
1 

 

 

Evaluation of Inertial Measurement Unit Performance for  

Water Column Velocity Estimation of Coastal Profiling Floats 
Nicholas Raymond, University of California Davis  
Mentor: Gene Massion 

Summer 2016 

 

Keywords:  Coastal Profiling Float, Velocity Estimation, Inertial Measurement 

 

ABSTRACT  
The Monterey Bay Aquarium Research Institute is developing a coastal profiling 

float to enable long-term continuous measurement of near-shore marine environments 

using biogeochemical sensors. To prevent these new floats from drifting out of their 

designated measurement volume, it is desirable to monitor their underwater drifting 

velocity using inexpensive inertial measurement units. This project developed a 

systematic approach for evaluating these types of sensors using both simulations and 

experimental data. The approach outlined in this paper was successfully used to process 

raw accelerometer data from a Bosch BNO055 sensor and obtain modestly accurate 

velocity estimates from accelerations that were smaller than the resolution of the sensor. 

In the future, this methodology can be applied to test more sensitive sensors as well as 

different digital filters to determine the optimal combination that would result in accurate 

and reliable velocity estimation for the coastal profiling float project.  

 

INTRODUCTION  

Scientists and engineers want to use biogeochemical sensors to collect data over 

larger temporal and spatial scales as a way of monitoring the health of the ocean in an 

effort to better understand the ocean’s role in the global carbon cycle [Johnson K. et al. 

(2009)] While ongoing efforts like the Argo profiling float project monitors the open 



2 

 

ocean, a comparable program does not yet exist for coastal areas. However, there has 

been an increased interest in studying coastal zones as these regions represent a 

significant wealth of ecological diversity and financial benefit that is highly susceptible to 

human influence.  

Profiling float technology has been found to be a cost effective and robust 

platform for continuous ocean observations. These autonomous devices can change their 

buoyancy to float at various depths within the water column and passively drift in 

underwater currents while taking sensor measurements. Due to the success of these types 

of floats, the Monterey Bay Aquarium Research Institute (MBARI) has been developing 

a new type of profiling float that is optimized for coastal deployment. These coastal 

profiling floats (CPF) will be outfitted with biogeochemical sensors and operate at a 

maximum depth of 500 meters. The CPFs are deigned to last for five years without 

maintenance or human intervention, and unlike the conventional profiling floats, the CPF 

must stay within a very narrow region along the coastline. The most recent MBARI CPF 

design is shown in figure 1, with the CAD model provided by ocean engineer Gene 

Massion. 

 
Once deployed, the CPF is programmed to monitor a specific coastal 

measurement volume and should remain within that measurement volume over the 

duration of the deployment. The CPF should not drift too close, nor should it drift too far 

 
Figure 1: MBARI coastal profiling float design (left) and cross section view (right). 



3 

 

from the coastline. In this way, a network of floats could be deployed in a grid pattern to 

gather high-resolution data sets over a large region of ocean. In an effort to keep the CPF 

design simple and cost effective, floats are not equipped with active propulsion systems. 

This inhibits the ability for CPFs to stay within the designated ocean measurement 

volume while being exposed to strong currents and seasonal weather patterns. One 

proposed solution for keeping the CPF within the measurement volume is to monitor the 

CPF’s drifting speed and direction as it ascends to the surface. When the float encounters 

a strong subsurface current, it’s velocity would quickly change and information about the 

strength and direction of the current could be estimated. An onboard pressure sensor 

provides continuous depth measurements and would be used to determine the depth 

where currents were strongest.  

After reaching the surface and uploading all of its data via iridium satellite link, 

the CPF would dive down and then passively drift back towards the location where it 

began its mission. It is critical that the underwater velocity of the CPF be determined so 

that identification of subsurface currents moving in opposite direction to the dominant 

CPF drift direction would be possible. A typical mission cycle is shown in figure 2. 

 Traditionally, the Global Positioning System (GPS) has been used to provide 

accurate velocity and position-monitoring for devices that operate at the surface of the 

ocean. However, GPS signal is not strong enough to travel through the water and tracking 

 
Figure 2: Example of CPF mission cycle using subsurface currents to drift back to the starting position. 



