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Abstract—As the capabilities of autonomous underwater 
vehicles (AUVs) improve, the missions become longer, riskier, and 
more complex. For AUVs to succeed in complex missions, they 
must be reliable in the face of subsystem failure and environmental 
challenges. In practice, fault detection activities carried out by 
most AUVs employ a rule-based emergency abort system that is 
triggered by specific events. AUVs equipped with the ability to 
diagnose faults and reason about mitigation actions in real time 
could improve their survivability and increase the value of 
individual deployments by replanning their mission in response to 
failures. In this paper, we focus on AUV autonomy as it pertains 
to self-perception and health monitoring and argue that automatic 
classification of state-sensor data represents an important 
enabling capability. We apply an online Bayesian nonparametric 
topic modeling technique to state-sensor data in order to 
automatically characterize the performance patterns of an AUV, 
then demonstrate how in combination with operator-supplied 
semantic labels these patterns can be used for fault detection and 
diagnosis by means of nearest-neighbor classifier. The method is 
applied in post-processing to diagnose faults that led to the 
temporary loss of the Monterey Bay Aquarium Research 
Institute’s Tethys long-range AUV in two separate deployments. 
Our results show that the method is able to accurately identify and 
characterize patterns that correspond to various states of the 
AUV, and classify faults with high probability of detection and no 
false detects. 
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I. INTRODUCTION  
Autonomous underwater vehicles (AUVs) have become 

essential tools in almost every domain in the ocean. As the 
capabilities of AUVs improve, the missions become more 
complex and require vehicles with longer endurance and higher 
reliability. A significant limitation of current generation AUVs 
is their inability to cope with unforeseen events, such as failure 
of hardware/software components or unexpected interactions 
with the surrounding environment. These limitations are 
generally addressed by enhancements in autonomy [1]. AUVs 
equipped with the ability to diagnose faults and reason about 
mitigation actions could improve their survivability and increase 
the value of individual deployments by replanning their mission 

in response to failures while deliberating on how to best satisfy 
the goals given to them by human operators. 

In practice, system-level fault detection activities carried out 
by most AUVs employ a rule-based emergency abort system that 
is triggered by specific events, such as critical subsystems 
becoming unresponsive, or the vehicle exceeding its maximum 
depth limit. This deterministic approach is limited to previously 
encountered failures and potential contingencies predicted by 
developers—if a new fault that endangers the vehicle is observed 
during operations, additional conditions will often be added. 
This results in a fault protection system that is complex and 
difficult to maintain and that offers only limited detection 
capabilities. We argue that many of these limitations can be 
alleviated by automatic classification of state-sensor data: (1) 
conditions and thresholds that are based on heuristics are 
replaced by general characteristics of classes that are inferred 
from data, and (2), faults are identified automatically as distinct 
classes. 

In this paper we extend an unsupervised machine-learning 
framework called topic modeling to the problem of fault 
diagnosis in underwater robotic systems. The topic model used 
in this work is a Bayesian nonparametric1 (BNP) variant of 
Latent Dirichlet allocation (LDA) [2]–[4]. Though the model 
was originally developed for semantic analysis of text 
documents, we explore its application to AUV sensor data in 
order to automatically characterize patterns that relate to vertical 
plane performance of the vehicle, including faults, directly from 
training datasets gathered in previous AUV operations. The 
principal features of the method, besides online execution, are 
that it accepts data from multiple domains, it does not require 
any prior annotations or labeling of the dataset, and it 
automatically infers the number of classes present in the data.  

The paper is organized as follows: In section II we introduce 
LDA and its adaptation for modeling state-sensor data, and 
present our approach for monitoring the health of an AUV based 
on the topic-model’s outputs. In section III we apply the method 
to state-sensor data collected by the Monterey Bay Aquarium 
Research Institute’s Tethys-class long-range AUV (LRAUV) 
and demonstrate its ability to classify distinct performance 
patterns and diagnose faulty states.  
1Here “Nonparametric” implies that the number of clusters is open-ended. 



II. PROBABILISTIC TOPIC MODELS FOR FAULT DETECTION AND 
DIAGNOSIS IN AUVS 

LDA [2] is a generative probabilistic topic model that is used 
for discovering patterns in an unstructured collections of discrete 
data such as text corpora. LDA can be thought of as a mixed-
membership model of grouped data, where rather than 
associating each group of observations (document) with one 
component (topic), each group is associated with multiple 
components in different proportions. The model does not require 
any prior annotations or labeling of the dataset—the topics 
emerge from the natural structure of the data.  

