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Abstract: 

With an abundance of audio data collected from Monterey Bay Aquarium Research Institute’s 

hydrophone, we plan to implement a convolutional neural network (CNN) machine-learning 

algorithm that can effectively classify blue whale b-calls and fin whale pulse-calls. Using Raven, 

a bioacoustics analysis software program, we have extracted a total of 16,886 false-positive and 

true-positive blue whale b calls and 5,927 false-positive and true-positive fin whale pulse calls 

from the hydrophone’s audio recordings. These short sound files were converted to spectrograms 

and be pre-processed through a series of image enhancements prior to training and testing the 

CNN. 70% of the data was used to train the network, 10% was used for validation and 20% for 

testing. Analysis on the effectiveness of the classifier was based on quantitative results presented 

from ROC curves, confusion matrices, and accuracy and precision calculations. Qualitative 

analysis was also done by a long-term comparison of the CNN classifier outputs with respect to 

results from long-term spectral average graphs that illustrate whale call abundance throughout 

the first two years of recordings. The blue whale b classifier results show an overall 98.3% 

prediction accuracy and the fin whale pulse classifier results show an overall 97.8% prediction 



accuracy. Future work will be to add in detection methods as a precursor to the CNN classifier. 

Together, this detection and classification workflow can be used to monitor whale calls 

synchronously with the hydrophone to give scientists valuable data regarding whale migratory 

behavior. With ocean events such as rises in sea temperature that have caused an ecological 

disruption, listening to the soundscape could bring insight into the effects of physical 

disturbances. 

 

Introduction: 

The rise in ocean water temperature over the past few years in the North East Pacific, known as 

the ‘Warm Blob,’ has caused an ecological disruption amongst the inhabitants (Peterson et al. 

2015). Irregular sightings of both blue and fin whales have been recorded over the past couple 

years at the Monterey Bay Aquarium Research Institute (MBARI) and there is reason to believe 

that this could be due to the displacement of phytoplankton. 

 

To further discover the effects of this ‘Warm Blob’ on the marine ecology, much effort has been 

put into monitoring population density. Even though visual data collection methods are reliable 

sources of evidence, they can be especially difficult to obtain when dealing with illusive 

migratory whale patterns and behaviors. A different approach of monitoring whale population 

density and pod migration is through passive acoustic techniques. As of July 28th, 2015, MBARI 

has been powering and continuously recording from a hydrophone that is connected to their 

Monterey Accelerated Research System cabled observatory in the central canyon region of the 

Monterey Bay Marine Sanctuary (Ryan et al. 2016). With a bandwidth ranging from 10 Hz to 

200 kHz and a sample rate of 256 kHz, MBARI’s hydrophone was deployed to begin analyzing 

the soundscape and how anthropophony may interfere with the specific frequency bands that 

whales and dolphins occupy for the channeling of communication and echolocation. 

 

The blue whale has a vocalization known as a B call that is a emitted lower the 20 Hz and can 

reach a duration of at least 15 seconds. The second harmonic of this call, however, carries much 

more energy than the fundamental frequency and exists between 41 and 48 Hz (see figure 1). 

The fin whale emits a short pulse between 15 and 30 Hz and can last a duration of at least 1.5 



seconds (see figure 2)(Debich et al. 2015). This makes the two species great candidates to 

acoustically monitor given the physical fact that lower frequency sound can travel through media 

much further. With the North East Pacific Ocean being home to the largest population of blue 

whales, MBARI’s continuously powered hydrophone is advantageously positioned to be a useful 

tool in observing whale communication and activity. Since the hydrophone’s installation off the 

coast of Moss Landing, Dr. John Ryan generated the figure 3.b that plots acoustic index VS time 

in months, where acoustic index represents a monthly average sound energy at a given frequency. 

The blue and fin lines represent the middle frequencies of the blue whale b (BWB) call and fin 

whale pulse (FWP) call. Figure 3.c (also generated by Dr. John Ryan) shows depth in meters VS 

the same time axis as figure 3.b. The color represents a change in ocean temperature at the M1 

mooring located in the Monterey Bay (36.75 N, -122 W). In comparing the two plots, it can be 

noted that in the same months that there is a large rise in sea temperature, there is a peak in 

acoustic energies at the FWP and BWB frequencies. It can also be noted that there is a two-

month offset between FWP and BWB peeks. It would be insightful to be able to quantify the 

average sound energy by having an actual count of these calls. 