4 

 

ends when the device is submerged. In very special applications, inertial measurement 

units (IMU) have been used to provide “dead reckoning” navigation for submarines, 

planes, and AUVs [Titterton, D. H., & Weston, J. L. (2004)]. While it is not possible to 

directly measure velocity or position with an IMU, a vehicle’s acceleration can be 

measured and transformed into a global reference frame if the orientation of the sensor is 

known. The transformed acceleration measurements are then integrated to obtain an 

estimate for velocity and integrated a second time to obtain estimates of position.  

Traditional IMU systems implement accelerometers and gyroscopes with very fine 

resolution that require careful calibration. This is done in an effort to reduce the 

accumulation of errors that are inherent with this process, but this contributes to the high 

cost of these units.  

Advancements in the semiconductor industry have led to the rapid growth of 

small, inexpensive IMU sensors. These microelectromechanical systems (MEMS) based 

IMUs are attractive solutions because they are small, light weight, consume less power, 

and have been used to provide orientation and velocity estimates for small aircraft and 

robots over relatively short time intervals where error accumulation can be mitigated 

[Titterton, D. H., & Weston, J. L. (2004)]. The disadvantage of this technology is that the 

sensor outputs are much noisier and typically require signal processing or filtering which 

makes velocity and position estimation difficult over long time spans due to significant 

error accumulation.  Wanting to explore the potential benefits of MEMS sensor 

technology, the scope of this internship project was to develop a systematic methodology 

to evaluate the performance of a generic MEMS IMU for the purpose of CPF velocity 

estimation so that future researchers could compare and evaluate the performance of a 

range of different sensors of varying cost and sensitivity. The following sections provide 

details on the methodology and experiments conducted, as well as the results from 

running the velocity estimation algorithm on both simulated and experimental data. 

 

MATERIALS AND METHODS  

The research project was split into three separate tasks. First, a dynamic 

simulation was created to estimate the range of expected acceleration and velocity 

magnitudes that a CPF would experience during a typical profiling mission. Next, the 



5 

 

values obtained from the simulation were used to conduct a series of experiments using a 

linear translation stage to emulate the motion of the CPF while drifting underwater in the 

ocean currents. During these experiments, the sensor was rigidly mounted to the stage 

and acceleration data was collected as the table moved back and forth with a specified 

acceleration and terminal velocity. Next, this experimental data was processed through a 

velocity estimation algorithm designed to filter the raw sensor output and then perform 

numerical integration. Finally, the experimental and simulated velocity profiles were  

compared using two different digital filtering methods and a performance metric was 

used to quantify the effectiveness of each approach.   

 

DYNAMIC SIMULATION 

A MATLAB Simulink model was created to evaluate the forces acting on the 

CPF in the North/South and East/West directions and estimate the float’s acceleration and 

velocity as a function of time. The hydrodynamic drag acting on the float was computed 

with the following equation, operating under the assumption that the CPF’s shape is 

approximated as a short cylinder: 

Fdrag =
1
2
Cdragρ U −V( )2 Area  

In the above equation the variable Cdrag represents the drag coefficient,  ρ is the density of 

sea-water, U is the speed of the current, V is the speed of the CPF, and Area is the cross 

sectional area of the cylinder which is normal to the direction of the moving fluid. By 

applying Newton’s 2nd law and summing all forces acting on the CPF at a given instant of 

time, it was possible to solve for the three mutually perpendicular instantaneous 

accelerations aligned in the North-East-Down (NED) global coordinate system. The flow 

chart in figure 3 shows each step of the dynamic model calculation. 



6 

 

 A closed-loop hydraulic dive engine developed at MBARI modulates the CPF’s 

buoyancy. This directly controls the descent and ascent velocity of the CPF by pumping 

hydraulic fluid between a large internal oil bladder and two smaller flexible oil bladders 

mounted on the CPF’s exterior. Test tank experiments conducted by engineer Gene 

Massion have shown that this system provides reliable velocity control and that the CPF 

floats to the surface in a near vertical orientation. As a result, the dynamic model 

assumed a constant vertical velocity of 10 cm/sec and a perfect vertical orientation (no 

pitch or yaw).  The Simulink model for the North/South direction is shown in figure 4, 

while the architecture for the East/West and Vertical axes are virtually identical. 

 

 
Figure 3: Flow chart showing the force balance and integration steps used in dynamic simulation. 