The basic assumption made in LDA is that each document is 
generated from a random mixture of latent topics; each topic is 
a distribution over the collection’s vocabulary. Given a 
collection of 𝐷 documents composed from a vocabulary 𝑉, the 
LDA generative process [5] results in the following joint 
probability distribution: 

 
P 𝒘, 𝒛, 𝜃, 𝜙 𝛼, 𝛽 = P 𝜙 𝛽 P 𝜃 𝛼 P 𝒛 𝜃 P(𝒘|𝜙') (1) 

where 𝛼 and 𝛽 are the model hyperparameters, each word 𝑤 is a 
discrete element from a fixed vocabulary indexed by 1, … , 𝑉 , 
each 𝑧 represents the topic responsible for generating the word 
instance 𝑤 . Each 𝜃+  is a document-specific distribution over 
topics (can be seen as a low-dimensional representation of the 
𝑑th document), and 𝜙' specifies the distribution of the 𝑧th topic 
over the vocabulary words. The variables 𝒛 , 𝜃  and 𝜙  are 
unknown (latent). To learn them, LDA reverses the generative 
process by expressing the conditional posterior distribution of 
the latent variables given the observed data: 

 
P 𝒛, 𝜃, 𝜙 𝒘, 𝛼, 𝛽 = P 𝜃, 𝜙, 𝒛, 𝒘 𝛼, 𝛽

P 𝒘 𝛼, 𝛽  (2) 

Approximate inference techniques such as variational inference 
[2] or collapsed Gibbs sampling [6] are used to resolve the 
posterior. 

A. Semantic Modeling of State-sensor Data 
Topic modeling of state-sensor data requires that the general 

idea of a textual word be replaced by discrete features we call 
state-words. To generate a vocabulary of state-words, we 
discretize each of the N signals, 𝑺 = 𝑠/ /=1

1 , used to describe 
the AUV’s state into 𝑚/  non-overlapping bins2, and 
concatenate them into a vocabulary of size 𝑉 = 𝑚/

1
/=1 . To 

extract state-words from a given signal 𝑠/, we map each element 
of 𝑠/ to its closest corresponding state-word in the vocabulary. 
When no measurement is available for a given sensor (missing 
data), no word is generated. This process can be viewed as a 
transformation of a time-series made of heterogeneous data (e.g., 
numeric, Boolean or text), to a common domain space. 

B. Bayesian Nonparametric Topic Modeling for Robots 
Modeling data captured by a mobile robot faces additional 

challenges compared to semantic modeling of a fixed collection 

of text documents that are mutually independent. For this reason, 
the model we use in this work is the BNP Realtime Online 
Spatiotemporal Topic-model (BNP-ROST) proposed by Girdhar 
et al. in [3] and in [4]. BNP-ROST is an online version of LDA 
that was previously used to compute topic models of video data 
captured by a mobile robot in real time [4]. It accounts for 
continuity in the data by generalizing the idea of a document to 
a spatiotemporal cell within a stream of images, and computes 
the topic labels for a word in a cell in the context of its 
neighboring cells.  

We adapt BNP-ROST to our application by replacing the 
video/image stream with a stream of data produced by state-
sensors, and generalize the idea of a document to a temporal cell: 
Given a sequence of observations of the AUV’s state we extract 
state-words 𝒘, each with a corresponding temporal coordinate 
𝑡. Similar to [3], we model the likelihood of the observed data in 
terms of the latent topic label variables 𝒛: 

 
P 𝑤 𝑡 = P 𝑤 𝑧 = 𝑘 P(𝑧 = 𝑘|𝑡)

5∈789:;<=

 (3) 

Here the distribution over vocabulary words 𝜙5 ≡ P 𝑤 𝑧 = 𝑘  
models the appearance of the topic label 𝑘, as it is shared across 
all temporal coordinates. The second part of the equation 𝜃? ≡
P(𝑧 = 𝑘|𝑡) models the distribution of the topic labels within the 
temporal neighborhood of coordinate 𝑡. 

We make no a-priori assumptions about the number of latent 
topics and instead assume that there is an infinite number of 
them, but only a finite number is needed to explain the observed 
data. We use the Chinese Restaurant Process (CRP) [7] to learn 
the active topic labels 𝐾AB?CDE directly from the data and specify 
a CRP prior 𝛾 over the infinite groupings to control the growth 
of the number of labels so as to favor the lowest number that can 
adequately explain the data [8]. A label 𝑘 is active if there is at 
least one observation assigned to it. 