 

With the large amount of live-stream data that the hydrophone collects in real time, however, 

manually examining all of the audio would prove to be too cumbersome of a task. Such an 

obstacle then begs the question, how effective is a machine-learning algorithm in classifying blue 

and fin whale calls? There have been many recent developments on approaches of detection-

classification (DC) systems of whale calls. Popular approaches that have proven to be successful 

are those which involve pattern recognition of processed imagery such as the spectrograms seen 

in figures 1 and 2. Kaggle, an international competition platform for predictive modeling in data 

science, held a contest that asked the machine learning community for the best algorithm to 

predict if there is a right whale upsweep call in a given sound clip ("The Marinexplore and 

Cornell University Whale Detection Challenge | Kaggle", 2017). Of the 245 teams in the 

competition, those who used convolutional neural networks (CNN’s) were seen to have placed 

amongst the highest (Dugan, A. J., et al. 2015). This gave us enough reason to believe that a 

CNN would prove to be an effective model in classifying spectrograms images of both BWB 

calls and FWP calls. 

 



Ultimately, the purpose of the project is to see if an autonomous DC system can be implemented 

to successfully quantify BWB and FWP calls. Our goal was to develop and train an accurate 

CNN classifier so that the detector parameters could be vague and lenient enough to pick up as 

many potential calls as possible. Having an effective DC system would then lead to 

implementation of a pipeline that connects the live-streaming, decimated acoustic data from 

MBARI’s hydrophone to the detector to extract sound clips that represent potential FWP and 

BWB calls. These sound clips would be converted to spectrograms and enhanced to then be 

classified by the CNN autonomously and continuously as long as the hydrophone is recording. 

 

Methods:  

There were three stages that made up the entirety of the project. The first stage consisted of 

collecting sound clips of manually classified BWB and FWP calls through the detector. The 

second stage involved converting the sound clips into clear spectrogram images. The third and 

final stage was dedicated to choosing the CNN model and training and testing on the BWB and 

FWP spectrogram images. 

 

1. Data Collection 

 In order to begin collecting any calls, we first had to decimate the audio from 250 kHz down to 

250 Hz to reduce computational complexity when processing it. We chose to decimate all the 

audio recorded in the months of November 2015 and 2016. A couple weeks in September 2015 

were also decimated.  

 

We chose to use Raven’s Band Limited Energy Detector (BLED) to detect the FWP and BWB 

calls throughout this decimated audio. Raven is a sound analysis software program developed at 

the Cornell Lab of Ornithology to study bioacoustics. The BLED is a sliding window-box 

detector that has a set of parameters that describe the targeted signal. Among the many 

parameters, the ones we focused on setting and tuning were: 

• Min. and max frequency 

• Min. and max duration 

• Min. separation 



• Min. Occupancy (%) 

• Signal to noise ratio (SNR) threshold (db) 

• Block size 

• Hop size 

• Percentile 

Description of each parameter can be found in Raven’s user manual (Charif et al. 2010). The 

parameters that were set for detecting FWP and BWB calls can be seen in table 1. We also 

changed the window size spectrogram parameter that adjusted the fast-Fourier transform 

operation within Raven. This made the spectrograms clearer to see depending on certain 

frequencies. A lower sample per window rate resulted in a smearing of the frequency axis and 

was seen to be advantageous when dealing with the FWP calls because of their long frequency 

band and short duration. A higher sample per window rate showed a smearing in the time axis 

and made BWB calls much clearer given their long duration and smaller frequency band. The 

windows size for the BWB call was set to 512 samples per window and the FWP call was set to 

128 samples per window.  After configuring the BLED and running it across the decimated audio 

with a 50% overlapping sliding window, we manually labeled every single detection as either bt 

(true) or bf (false) for BWB calls and ft (true) or ff (false) for FWP calls. An example of the 

labeling for the FWP calls can be seen in figure 4. For every day that the BLED ran on, a table 

was generated that had the time, duration and true or false label for every detection. For that 

same day, sound clips of each detection were generated as wave files along with a text file that 

was a list of every filename of every sound clip. All BWB calls were temporally padded by 5 

seconds in case the detector failed to encompass the entire call. For the same reason, all of the 

FWP calls were padded by 3 seconds. A total of around 16,886 and 5,927 BWB and FWP sound 

clips were extracted, respectively.  

