean 
Signal Range* Comment  Signal Comment 
Depth rate [m/s] (-2, 2)   Drop weight dropped  
Surge velocity [m/s] (-3, 3)   Buoyancy full  
Heave velocity [m/s] (-1, 1)   Surface depth Depth = 0 m 
Roll angle [deg] (-90, 90)   Stop envelope Safety metric 
Pitch angle [deg] (-90, 90)   YoYo envelope Safety metric 
Roll rate [deg/s] (-2, 2)   Going to surface Safety metric 
Pitch rate [deg/s] (-2, 2)     
Stern plane angle [deg] (-15, 15)     
Rudder plane angle [deg] (-15, 15)     
Thruster power [watt] (0, 35)     
∆	Mass position [mm] (-25, 25) From default pos.    
∆ Buoyancy position [ml] (-400, 400) From neutral pos.    
∆ Pitch angle [deg] (-400, 400) From commanded    
∆ Depth [m] (0, 225) From commanded    

*Quantization interval centers are N equally-spaced values between (a, b), where N=25 for all numerical signals. 
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series of the control policies that were logged onboard the LRAUV (line color in Figure 
4a), and evaluated the topics’ correspondence with the fault using an operator-labeled fault 
record of the deployment (red shading in Figure 4a). 

 

 

 
 

Figure 4: (a) Time series of vehicle depth (2013 dataset); line color indicates the executed control policy 
and the red shaded background indicates the bottoming fault. The LRAUV system identified the “failure 
to ascend” fault approximately 50 minutes after the vehicle had bottomed (red triangle). (b) A stacked plot 
showing the distribution of topic labels for each time step 𝑡, computed using the BNP topic model. The 
learned topics exactly match the various control policies and unique topics are assigned to the deployment 
segments where the AUV has bottomed (topics 7 and 8). (c) Time series of per-word perplexity scores. The 
highest perplexity scoring coincides with the bottoming fault (22:22 UTC) and reflects the model’s exposure 
to the new fault. 

(a) 

(b) 

(c) 
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We achieved best model performance with 𝛼 = 0.1, 𝛽 = 5 and 𝛾 = 1𝑒-5 as the Dirichlet 
and CRP hyperparameters. Figure 4b shows the distribution of topic labels for each time 
step (𝜃J) and illustrates how topics change over time within the model; the height of each 
band reflects the topic proportion P(𝑧 = 𝑘|𝑡). We find that the executed control policies 
are consistently aligned with distinct topics, and that unique topics are assigned to the 
deployment segments where the AUV has bottomed (topics 7 and 8). 

Figure 4c shows the perplexity scores computed for each time step (Eq. 4). As shown, most 
observations are represented by the model with high certainty (low perplexity) reflecting 
good overall convergence of the topic-model. The highest perplexity scoring, excluding the 
initial “burn-in” period, coincides with the bottoming incident (22:22 UTC) and reflects the 
model’s exposure to the new faulty state. In the time-steps that follow the fault, the 
perplexity score tapers off as the model “learns” the new performance patterns that are 
associated with the bottoming fault. Other high perplexity events (spikes) observed during 
the deployment segments where the AUV performed nominally are associated with the yo-
yo transition phases (topic 3) and surfacing events (topic 5) of which there are relatively 
few examples throughout the dataset. 

Figure 5 presents a simplified two-dimensional view of the topic model. We encode the 
topics as circles, with areas proportional to the relative prevalence of each topic, P(𝑧 = 𝑘). 
The distances between the circles reflect the inter-topic differences computed using the KL 
similarity measure (Eq. 7), subject to principal component analysis (PCA) dimensionality 
reduction (Chuang et al., 2012). 

In Figure 5a the pie-chart slices in each circle reflect the relative probability of each control 
policy P(control policy|𝑧 = 𝑘), computed using Eq. 6. Topics 4 and 6, correspond to the 
Depth and Float-on-surface control policies (respectively) with high probability. Topic 5 
mostly corresponds to the Surface control policy. Topics 1, 2 and 3 correspond to the Pitch 
control policy, which commands the LRAUV while profiling the water column. A closer 
examination of the time-series revealed that these topics, in fact, correspond to the 
downward, upward and transition phases of the yo-yo trajectory. 