 
Figure 4: MATLAB Simulink CPF dynamic model for the North/South direction. 



7 

 

During the simulation, it is assumed that the  +X axis of the sensor remained 

aligned with the North direction while the +Y axis of the sensor remained aligned with 

the East direction. In practice, the true NED orientation of the CPF will need to be 

monitored; however, this was outside the scope of this work and will be included in 

future work. The Simulink model for the North/South direction is shown in figure 4, 

while the architecture for the East/West and Vertical axes are virtually identical. 

Once the outputs from the model were verified using step and ramp inputs, a 

series of ocean current profiles were input into the simulation. These current profiles 

represented historic data obtained from the M1 mooring in Monterey Bay, and were 

gathered from the MBARI Live Access to Data website http://dods.mbari.org/. Figure 5 

gives a visual representation of two days worth of current measurements and range from 

10 – 300 meters of depth. The warm colors represent currents moving in the East 

direction and the cooler colors represent the currents moving in the West direction. This 

data set was chosen because it represented the type of velocity profiles that are of most 

interest to the CPF project; strong subsurface currents moving in the opposite direction to 

currents at the ocean surface.  

 

 
Figure 5: Current velocity measurements from the M1 mooring in Monterey Bay. 



8 

 

After running the dynamic model on the five data sets from February 2002, it was 

estimated that a CPF would experience accelerations with a magnitude of 0.02 – 1 

mm/sec2 and a range of velocities from 10 – 160 mm/sec. An example of the simulation 

outputs are shown in figure 6 and figure 7 comparing both the input current profiles and 

the resulting CPF velocity and acceleration profiles. 

 
BNO055 Inertial Measurement Unit 

Prior to the start of the summer internship, a Bosch BNO055 IMU breakout board 

as seen in figure 8 was purchased from Adafruit Industries at a cost of $35. The MEMS 

accelerometer within the IMU had a resolution ±9.8 mm/sec2 with a maximum sampling 

rate of 100 Hz [Bosch Sensortec (2016)]. Based on the dynamic simulation results, the 

 
Figure 6: CPF simulated velocity profiles based on historic data from Monterey Bay currents. 

 
Figure 7:  CPF simulated acceleration profiles based on historic data from Monterey Bay currents. 



9 

 

sensor resolution was at least 10x larger than the acceleration signal of interest. In ideal 

circumstances, the resolution of the sensor should be smaller than that of the smallest 

signal to be measured. While it is possible to purchase more sensitive accelerometers 

from different vendors, those sensors are typically 10 to 100 times more expensive than 

the BNO055.  

 
The emphasis of this project was to develop a systematic approach for evaluating 

the performance of these MEMS sensors and it was decided that work would continue 

with the BNO055. Additionally, researchers at MBARI were interested in determining 

the minimum acceleration value that this IMU could reliably detect once the raw output 

had undergone signal processing.  Signal processing is used to reduce the magnitude of 

the noise within a measurement and isolate the desired waveform so that useful 

measurements may be obtained even when the resolution of the sensor is larger than the 

magnitude of the signal of interest [Steven S. (1997)].  

A data acquisition unit (DAQ) was built using a GHI G400 microcontroller to poll 

the sensor and save the output to an SD card. The DAQ firmware was written in C# using 

the Visual Basic integrated development environment and called a timer interrupt routine 

every 10 milliseconds to maintain a sensor sampling rate of 100 Hz. At the end of the 

programmed sampling period, the sensor measurements were written to the SD card and 

the data from each accelerometer axis was saved as its own text file in byte format. An 

onboard real-time clock was used to keep accurate time and date measurements, and was 

also used during the firmware development to verify the timer interrupt sampling rate. 

The fully assembled DAQ is shown in figure 9. 

 
Figure 8: Image of the BNO055 IMU breakout board purchased from Adafruit Industries. 

Image source: https://www.adafruit.com. 



10 

 

 

PATH TRAJECTORY SIMULATOR 

Before running physical experiments with the sensor, a path trajectory simulator 

was developed to generate a range of velocity and acceleration profiles that could be 

programmed into a linear translation stage controller. These ideal path trajectories 

accomplished two functions: first they were used to determine the motion of the liner 

translation stage and ensure that the physical limitation of the table were not exceeded, 

and secondly these idealized path trajectories would be used to provide a comparison 

with the experimental data.  

