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ABSTRACT 

The Tethys-class LRAUV’s long battery life provides a platform for studying 

water chemistry and biology far offshore and following longer-term events such 

as plankton blooms and upwelling events by drifting for long periods of time. 

These AUVs currently run mission scripts written by operators in XML following 

custom mission schemas. TethySL is an attempt to improve the user experience of 

writing mission scripts by designing a domain-specific language that captures the 

same functionality as the current system with a much simpler syntax and 

additionally provides immediate and clear error reporting. The prototype, while 

not yet reaching the full functionality of the XML scripts, provides a much better 

user experience and lays a solid groundwork for future development.   

INTRODUCTION 

The Tethys-class long-range autonomous underwater vehicles (LRAUV) have an 

impressive battery life, able to travel for up to 2000 kilometers at a speed of 1 

meter per second or drift under the surface for around 2 weeks. Long-duration and 

long-range functionality provides the opportunity to perform experiments and 
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carry out observation not capable by other AUV lines currently in use at MBARI, 

such as gliders and the Dorado-class AUVs. Possible missions include tracking 

plankton blooms (Hobson et al. 2012) and upwelling events (Zhang et al. 2012).  

Tethys-class AUVs run mission scripts written by operators and scientists 

in XML. The mission files are kept under version control (at https://bitbucket.org/

mbari/lrauv-mission) and made available for submission to the vehicles during 

operations through the TethysDash application (https://okeanids.mbari.org/

TethysDash/).  These XML mission scripts are validated against a mission 

schema, confirming that the new script conforms to the expected format of the 

mission (Fig. 1). This insures some safety in mission structure: the mission must 

have certain components (such as a mission timeout) to mitigate risks and make 

sure the AUV can perform properly. After being validated, the XML is compiled 

into AUV-recognized code before being sent to the surfaced vehicle.  

Figure 1. The main components that make up LRAUV mission 

scripts (Godin et al. 2010).

However, due to XML’s inherent structure (Fig. 2), the Tethys mission 

scripts contain  large amounts of boilerplate code, making it difficult to read and 

time-intensive to write, especially for individuals not already comfortable writing 

programs.  
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Figure 2. An email (minus actual email addresses) and how it might be encoded in XML.

Additionally, XML does not provide immediate feedback on errors, as 

most errors will be caught by the validator and all returned at one time. Although 

there exist sophisticated XML editors that could greatly facilitate the task for the 

user, they are not usually intended to be easily integrated in new applications, 

which is a requirement for the use of the tool in the LRAUV software ecosystem. 

A language dedicated to a particular domain application can afford a much 

simpler syntax when compared to XML and additionally provide more 

meaningful and instant feedback on syntactic and semantic errors.  

TethySL is a domain-specific language for LRAUV mission scripting 

designed with simple syntax and useful, immediate error reporting as objectives.   

MATERIALS AND METHODS 

Currently, TethySL does not compile the user input into AUV-recognized machine 

code. Instead, the language produces the XML equivalent of the user’s input. This 

was largely due to time constraints. Creating a compiler for a language is often 

more challenging and time-intensive than translating the language into another 

high-level language. By translating into XML, we can still utilize all the existing 

backend without requiring the user to actually interact with the XML directly. The 
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user inputs the new syntax, and TethySL produces XML for them, which can then 

be compiled and sent to the AUV. 

TethySL consists of several modular components that transform the user’s 

input into XML. First, input is fed to the parser to syntactically validate the input 

and to produce a corresponding Abstract Syntax Tree (AST). The validator then 

semantically validates the AST before the translator produces the input’s XML-

equivalent. All components are written in Scala for its compatibility with the 

existing TethysDash architecture (written in Java) and the availability of excellent 

libraries and tools that greatly facilitate the development of the TethySL language. 

In particular, these include the FastParse library (Haoyi, 2016) for parsing, and the 

Scala.js framework (https://www.scala-js.org/), which allows to target web 

browsers as the execution environment for the tool. 

Parser and abstract syntax tree 

User input is parsed into different components of the abstract syntax tree using the 

FastParse library, which enables custom construction of recursive descent parsers. 

