

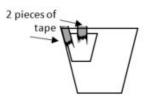
Monterey Bay Aquarium[®]

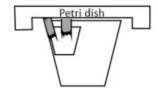
Modelling Ocean Acidification

Beth Callaghan, Teacher Programs Senior Education Specialist Shannon Bertilacci, Education Specialist II June 21, 2017

Modelling Ocean Acidification

1. Carefully tape the small cup to the inside of the top of large cup as


You'll be starting


here at

Step 5

shown.

- a. The small cup should be about 1 mm from the top.
- Make certain the small cup is secured before pouring any chemicals.
- 2. Pour 50 mL of water into the large cup.
- 3. Add a full pipette of BTB indicator to your water.
- 4. Pour 5.0 g of baking soda (NaHCO₃) into the small cup.
- 5. Slowly pour 10 mL of vinegar (CH₃COOH) into the small cup.
- 6. Quickly place a petri dish over the full system to close it as shown.
 Trap that gas!

Solution	Color	Bubbles
Small Cup		
Large Cup Before		
Large Cup After		

Explore the model with your team

- Let's brainstorm the components in this model
- What do the components of the model represent in the real-world system?

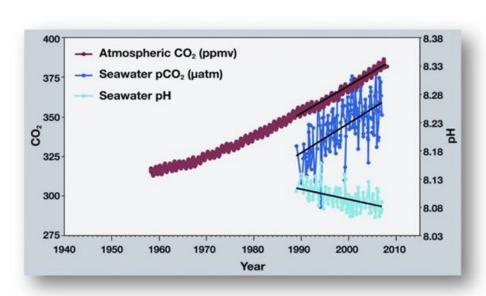
Explore the model with your team

Draw what you think is happening in this model system.

Don't erase as you modify, just use a different color marker. Make sure to:

- Label the components (e.g., what part of the model represents the "ocean").
- Use arrows to indicate interactions among components.
- Think about how chemical processes might interact with other nonliving and living components

Ocean Acidification Resources


Carbon Dioxide and Our Ocean Legacy:

Ocean Acidification Cartoon

Effect of OA on Organisms

Working on Solutions

NOAA Data

Basics of Modeling

Used to explore phenomena and develop understanding