To use the path trajectory simulator, the user must first specify the initial table 

location, constant acceleration/deceleration, and terminal velocity parameters. These 

values determined the shape of the ideal velocity profile and were calculated from the 

equations of motion for a particle having constant acceleration. The equations are shown 

in figure 10. 

 

 
Figure 10: Equations of motion used to calculate the desired simulation velocity profile. 

 
Figure 9: Fully assembled data acquisition unit for reading IMU sensor and saving data to memory card. 



11 

 

Using the initial conditions and predefined motion parameters, the velocity profile 

was generated as a piecewise function having four unique sections. By solving for the 

change in time required to achieve the terminal velocity for each segment, it was possible 

to calculate four unique values of time and position. These position and time values were 

then used to generate the ideal trapezoid profile. An example of the trapezoid profiles are 

shown below, which was programmed to have a terminal velocity of 16 mm/sec. The first 

trapezoid shape indicates a positive velocity in the +Y direction, the inverted trapezoid 

profile represents the table moving back in  –Y direction such that the table ends at the 

initial starting location. This represents a complete back-and-forth cycle. 

 
Once the complete back-and-forth profile had been created, the total number of 

cycles was computed for a specified simulation time (ex. 10 minutes). The final 

simulation velocity for a 10 minute cycle is shown in figure 12: 

 Next, a simulated acceleration profile was created by taking the derivative of the 

velocity profile. The kinematic equations of motion assume constant accelerations, so a 

simple alternating square wave could be used to represent the simulated acceleration 

 
Figure 11: Simulated velocity profile for a single cycle with the linear table moving back-and-forth. 

 
Figure 12: Simulated velocity profile for entire simulation run time of 10 minutes, with six cycles. 



12 

 

profile. As with the velocity profile, once a complete back-and-forth acceleration cycle 

had been created, a longer acceleration profile to span the full simulation run time could 

be created. This was important because the error in the velocity estimate was highly 

dependent on the total sampling time. The linear table was only 600 mm long, placing 

physical limitations on the size and shape of the path trajectories. A single pass with the 

linear table did not produce enough data points to see a significant difference in the 

velocity estimation methods which is why multiple back-and-forth cycles were needed. 

LABORATORY EXPERIMENTS 

A bench top simulator was used to emulate the motion of the CPF drifting in 

subsurface currents and allowed for controlled laboratory testing. The motion control 

device was a single Newport IMS600CCHA high performance linear translation stage 

that had position resolution of 0.2 microns and a PID closed loop motion controller. The 

motion of the linear stage was determined by a series of ASCII text commands 

programmed into a desktop computer that was then sent to the motion controller which  

 
Figure 14: Simulated acceleration profile for entire simulation run time of 10 minutes, with six cycles. 

 
Figure 13: Simulated acceleration profile for one cycle of the linear translation stage. 



13 

 

power the DC motor servo motor. The experimental setup is shown below and included 

the DAQ, linear translation stage, BNO055 sensor, and desktop computer. 

 
The following combination of velocities and accelerations were run with the 

linear translation table. During all experiments, the Y axis of the sensor was aligned with 

the direction of motion, and prior to running the experiments the linear table was leveled 

using a machinists digital level that had a resolution of 0.1 degrees.  

 
VELOCITY ESTIMATION ALGORITHM 

For the last part of this project, a velocity estimation algorithm was created in 

MATLAB to filter the raw sensor data and perform numerical integration. The first step 

was to look at the power spectrum density (PSD) of the sensor signal and identify the 

 
Figure 15:  Experimental setup showing the BNO055 IMU sensor mounted to linear translation stage. 

Table 1: Acceleration and velocity parameters used to program the liner translation table.  

Run 

 

Acceleration  

(mm/sec2) 

Velocity  

(mm/sec) 

A 150 200 

B 40 100 

C 10 50 

D 5 35 

E 1 16 

 



14 

 

dominant frequencies within that signal. The Welch method was used to obtain an 

estimate on the PSD and implemented a Hamming window with 50% overlap and FFTs 

that had individual widths of 8,192 bins. This information was then compared to the PSD 

for the simulated acceleration signal in order to differentiate the true signal from noise. 