C. Semantic Labeling of Topics and Health Monitoring 
Topics derived from a sequence of observations of the 

AUV’s state represent the latent processes that are responsible 
for generating those states. These topics should correspond to 
the control policies or behaviors that are executed onboard, and 
capture the dynamic relationship between the actuators and the 
AUV’s performance. In this respect, the topic modeling 
framework can be used to generate a model of the AUV’s 
performance directly from training data. To do this, we apply the 
BNP-ROST algorithm to a collection of training datasets to learn 
the performance patterns that correspond to nominal states of the 
AUV, as well as to specific faults, and use the computed topics 
as a low-dimensional representation of these states. 

To use the trained topic-model for classification, we ascribe 
semantic meaning to the learned topics. To do this, we evaluate 
the level of correspondence between the topics and a given class 
(i.e., a control policy or a fault) by computing the marginal 
probability distribution that defines the topic label proportions 
for that class: 

2 In this work we use equal-width-binning, however, any binning approach is 
valid. 



 
P 𝑧 = 𝑘 𝑐𝑙𝑎𝑠𝑠 = P(𝑧 = 𝑘|𝑡)

𝑇BKALL	𝑡∈𝑇𝑐𝑙𝑎𝑠𝑠

 (4) 

where 𝑇BKALL is the index of all time steps belonging to that class 
and P(𝑧 = 𝑘|𝑡) is the topic label distribution of each time step 𝑡. 
We then use Bayes’ rule to reverse P 𝑧 = 𝑘 𝑐𝑙𝑎𝑠𝑠 , and 
compute the conditional probability 

 
P 𝑐𝑙𝑎𝑠𝑠 𝑧 = 𝑘 = P(𝑧 = 𝑘|𝑐𝑙𝑎𝑠𝑠)P(𝑐𝑙𝑎𝑠𝑠)

P(𝑧 = 𝑘)  (5) 

which defines the probability of the class given the topic label. 
We define  P 𝑐𝑙𝑎𝑠𝑠  to be 𝑇BKALL / 𝑇 , where 𝑇  is the total 
number of time steps, and calculate P(𝑧 = 𝑘) using Eq. 4 and 
substituting 𝑇BKALL with 𝑇  [3]. 

Given a trained topic-model, we monitor the health of the 
system by measuring the similarity between the learned topic 
distributions 𝜙 , and the distribution of state-words extracted 
from new incoming observations over the defined vocabulary V. 
If a distribution of state-words from a given temporal 
neighborhood is most similar to a topic 𝜙5 that corresponds to a 
faulty state, then a fault is identified. We measure similarity 
between the two distributions using the symmetric Kullback-
Leibler (KL) divergence [9]. The most relevant topic is the one 
that minimizes KL (i.e., the nearest-neighbor).  

III. EVALUATION 
To evaluate the effectiveness of the method, we conducted 

an experiment using two datasets collected by the Monterey Bay 
Aquarium Research Institute’s Tethys-class LRAUV (Fig. 1) 
[10], one in 2013 and the other in 2015. These datasets were 
chosen because they include examples of nominal performance 
of the LRAUV in various states as well as catastrophic faults that 
caused the vehicle to bottom. In either case the fault occurred in 
the internal mass-shifting system, which allows the LRAUV to 
actuate its battery pack (~1/3 of the vehicle’s total weight)  [11]. 

The evaluation was done in two steps: First, we used the 
2013 data as a training set for the topic-model, then, we used the 
2015 data as a test set to evaluate the classification performance 
of the trained topic-model on unseen data. Table 1 lists the state-
sensor signals and data-products that were used as inputs to the 
model. 

A. Training Set 
In the first part of the evaluation we post-processed state-

sensor data and onboard data-products that were collected by the 
LRAUV during a scientific field campaign in Monterey Bay, 
California, between September 09-14, 2013. During the initial 
part of the deployment the vehicle correctly executed a series of 
vertical profiles using 4 control policies (Fig. 2a): Float on 
surface (purple), Pitch (yo-yo trajectory; blue), Surface (ascend 
to surface; orange), and Depth (hover at depth; green). At 22:22 
UTC the vehicle descended on a yo-yo dive, however, a rupture 
of the mass-shifter set-screw caused the battery-mass to shift all 
the way forward. As a result, the AUV (now extremely nose 

heavy) was unable to correct its downward attitude and collided 
with the bottom. At 23:15 UTC the vehicle’s software [12] 
identified the problem as a “failure to ascend” fault and triggered 
the AUV’s safety behaviors. However, these actions failed to 
bring the vehicle to the surface, and so the LRAUV remained on 
the bottom for 27 hours and was eventually located on the beach 
near Rio Del Mar, California, 8 km away from its last reported 
position.  