In Figure 5b the pie-chart slices reflect the relative probability of the AUV’s health 
P(health state|𝑧 = 𝑘). Topics 1-6 correspond to nominal performance of the LRAUV. 
Topics 7 and 8, correspond to the fault, and essentially characterize the underlying 
performance patterns that correspond to the AUV’s state during the bottoming incident. 
The transition from topic 7 being most dominant to, topic 8 being most dominant (Figure 
4b), coincides with the detection of the fault by the AUV’s system (23:15 UTC; red 
triangle in Figure 4a), which terminated the mission (Pitch) and triggered the LRAUV’s 
safety behaviors (Surface). 
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Table 2 summarizes the computed conditional probabilities, P(control policy|𝑧 = 𝑘) 
and P(health state|𝑧 = 𝑘), and shows the semantic labels assigned to each topic. 

 

 
 

Figure 5: 2D representation of the topic model. The areas of the circles are proportional to the relative 
prevalence of each topic, P(𝑧 = 𝑘). The locations of the circles and the distances between them reflect how 
similar topics are to one another. Similarities are calculated using the KL similarity measure (Eq. 7) and 
reduced to 2D using PCA. The PCA recomposition to 2D preserved 97% of the variance. (a) The pie-chart 
slices in each circle are proportional to the relative probability of the control policies, P(control policy|𝑧 =
𝑘), computed using the proposed method for topic labeling (Eq. 5-6). In (b) the pie-chart slices are 
proportional to the relative probability of the AUV’s health, P(health state|𝑧 = 𝑘). Topics 7 and 8 are 
associated with the bottoming fault with high probability. 

Table 2: Semantic labeling of topics 

 P(health state|topic) P(control policy|topic) 
 Nominal Fault Float on sur. Pitch Surface Depth 

Topic 1 0.97 0.03 0.02 0.95 0.03 0.01 
Topic 2 0.97 0.03 0.01 0.96 0.02 0.01 
Topic 3 0.90 0.10 0.05 0.86 0.07 0.02 
Topic 4 0.95 0.05 0.05 0.05 0.04 0.87 
Topic 5 0.87 0.13 0.09 0.13 0.54 0.24 
Topic 6 0.98 0.02 0.93 0.02 0.01 0.03 
Topic 7 0.05 0.95 0.02 0.93 0.04 0.01 
Topic 8 0.07 0.93 0.06 0.05 0.89 0.00 

The semantic labels assigned to each topic are shown in bold text. 
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4.2 Test datasets 

The first test dataset was collected by LRAUV along the coast of Año Nuevo, California, 
between September 15-16, 2015. Similar to the 2013 dataset, the test set contained a fault 
in the mass-shifting system that caused the LRAUV to bottom and led to temporary loss 
of the vehicle (red shading in Figure 6). The fault was triggered by an erroneous software 
configuration that caused the internal mass-shifter to repeatedly overload and eventually 
disabled it. Unlike the 2013 incident, the LRAUV’s onboard fault detection system 
detected the fault immediately and triggered the safety behaviors at 02:46 UTC. The fault 
prevented the LRAUV from adjusting its trim and eventually caused it to collide with the 
bottom. 

 

The second test dataset was collected by LRAUV during a scientific field campaign in 
Monterey Bay, California, between February 03-04, 2016. The 2016 test set did not 
include any failures, instead, it exposed the classifier to a variety of control policies that 
were executed correctly by the LRAUV (Figure 7) and included an additional control 
policy, Depth-rate (magenta; Figure 7), that was not part of the 2013 training set. The 
Depth-rate control policy is used to execute vertical profiles in hover mode (i.e., using 
only the VBS; Zhang et al., 2015) and is functionally most similar to the Depth control 
policy. 

 

 
 

Figure 6: Time series of vehicle depth (2015 dataset); line color indicates the executed control policy and 
the red shaded background indicates the fault. Initially, the LRAUV correctly executed a series of vertical 
yo-yo dives using the pitch (blue) and float on surface (purple) control policies. At 02:46 UTC the LRAUV 
detected an overload fault in its internal mass-shifter and immediately and triggered the emergency safety 
behaviors (red shading). 
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We extracted state-words from the 2015 and 2016 test datasets, which included 75,920 and 
146,305 observations (respectively), and used Eq. 7 to compute KL similarities between 
the state-words extracted from each observation and the topic-word distributions Φ 
learned from the 2013 data. Then, we labeled each time step according to its nearest-
neighboring topic, and validated the classification results against the time-series of 
executed control policies and the fault-record that were obtained from the vehicle’s log 
files. For comparison, we repeated the procedure with the 2013 training dataset to attain 
a “in sample” classification accuracy estimate. 