Before calculating the PSD for each axis, any linear trends and offsets were removed by 

applying the MATLAB detrend( ) function to the raw sensor data. The resulting PSD for 

the Y axis measurements are shown in figure 16. The portion of the signal from 0.01- 2.5 

Hz was identified as the actual acceleration signal and the remaining frequencies 

corresponded to noise from the MEMS sensor or the mechanical linear stage vibrations. 

 
The velocity estimation program implemented two types of filters: 

A. Total variation denoising filter – referenced from image processing literature   

B. Moving average filter – basic digital infinite impulse response filter  

A brief overview of each filter is given below, however it is important to note that these 

two filters are simply examples of signal processing methods that might be suitable for 

this project. More testing is still needed to determine the best filter and filter settings for 

estimating CPF velocities given a wide range of acceleration measurements. 

The total variation denoise filter, hence forth referenced as denoise,  is heavily 

used in digital image processing since it has the benefit of removing background noise 

while maintaining sharp edges and contrast. The denoise function implemented in this 

 
Figure 16: Estimation of power spectral density from Y axis sensor data. 



15 

 

project was written by Mr. Daniel R. Pipa who had referenced the work published by 

Chan S. et al. (2011). This version of the denoise filter had two parameters, µ and ρ, 

which had to be adjusted based on the noise amplitude and characteristics of the signal 

being filtered. Through trial and error, it was found the denoise filter was effective at 

removing the noise from all five of the experimental runs which ranged from 1 – 150 

mm/sec2. Below is a parameter study, showing the affect of changing the µ parameter 

from 0.01 to 0.005, with the white plot representing the simulated acceleration profile. 

The benefit of this filter is clearly seen in the image below, with sharp edge detection for 

the majority of the profiles. 

  
An infinite impulse response (IIR) filter was also implemented to provide a 

comparison to the denoise filter. The IIR filter is a type of digital filter that a recursive 

process, using information about the previous output value to update the filter, which 

results in robust digital filters that are computationally efficient [Steven S. (1997)]. The 

MATLAB filter( ) function is used to create custom digital filters by passing A and B 

matrices that represent the numerator and denominator of the filter transfer function, 

respectfully. To implement a simple moving average filter, the A matrix is given a default 

value of one, and the B matrix is determined by the number of data points that will be 

average together. Once values have been determined for the A and B matrices, the digital 

filter is created and applied to the raw accelerometer data. While simple in its 

implementation compared to other IIR filters, moving average filters have been found to 

 
Figure 17: Denoise filter performance for range of µ values.  



16 

 

be very effective at reducing additive Gaussian white noise and are computationally 

efficient making them suitable as a first attempt when trying to process sensor outputs 

[Steven S. (1997)].  Just as with the denoise filter, a series of simulations were run to 

observe the affect of altering the number of points averaged together. The image below 

shows five simulations where the number of averaged data points ranged from  

1,000 – 5,000.  

 
With both filter settings selected, the raw accelerometer data was then processed. 

The plot below shows the filtered profiles along with the ideal simulated acceleration 

profile. There is an obvious phase delay between the experimental and simulated data, 

which is corrected within the program by specifying the time delay for each filtered 

profile. The phase delay is primarily caused by misalignment between the start of the 

simulated and experimental data and is not a serious concern. A small portion of the 

phase delay is caused by the filtering methods, with the moving average filter producing 

the larger phase delay. However, a phase delay of 1 - 5 seconds is not significant for this 

project, since the CPF is profiling upwards at a velocity of 10 cm/sec and the variation 

between subsurface currents at various depths is on the order of meters not centimeters. 

 
Figure 18: Test to determine the effect of changing the number of points used in moving average filter. 



17 

 

 
Numerical integration is performed after signal processing. A cumulative 

trapezoid rule was implemented by calling the MATLAB function cumtrapz( ). After 

numerical integration there was a dominant periodic waveform superimposed with the 

velocity estimates which was due to low frequency noise spectra that was not filtered out 

from either the denoise or moving average filters. To obtain an accurate estimate of the 

velocity profile, this low frequency periodic signal had to be removed. This was 

accomplished by fitting a 12th order polynomial to each velocity profile and then 

subtracting  the polynomial from the data set. The results are shown in figure 20. 