 

2. Pre-Processing 

Once we felt that we had enough sound clips we began to write the necessary code to generate 

the spectrograms. Most of the code we used to create the spectrograms was inspired from the 

winning team from the Kaggle competition mentioned earlier (Kridler et al. 2013). We followed 

a tutorial of their code via Jupyter Notebook (Helgren et al. 2016). Python3 was the language 

used in conjunction with all of the libraries listed in the requirements.txt file found in our PAM 



repository (Cline et al. 2017). A few different interpolation and normalization methods were 

attempted to enhance the signal appearance. Subjective inspections led to use a bi-linear 

interpolation operation provided by the matplotlib library. A filter array was also used to 

convolve through the whole image to create a smoother spectrogram. Much emphasis was put 

into the appearance of the spectrograms because of the insight shared by former Kaggle winner, 

Nicholas Kridler, who focused on enhancing the training images rather than changing his CNN 

algorithm. This pre-processing step ultimately converted the wave sound clip files, provided by 

Raven, into 300x300 jpeg images as seen in figures 1 and 2. All false and true spectrograms that 

were labeled from Raven were separated into different directories. 

 

 

3. The CNN 

With the short amount of time left before the deadline, we decided to apply transfer learning 

which involves using a pre-existing network that has already been previously trained on different 

image data. By adding a series of extra layers to the end of the network and training only those 

layers, we can redirect the network to classify BWB and FWP spectrograms. This can be 

advantageous if the network that is being transferred is highly trained because it doesn’t require 

as much training. The CNN we decided to transfer is Google’s Inception V3 deep learning 

network (Szegedy et al 2016) in conjunction with the TensorFlow toolkit. The transfer learning 

was inspired by a TensorFlow tutorial that walks through training and testing the last layers 

("How to Retrain Inception's Final Layer for New Categories  |  TensorFlow ", 2017). Code for 

all implementation of Inception V3 can be found on our PAM repository. 

 

Training and testing of the final layers of the network was split into 70% training data, 10% 

validation data and 20% testing data. Because of the fact that the FWP and BWB calls had 

different samples per window it was required to separate them during training and testing so that 

two independent classifiers could be developed. We initially started with two classes for the 

network to train on (true and false). After running the model the first time we realized that we 

needed to increase the number of classes in order to be more specific so that the network could 

recognize the patterns more effectively.  We split all the BWB spectrograms into three classes: bt, 

bf_unk, bf_lines (see figure 5). We split all the FWP spectrograms into four classes: ft, ff_unk, 



ff_lines, ff_blue (see figure 6). Creating more classes made the data more specific but we had 

fewer images for each class. Thus, we had to revisit Raven and generate more sound clips (we 

specifically needed to find more false positives detections). To do this we ran the BLED on new 

decimated audio and lowered SNR parameter down to 4.5 and 2.0 for the BWB and FWP calls, 

respectively. We only augmented the false classes to avoid creating a lopsided network. We 

added around 1,030 bf_unk spectrograms and 80 bf_lines spectrograms. We also added 1,627 

ff_unk and 119 bf_lines spectrograms.  

 

Once we completed training the model we then ran the model on newly decimated data between 

the months of August and December to compare the number of calls found by our new DC 

system with figure 1. 

 

Results: 

After the first training of the CNN classifier with only two classes (true and false) for both BWB 

and FWP calls, overall accuracy and precision are plotted in 7.a and 8.a. Specific accuracy and 

precision for each class are plotted in 7.b and 8.b. Accuracy and precision were calculated for the 

classes as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 ∙ 100% 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 ∙ 100% 

 

After adding more classes to the classifier and augmenting data, figure 9.a and 9.b show overall 

accuracy/precision and specific accuracy/precision for each a class for the BWB call. Figure 10.a 

and 10.b show the ROC curve and confusion matrix for the BWB call as well. Figures 11 and 12 

show the same as figures 9 and 10 except they represent results for the FWP call. 