Table 3 summarizes the classification accuracies obtained for the test and training datasets 
using the proposed KL-based nearest-neighbor classifier. In the first test dataset (2015), 
the classifier accurately classified the state of the AUV’s health in 99.5% of observations 
and predicted the executed control policy correctly in 99.8% of observations (on average). 
More importantly, the classifier detected the bottoming fault with no false positives. The 
classifier identified the bottoming fault at 02:48:23 UTC, 1.65 minutes after the LRAUV’s 
onboard fault detection system identified the overload fault in the mass-shifting system, 
and approximately 3.8 minutes before the AUV collided with the sea floor. For reference, 
Figure 8 shows a comparison between the original 2015 test dataset (Figure 8a) and the 
control policy and fault records (line color and red shading, respectively) that were 
reconstructed from the classification results (Figure 8b). 

In the second test set (2016), the classifier accurately classified the state of the system’s 
health in 100% of observations (no false positives) and predicted the executed control 
policy correctly in 95.5% of observations (on average). The deployment segments where 

 
 

Figure 7: Time series of vehicle depth (2016 dataset); line color indicates the executed control policy. The 
LRAUV correctly executed a series of hover dives using the Depth Rate (magenta), Depth (green) and 
Surface (orange) control policies, followed by a series of vertical yo-yo dives using the Pitch (blue) control 
policy. The Depth Rate control policy was not used in the 2013 training set. 
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the Depth-rate control policy was executed were classified as a mixture of the Depth control 
policy (during vertical profile dives), and the Float-on-surface control policy (when the 
vehicle was on the surface). Figure 9 shows the depth record of the 2016 dataset with the 
control policy record (line color) that were reconstructed from the classification results 
along with the original dataset. 

In the training dataset (2013), the proposed classifier accurately classified the state of the 
system’s health in 99.96% of observations, with no false positives, and predicted the 
executed control policy correctly in 99.3% of observations (on average). The classifier 
identified the bottoming fault at 22:24:08 UTC, nearly 51 minutes before the LRAUV’s 
onboard fault detection system, and approximately 0.4 minutes (25 seconds) before the 
AUV had bottomed. 

 

 

 

Table 3: Summary of KL nearest-neighbor classification accuracies 

Dataset Class  Accuracy (%) TPR (%) FPR (%) max(KL) 
Test set (2015) Health state Nominal 99.49 100.0 0.94  
  Fault 99.49 99.06 0.00  
 Control policy Surface 99.88 99.79 0.02  
  Depth -- -- --  
  Pitch 99.39 98.53 0.10  
  Float on sur. 98.99 99.04 1.02  
Test set (2016) Health state Nominal 100.0 100.0 0.00  
  Fault -- -- --  
 Control policy Surface 99.69 52.94 0.01  
  Depth 93.29 100.0 9.36  
  Pitch 99.23 98.27 0.17  
  Float on sur. 94.02 93.79 5.91  
Training set (2013) Health state Nominal 99.96 100.0 0.06  
  Fault 99.96 99.94 0.00  
 Control policy Surface 99.55 99.31 0.35  
  Depth 99.28 92.57 0.13  
  Pitch 99.40 98.92 0.31  
  Float on sur. 99.11 99.64 1.06  
TPR: True Positive Ratio, FPR: False Positive Ratio.  
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Figure 8: (a) Time series of vehicle depth from the 2015 dataset; line color indicates the executed control 
policy and the red shaded background indicates the fault. (b) Time series of vehicle depth with the control 
policy and fault records (line color and red shading, respectively) that were reconstructed from the 
classification results. 

 

Figure 9: (a) Time series of vehicle depth from the 2016 dataset; line color indicates the executed control 
policy. (b) Time series of vehicle depth with the control policy record that was reconstructed from the 
classification results. The deployment segments where the Depth-rate control policy was executed were 
classified as a mixture of Depth and Float-on-surface control policies. 
 