 

 
Figure 19: Comparison of the filtered accelerometer data with the simulated acceleration profile.  

 
Figure 20: Final velocity estimates after subtracting 12th order polynomials from velocity profiles. 



18 

 

 Alternatively, a band pass filter may be implemented before the numerical 

integration step. If tuned properly, the band pass filter would avoid the need to use this 

polynomial fit method. While the polynomial fit approach works with this data set, the 

experimental data is periodic and only approximates the types of signals that would be 

expected from the ocean. Is not desirable to use this polynomial fit approach on data 

collected from ocean measurements since fitting high polynomials to stochastic data will 

not be computationally efficient nor is it expected to be effective. 

The last step in the velocity estimation program is to compare the experimental 

data to the simulated acceleration and velocity profiles and compute error estimates by 

calculating mean and standard deviation values for the segments of the profiles where 

there should be constant velocity. A plot of the final velocity estimates and the ideal 

simulated velocity profile are shown in figure 21.  

 

 
 

RESULTS/DISCUSSION  
A total of five experimental runs were conducted and results from the two most 

extreme cases are shown below. Run 1 had the largest velocity and acceleration settings, 

velocity = 200 mm/sec and acceleration = 150 mm/sec2. This set of data was used to 

verify that the velocity estimation algorithm was functioning properly. Surprisingly, the 

 
Figure 21: Comparison of final velocity estimates with simulated profile. 



19 

 

estimation program performed very well when the denoise filter was tuned to µ = 0.002 

and ρ = 10, while the moving average used 1000 average points.  

Next, the filters were tuned to process the data from Run 5 which had velocity = 

16 mm/sec and acceleration = 1 mm/sec2. These values were more similar to conditions 

that the CPF is expected to experience while floating in subsurface currents. The denoise 

filter parameters were set to µ = 0.0035 and ρ = 50, while the moving average filter used 

4,600 averaging points. The average velocity values for each filter are plotted along with 

error bars representing one standard deviation. 

 
The algorithm perform modestly well, with both filtering methods producing 

results that first underestimate, then overestimate, and finally underestimate the true 

value. While nether filtering method achieved consistent estimates of 16 mm/sec, the 

program is considered a success because the velocity estimates are within an order of 

magnitude of the true programmed velocity and this is considering that fact that the noise 

of the acceleration signal was ± 200 mm/sec2 for a true signal of only ±1 mm/sec2.  

Next, the filter settings (which were optimized for Run 5 with small accelerations) 

were applied to the Run 1 data that had the larger acceleration and velocity values. This 

was done as a way to see if the filter settings could be used for a wide range of 

 
Figure 22: Performance of velocity estimation algorithm for Run 5 data, red line represents the true 

constant velocity value of 16 mm/sec. 



20 

 

acceleration measurements, or if the filtering methods were only effective for a limited 

range of sensor values. The results are shown in figure 23, with the velocity = 200 

mm/sec.  

 
In this situation, the moving average filter severely underestimated the true 

velocity value. The denoise filter performed modestly well, also underestimating the true 

velocity with an average value that ranged between 140 – 170 mm/sec. Near the end of 

the 10 minutes, the average velocity estimates from the denoise filter become smaller and 

the standard deviation grows larger as the error in the estimate continues and the 

variability of the estimate increases. This is all visualized in figure 24, which shows the 

first four minutes of data from the velocity estimates for Run 1 using the filter settings 

established for the Run 5 data set. 

 

 
Figure 23: Performance of velocity estimation algorithm for Run 1 data, red line represents the true 

constant velocity value of 200 mm/sec. 



21 

 

CONCLUSIONS/RECOMMENDATIONS  
The goal of the internship was not to determine the best filtering method or the 

optimal filter settings. Rather, a systematic procedure was created for evaluating MEMS 

based IMU sensors using both simulation and experimental data. This organized 

approach will allow other researchers to experiment with new filtering methods and 

quantify the improvements that are made. Furthermore, the five experimental data sets 

collected with the BNO055 and linear translation stage can be used as a benchmark, 

allowing direct comparison of the new filtering methods without the need to conduct 

additional experiments in the short term. Once a more effective filtering method is 

determined, experiments using new sensors having smaller acceleration resolution can 

conducted and the results should be compared to the BNO055 results. 