This library allows for composition of Parser objects, such that one particular 

parser can be expressed in terms of other parser objects. In general, during 

execution, a parser searches for corresponding contextual syntax in the given 

input (e.g., “define { … }”) and can record any information it is asked to capture 

into elements that can be used to build the AST (Fig. 3). (The FastParse Index 

parser, which is used in most implemented parsers in TethySL, allows to capture 

the current input stream location, so this information can later be used in semantic 

error reporting during validation.) 
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Figure 3. Shown are two of the defined parsers in TethySL. The "setting" parser first records 

index, searches for an identifier (recording its value), and then the expression it’s being set equal 
to following an equal sign (“=”). The define parser, in turn, uses the setting parser: after 

recognizing the "define" keyword and recording the index, it finds as many settings as there are 

between to curly braces. The suffixes (beginning with “map”) in both lines store the captured 
information in the corresponding AST component. 

Information is captured in an abstract syntax tree (AST) represented by a 

Scala case class (http://docs.scala-lang.org/tutorials/tour/case-classes.html) 

hierarchy (Fig. 4).  

Figure 4. A basic AUV mission that defines one variable and then assigns it to a behavior setting has an abstract 

syntax tree of this form. Note how most elements track index; knowing where each component occurs in the input 

enables highlighting in the case of user error.
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The top level is the mission, which contains an ID, a list of argument 

definitions, and then “behaviorals,” which is a wrapper for anything contained 

within the main body of the mission. Argument definitions are a list of setting 

components, which contain an index, a variable name, and the expression being 

assigned to that variable name. Expressions are either numerical, other variable 

names, or arithmetic compositions of simpler expressions (Fig. 5). 

Figure 5. In the AST, expressions take the form of a number followed by a unit 

(NumberExpression), a variable (IdExpression), or an arithmetic sequence of other expressions 
(ArithExpression). Unit value is a field of Expression (not pictured) that can be changed for each 

instance above. 

Currently, the only “behaviorals” are behaviors, aggregate blocks, and 

insert blocks (Fig. 6). 

Figure 6. The behavioral components of the AST have different fields reflecting their implementations. An 

aggregate block contains behaviorals (possibly including another aggregate) and tracks RunType, which describes 

when the aggregate block is run in comparison to other aggregates or components. Behaviors and inserts both 

contain lists of definitions represented by settings. These two are semantically validated, so their indices are also 

recorded.

Validator  

 The validator semantically analyzes the given mission script by traversing the 

AST built during the parse stage. Semantic validation has many steps depending 

on which component of the AST is being analyzed. Validation functions are called 

on subcomponents to construct a list of errors, if any. The first  error in that list is  

reported to the user. Validation checks take place on numerous component levels, 
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often using a maintained symbol table for reference. All validation checks return 

the same class of error for ease of display in the user interface. The error objects 

returned contain “index,” “expected,” and “found” fields used for detailed error 

reporting. 

 At the mission level (Fig. 7), the validator calls helper functions to 

validate the list of argument definitions. Argument definitions are checked for 

uniqueness: no variable should be defined twice, as well as the assigned 

expression being semantically sound. As the helper function is called on each 

definition in the list, the symbol table is referenced to check if that variable has 

already been defined. If not, no error is returned and the symbol table is updated 

to include the variable name and its associated units.  

Fig 7. Mission validation first validates all 

of the mission’s argument definitions 

(referred to here as “assigns”) in a helper 

method. If that process doesn’t return an 

error, the behaviorals are validated in a 

similar way, finally returning an all-clear if 

no errors are thrown. If any of the helper 

functions do throw errors, they are passed up 

and shown to the user.

 If the argument definitions produce no errors, the list of behaviorals is 

iterated across for semantic validation and broken down further from there 

depending on the behavioral case. For behaviors, the validator searches through a 

pre-constructed library of valid names, associated settings, and setting units to 

confirm that the given behavior and its settings are recognized (Fig. 8). If a 

behavior and its settings are found (and thus valid), the validator checks the 
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settings to insure that the user assigned a value of the appropriate measurement 

family (e.g., distance, temperature, etc.).  

Figure 8. The behavior validator checks the pre-constructed list of valid behaviors to verify that the user-specified 

behavior is recognized by the the AUV. If so, its settings are validated in a similar manner. If the behavior isn’t 

recognized, it creates an error instance with enough information to produce a helpful error message.

 Similarly, the insert instance of a behavioral is checked for file existence 

on the server. Since files can be saved without being error-free, the inserted file is 

recursively parsed and validated. If successful, the inserted file’s symbol table is 

returned and used to confirm that any changed argument definitions do exist (this 

is not currently functional; see Discussion below) and that they are assigned an 

appropriate value. 