(a) 

(b) 
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5 Discussion 

We extended a BNP topic modeling framework to automatically identify and characterize 
AUV performance patterns directly from state-sensor data and applied a KL-based 
nearest-neighbor classifier for online fault detection and health monitoring of an AUV. 
We evaluated the framework using datasets collected by the Tethys LRAUV in three 
separate field deployments, two of which included faults that led to temporary loss of the 
vehicle. We used the first dataset to train the topic-model, and the other two to evaluate 
classification performance on unseen data. 

We found a strong correspondence between the topics and the control policies and fault 
records indicating that the method is capable of accurately characterizing the performance 
patterns that correspond to the various states of the AUV. During the training phase, the 
BNP approach ensures that the model adapts automatically to the size and complexity of 
the data and the computed perplexity scores indicate exposure to novel or anomalous 
information. We have found that in combination with operator-supplied semantic labels, 
the topic-based representation can be used as a reference for classifying between nominal 
AUV performance and specific faults, and that the learned information generalizes well to 
new observations through the use of KL-based similarity functions. The method produced 
a high rate of correct detection with a very low false detection rate. 

We have found that in most cases, the initial exposure of the model to a new state 
triggered an abrupt increase in perplexity, which subsequently decreased as the model 
“learned” the new performance pattern. In contrast, the deployment segments that 
included yo-yo inflections (topic 3) consistently produced high perplexity scores despite 
the fact that they occurred repeatedly throughout the training set (spikes in Figure 4c). 
The reason for the difference is that a yo-yo inflection requires, amongst other things, a 
reversal of vehicle pitch and of the elevator angle and of the pitch-rate; as a result, yo-yo 
inflections occupy a larger chunk of state-space volume than, say, holding depth or 
climbing at constant pitch, which consists of small exploration around a steady-state, and 
so they take longer to learn. Figure 4c shows that the yo-yo inflection perplexity does in 
fact trend down, suggesting that it will eventually vanish with more training examples. 
We also point out that this "perplexity overshoot" phenomenon is specific to the training 
phases, and has little impact on the classification performance of the system—which is, in 
fact, high. 

We have shown that the topics learned during a training mission provided good 
classification during subsequent test missions. One interesting question this raises is 
whether the topics learned on one vehicle are stable to changes in vehicle configuration or 
to environmental variability. To address this, we trained a new topic model using the 
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2015 dataset and compared the outputted topics to the ones learned from the 2013 training 
dataset. We found that although the deployments were performed at different locations 
and used different vehicle configurations, the topics extracted from the two sets were in 
fact very similar, providing some encouraging indication of robustness. This similarity also 
suggests that a scheme using historically-learned topics as the starting point of a large-
disturbance learning procedure could be effective.  

The ability of the framework to learn the performance patterns using a single training set 
is particularly relevant for AUVs, where unanticipated faults slowly emerge over time and 
where the availability of labeled training data is limited. The framework’s ability to learn 
new fault-models based on a small number of examples could conceivably enable the 
developers to maximize the information gain from rare events. The topic-based 
representation also offers an efficient way to add new information to the AUV’s system 
without increasing the complexity of the autonomy software. 

The model identifies fault states, rather than determining which specific subsystem is 
subject to failure. This type of situational diagnostic is particularly useful for 
unanticipated fault detection, as was the case in the 2013 bottoming incident where a 
failure of the mass-shifter went undetected by the onboard fault detection system, but 
was easily identified in post-processing by the proposed technique. If this fault information 
had been available to the vehicle, bottom impact could have been prevented by shutting 
off the thruster and inflating the variable buoyancy system. 

6 Conclusion 

We applied the proposed framework to characterize the performance patterns of an AUV 
and to detect and diagnose faults. We trained the topic model and evaluated the 
classification performance using datasets collected in three separate field deployments.  

Our results demonstrate that the framework was able to automatically characterize 
patterns that relate to vertical plane performance of the AUV, and classify faults with a 
high probability of detection and a low false detection rate. A key feature of the framework 
is that it does not rely on expert knowledge, but instead learns the relationship between 
the executed control policy and the vehicle’s performance directly from the data. Although 
demonstrated by an AUV in this paper, the framework is applicable to any autonomous 
vehicle. 

Our ongoing efforts are to compare the performance of the proposed framework to other 
existing methods. We are interested in the development of a health monitoring 
architecture that is capable of learning performance topic models online and that leverages 
the topic-based representation of the system’s state to inform autonomous replanning and 
automatic selection of mitigation actions in response to failures.  
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