While the filtering methods discussed in this report did produce adequate results, 

they have not been fully optimized nor do they work over a wide range of acceleration 

measurements. It is believed that more effective filter methods can be implemented that 

will result in more accurate velocity estimates. For example, the implementation of a 

band pass filter would fix two important issues: the DC offsets could be removed without 

the use of the MATLAB detrend( ) function, and a carefully tuned band pass filter would 

remove the need for the polynomial fit routine.  

 
Figure 24: Velocity estimates for V = 200 mm/sec, using filter settings optimized for small 

accelerations. 



22 

 

The programs developed for this project have been transferred to engineer Gene 

Massion and saved on the MBARI CPF work directory so that other researchers will be 

able to use this software to continue this work. Based on the results presented in this 

paper, it seems highly feasible that given a more sensitive sensor and optimized filtering 

methods it will be possible to estimate the underwater velocity of the CPF for limited 

periods of time using the MEMS IMU sensors. 

Future work should continue to explore alternative digital filtering methods, and 

begin to incorporate the magnetometer sensor readings into the project so that NED 

orientation values can be collected along with the acceleration data. This will provide the 

researchers with information about drifting speed and the direction. Lastly, this analysis 

assumed that the CPF was perfectly vertical as it drifted upward to the surface of the 

water. Since this may not be the case during ocean deployment with turbulent currents, 

the actual orientation of the CPF must be used to correct the accelerometer measurements 

before filtering and integration. One significant benefit of the BNO055 is that an onboard 

microcontroller processes accelerometer and gyroscope measurements to produces 

orientation estimates in real time. This information can also be read by the DAQ with 

minimal modification to the firmware so that the velocity estimation program can use the 

orientation values. All of these efforts will aid in producing more reliable and accurate 

velocity estimates for the CPF so that the larger scientific research object can be realized.   

 

ACKNOWLEDGEMENTS  

First and foremost I would like to thank George Matsumoto and Linda Kuhnz for 

being such amazing intern coordinators and for helping me navigate the inner workings 

of MBARI and the internship. I would also like to thank the Chemical Sensor lab staff: 

Josh Plant and Hans Jannasch for letting me tag along during the inspection of Lobo 

mooring and for their helpful afternoon talks, Carole Sakamoto for patiently explaining 

how the nitrate sensor calibration process works, and Luke Coletti for sharing his past 

experiences with electrical engineering and discussing the development of the ISUS 

hardware. I would also like to give special thanks to Ken Johnson for allowing me to 

borrow a large portion of Chemical Sensor laboratory space during the summer internship 

and for being a positive supporter of the IMU sensor project.  



23 

 

And most importantly, I am eternally grateful to my amazing mentor Gene 

Massion for always making time to share his insights and wisdom with me and for 

teaching me the importance of developing a systematic approach for solving hard 

engineering problems. Oh, and yes he does enjoy telling lots of jokes.  

 

References:  

Access to quality-controlled MBARI OASIS Data 

http://dods.mbari.org/lasOASIS/main.pl 

 

Bosch Sensortec (2016). BNO055 Intelligent 9-axis absolute orientation sensor. 

Document number: BST-BNO055-DS000-14. 

 

Chan S., Khoshabeh R., Gibson K., Gill P., Nguyen T., (2011). An Augmented 

Lagrangian Method for Total Variation Video Restoration. IEEE Transactions on Image 

Processing IEEE Trans. on Image Process.  

 

Daniel P.R., (2012). Stack Exchange Forum - Signal Processing Question 

http://dsp.stackexchange.com/questions/3026/picking-the-correct-filter-for-

accelerometer-data 

 

Johnson, K., Berelson, W., Boss, E., Chase, Z., Claustre, H., Emerson, S., Gruber N., 

Körtzinger A., Perry M., Riser, S. (2009). Observing biogeochemical cycles at global 

scales with profiling floats and gliders: prospects for a global Array. Oceanography, 

22(3), 216–225. http://doi.org/10.5670/oceanog.2009.81 

 

Steven S. (1997). The scientist and engineer's guide to digital signal processing 

California Technical Publishing, ISBN-10: 0966017633 

 

Titterton, D. H., Weston, J. L. (2004). Strapdown inertial navigation technology.  

Reston, VA: American Institute of Aeronautics and Astronautics. 

 