To process the 2013 dataset using the topic-modeling 
framework, we extracted state-words from the dataset, which 

 
Fig. 1. The Tethys LRAUV is 2.3 m long and 0.3 m in diameter. The vehicle 
is controlled by a propeller, elevator and rudder control surfaces, a variable 
buoyancy system (VBS), and an actuated mass-shifter. Photo credit: Kip 
Evans. 

 

 
TABLE 1 

AUV State-Sensor Signals and Data-Products 

Type Signal Range* Comment 
Numerical Depth rate [m/s] (-2, 2)  

Surge velocity [m/s] (-3, 3)  

Heave velocity [m/s] (-1, 1)  

Roll angle [deg] (-90, 90)  

Pitch angle [deg] (-90, 90)  

Roll rate [deg/s] (-2, 2)  

Pitch rate [deg/s] (-2, 2)  

Stern plane angle [deg] (-15, 15)  

Rudder plane angle [deg] (-15, 15)  

Thruster power [watt] (0, 35)  

∆	Mass position [m] (-25, 25) From default pos. 

∆ Buoyancy position [ml] (-400, 400) From neutral pos. 

∆ Pitch angle [deg] (-400, 400) From commanded 

∆ Depth [m] (0, 225) From commanded 
Boolean Drop weight dropped   

Buoyancy pack full   

Surface depth  Depth = 0 m 

Stop envelope  Safety metric 

YoYo envelope  Safety metric 

Going to surface  Safety metric 

*Quantization interval centers are N equally-spaced values between (a, b), where 
N=25 for all numerical signals 

 



included 62,920 observations, and ran the BNP-ROST algorithm 
to compute topic distributions for each time step. We defined the 
size of each temporal neighborhood to be equivalent to a single 
time-step and used 𝛼 = 0.1, 𝛽 = 5 and 𝛾 = 1𝑒-5 as the LDA 
and CRP hyperparameter inputs to the model. After the model 
was trained, we evaluated the correspondence between the 
learned topics and the control policies (Eq. 4-5) using a time-
series of the control policies that were logged onboard the 
LRAUV (line color in Fig. 2a), and evaluated the topics’ 
correspondence with the fault using an operator-labeled fault 
record of the deployment (red shading in Fig. 2a). 

Fig. 2b shows the distribution of topic labels for each time 
step (𝜃?) and illustrates how topics change over time within the 
model; the width of bands indicate the topic proportions. As 
shown, the executed control policies correspond well to the 
topics, and are consistently represented by a single topic. Unique 
topics are assigned to the deployment segments where the AUV 
has bottomed (topics 7 and 8). 

Table 2 shows a summary of the conditional probabilities 
P(𝑐𝑙𝑎𝑠𝑠|𝑧 = 𝑘)  computed using Eq. 4-5 to evaluate the 
correspondence between the learned topics and the control 
policies and the fault. The semantic labels assigned to each topic 
are also shown. 

TABLE 2 
Semantic Labeling of Topics 

 P(control policy|topic) P(health state|topic) 
 Float on sur. Pitch Surface Depth Nominal Fault 

Topic 1 0.02 0.95 0.03 0.01 0.97 0.03 
Topic 2 0.01 0.96 0.02 0.01 0.97 0.03 
Topic 3 0.05 0.86 0.07 0.02 0.90 0.10 
Topic 4 0.05 0.05 0.04 0.87 0.95 0.05 
Topic 5 0.09 0.13 0.54 0.24 0.87 0.13 
Topic 6 0.93 0.02 0.01 0.03 0.98 0.02 
Topic 7 0.02 0.93 0.04 0.01 0.05 0.95 
Topic 8 0.06 0.05 0.89 0.00 0.07 0.93 

The semantic labels assigned to each topic are shown in bold text and shaded background 
 

 
Fig. 2.  (a) Time series of vehicle depth (2013 dataset); line color indicates the executed control policy and the red shaded background indicates the bottoming 
fault. The LRAUV system identified the “failure to ascend” fault approximately 50 minutes after the vehicle had bottomed (red triangle). (b) A stacked plot 
showing the distribution of topic labels for each time step, computed using BNP-ROST. The learned topics exactly match the various control policies and unique 
topics are assigned to the deployment segments where the AUV has bottomed (topics 7 and 8). 