 

The ROC curves show true positive rate (TPR) vs false positive rate (FPR) where: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 



𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 

The confusion matrices plot the number of misclassifications and where they were misclassified. 

The y axis represents the correct classification and x axis represents the predictions. The color 

weights show how many were predicted for each classification.  A diagonal line of dark blue 

through the middle as seen in figure 12 shows that the FWP classifier was not confused. 

 

Figure 13 shows the results of the final model run over all the decimated audio of the months of 

August through December. The y axis represents the monthly average of calls and the x axis 

represents each month. This graph was used to compare with Dr. John Ryan’s graph in figure 3.b. 

 

Table 2 includes the amount of spectrograms collected for each individual class. 

 

Discussion: 

The results show that the application of a CNN to classify BWB and FWP calls can be a viable 

option when dealing with such big data from the hydrophone. It also shows that transfer learning 

of a deep CNN such as Inception V3 is a great option for spectrogram pattern recognition. In 

comparing figures 7 and 8 to figures 9 and 10, it can be seen that augmenting the data and 

creating more classes greatly improves the accuracy and precision of the classifier. Qualitative 

analysis comparing figure 13 and 3.b shows that counting calls with Raven’s BLED combined 

with the CNN classifier is working. The average number of calls per month reported by the DC 

system is proportional the monthly acoustic index. This supports the possibility of a relationship 

between the rise in both sea temperature and whale vocalizations in the Monterey Bay.  

 

Nonetheless, there is still room for improvement. If there was more time to augment training data, 

the network could have greater precision and accuracy in each individual class. Because the data 

is heavily lopsided toward having more true calls for both BWB and FWP calls, the overall 

accuracy and precision graphs do not appropriately portray the actual behavior of the network 

very well. In order to prevent this in the future, the CNN needs to have more examples of false 

calls. To do this using the BLED, lowering the SNR threshold parameter would increase the 



number false positives detected by the BLED and would give the CNN more examples to 

recognize noise patterns.  

 

Other future work that can be built off of these findings could include understanding where the 

background noise is coming from. Many of the misclassifications from the CNN were from 

having multiple classes in one spectrogram. For example, a line of noise could appear right next 

to quite BWB call and the CNN would classify it as a ff_lines class. We initially thought these 

lines were coming from ship noise but further inspection revealed that these lines were appearing 

during parts of the day where the hydrophone did not pick up any signs of ship activity. With the 

DC system in place, finding when and how many of these lines show up in the audio data could 

give insight into where they are coming from.  

 

There was also a noise band that existed around 30 Hz that was interrupting many of the FWP 

calls. It made it more difficult to detect the FWP’s because the SNR had to be increased. This 

explains why we collected less FWP training data all together. Further investigation of this noise 

could lead to either an effective band filter or to be able to silence it if it were to be a mechanical 

sound.  

 

Once a fine tuned DC system can be set-up to begin counting individual whale calls over 

continuous live-streaming data, more research can be dedicated to investigating whale call 

separation time. Finding temporal patterns within a series of BWB calls, for example, could help 

behavioral ecologists translate what the largest animals on the planet are communicating to each 

other.  
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Figure 12. 

 
 
 
 

Tables 
 
 

Table 1. 
  Parameters BWB FWP 

Min. frequency 41 Hz 12 
Max. frequency 48 Hz 33 
Min. duration 7.168 s 1.024 s 
Max. duration 27.648 s 4.096 s 

Min. separation 5.12 s 5.12 s 
Min. occupancy 60% 40% 
SNR Threshold Above 7.0 Above 10.0 

Block size 50.176 s 6.144 s 
Hop size 21.504 s .512 s 
Percentile 10.0 20.0 

 
 

Table 2. 
  Call Type Xt Xf_unk Xf_lines ff_blue 

BWB 15,364 1,362 160 NA 
FWP 3,721 1,607 305 294 

 
 

a.	 b.	
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