 



B. Test Set 
The test dataset was collected by LRAUV along the coast of 

Año Nuevo, California, between September 15-16, 2015. 
Similar to the 2013 dataset, the test set contained a fault in the 
mass-shifting system that caused the LRAUV to bottom and led 
to temporary loss of the vehicle (Fig. 3). The fault was triggered 
by an erroneous software configuration that caused the internal 
mass-shifter to repeatedly overload and eventually disabled it. 
Unlike the 2013 incident, the LRAUV’s onboard fault detection 
system detected the fault immediately and triggered the safety 
behaviors at 02:46 UTC. The fault prevented the LRAUV from 
adjusting its trim, and eventually caused it to bottom. 

We extracted state-words from the dataset, which included 
75,920 observations, and computed KL similarities between the 
distributions of state-words extracted from each observation and 
the topic-word distributions (𝜙) learned from the 2013 data. 
Then, we labeled each time step according to its nearest-
neighboring topic, and validated the classification results against 
the time-series of executed control policies and the fault-record 
that were obtained from the vehicle’s log files. For comparison, 
we repeated the procedure with the 2013 training dataset to attain 
a “in sample” classification accuracy estimate. 

A summary of the classification accuracies obtained for the 
test and training datasets are shown in Table 3. 

In the test dataset (2015), the proposed KL-based nearest-
neighbor classifier accurately classified the state of the AUV’s 
health in 99.5% of observations and predicted the executed 
control policy correctly in 99.8% of observations (on average). 
More importantly, the classifier detected the bottoming fault 
with no false positives (highlighted in gray shading in Table 3). 
The classifier identified the bottoming fault at 02:48:23 UTC, 
1.65 minutes after the LRAUV’s onboard fault detection system 
identified the overload fault in the mass-shifting system, and 
approximately 3.8 minutes before the AUV collided with the sea 
floor.  

In the training dataset (2013), the proposed classifier 
accurately classified the state of the system’s health in 99.96% 
of observations (with no false positives) and predicted the 
executed control policy correctly in 99.3% of observations (on 
average). The classifier identified the bottoming fault at 
22:24:08 UTC, nearly 51 minutes before the LRAUV’s onboard 
fault detection system, and approximately 0.4 minutes (25 
seconds) before the AUV had bottomed. 

TABLE 3 
Summary of KL Nearest-Neighbor Classification Accuracies 

Dataset Class Label Accuracy (%) TPR (%) FPR (%) TNR (%) FNR (%) 
Training set (2013) Health state Nominal 99.96 100.00 0.10 99.90 0.00 

Fault 99.96 99.90 0.00 100.00 0.10 
Control policy Surface 99.55 99.31 0.35 99.65 0.69 

Depth 99.28 92.57 0.13 99.87 7.43 
Pitch 99.40 98.92 0.31 99.69 1.08 
Float on sur. 98.94 99.64 1.28 98.72 0.36 

Test set (2015) Health state Nominal 99.49 100.00 0.94 99.06 0.00 
Fault 99.49 99.06 0.00 100.00 0.94 

Control policy Surface 99.88 99.79 0.02 99.98 0.21 
Depth 99.87 0.00 0.13 99.87 0.00 
Pitch 99.88 99.79 0.02 99.98 0.21 

Float on sur. 99.87 0.00 0.13 99.87 0.00 

TPR: True Positive Ratio, FPR: False Positive Ratio, TNR: True Negative Ratio, FNR: False Negative Ratio 

 

 

 
Fig. 3.  Time series of vehicle depth (2015 dataset); line color indicates the executed control policy and the red shaded background indicates the fault.  



IV. CONCLUSION 
We applied a generative probabilistic framework for 

unsupervised learning of a performance model and for health 
monitoring of an AUV. We evaluated the framework in post-
processing using state-sensor data collected by the Tethys 
LRAUV in two separate deployments, both of which included 
faults that led to temporary loss of the vehicle. We used one 
dataset as a training set for the topic-model, and the second to 
evaluate classification performance on unseen data. 

Our results demonstrate that the framework was able to 
automatically characterize patterns that relate to vertical plane 
performance of the vehicle, and classify faults with high 
probability of detection and no false detects. A key feature of 
the framework is that it is data-driven and does not require 
expert knowledge. Instead, the dynamic relationship between 
the actuators and the vehicle’s performance is learned directly 
from the training data. The Bayesian nonparametric nature of 
the approach ensures that the model adapts automatically to the 
size and complexity of the data. 

Our ongoing efforts aim to extend the proposed framework 
to facilitate fault isolation (root cause diagnosis). We are 
interested in the development of a health monitoring 
architecture that leverages the topic-based semantic 
representation of the system’s state to inform autonomous 
replanning and automatic selection of mitigation actions in 
response to failures. In addition, we are working on 
implementing the proposed technique onboard an underwater 
robot to facilitate health monitoring and online learning of 
performance topic models in real time. 
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