 An aggregate instance of a behavioral is not itself checked (as all it 

contains is information validated by the parser), but the helper function 

recursively validates the behaviorals the aggregate contains, returning the first 

error found within (if any).  

 At the bottom level of most branches, the validator semantically checks 

expressions, tracking unit family consistency and existence of referenced variable 

names. Arithmetic expressions must have all individual expressions validated and 

compared to make sure units are consistent. If no error is found, then the helper 

function returns the expression’s units, which the symbol table stores. 
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Translator  

The validated AST is then translated to XML component-by-component, as each 

AST element corresponds to an existing structure in the XML representation of a 

mission (Fig. 9). The AST is traversed and XML is generated with the specific 

values stored in the AST. The output is a string representation of the XML. 

  

Figure 9. Translating an insert 
component to XML can happen one of 
two ways. If the insert contains any 

redefinitions (marked here as 
“source.settings”), it takes the form 
<Insert Filename=“…”> … </Insert>. 

If there are no redefinitions, only one 
tag is needed, and it takes the form 
<Insert Filename=“…”/> 

Error reporting  

Both the parser and the validator can return errors that are passed along to the 

user. FastParse provides built-in error reporting functionality by returning a 

failure instance after an unsuccessful parse that includes the failed parser, what 

string it failed to parse, and the index at which the failure occurred. Combined 

with the user interface, these provide a meaningful error message to the user.  

 The validator, in the case of a semantic error, returns an error message 

containing an index, what was expected, and what was found. Unlike in the 

parser, the “expected” and “found” messages are often hard-coded messages 

specific to the helper function that originally caught the error, sometimes 

including specific contextual information.  
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User interface 

Carlos Rueda, my project mentor, developed the user interface (UI). It has a 

window for the user to type the new language’s syntax, and to the right it displays 

the XML translation in real time (Fig. 10). In the case of an error, the user’s input 

that triggered the error is highlighted, and an error message appears on the right 

side.  

Figure 10. The user writes the mission script in the new TethySL syntax on the left while XML (or error messages) 

are automatically generated on the right. Additionally, the user can save files and open ones saved earlier.

RESULTS 

Syntax 

TethySL’s user input syntax follows a much more streamlined structure when 

compared to equivalent statements in the XML mission script (Fig. 11). By 

replacing XML-style open and close tags with a keyword and brackets, TethySL 
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mission scripts appear much less cluttered and provide the same necessary 

information with much less boilerplate syntax. 

 

Figure 11. Both of the above sections of code provide the same information. The top  section, written in TethySL, is 

much clearer and easier to write.

Error Reporting 

Errors from both the parser and the validator are shown to the user through the UI. 

The erroneous input is highlighted, and the “expected” and “found” messages 

display for the user. The UI does this in real time in response to user error  

(Fig. 12).  

Figure 12. After the user makes an error, it is immediately highlighted. An error message displays, telling the user 

what went wrong.

�11



Code repository and test deployment 

All code developed for TethySL can be found on its Bitbucket repository at 

https://bitbucket.org/mbari/tethysl.  The test system has been deployed at 

okeanids.mbari.org/tethysl.  

DISCUSSION

Improved user experience 

To reiterate, the goal of TethySL is to improve the user experience for writing 

mission scripts. Specifically, the language sought to accomplish this by making 

mission scripts easier to read and write and by providing immediate and useful 

feedback on user input. These two characteristics provide a clear benefit over 

writing mission scripts in XML. The prototype as described in this report 

demonstrates that this is certainly obtainable. While not yet implementing all 

features and elements of AUV mission scripts, the language does showcase how a 

domain-specific language can improve the user experience.  

 The syntax, when compared to XML mission scripts, is much simpler and 

easy to read. In Fig. 3, we see a comparison of argument definitions in TethySL 

versus in XML. Note that the latter contains redundant syntax and obscured 

readability. Additionally, the syntax can be further updated in response to user 

feedback in order to maximize ease of use. This will be an ongoing process as 

more scripts are written in TethySL.  

 The error messages provided by TethySL are instantaneous and incredibly 

useful. Appearing immediately after the error is made, the messages inform the 

user where the error is in the script, what the language was expecting to find, and 

what was found instead. A user with limited exposure to programming and script 

writing can easily understand these messages and fix the script in response to this 

feedback.  
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Incomplete validation  

The semantic validation does not catch all errors as of yet. The known errors with 

validation are very unusual scenarios, but are nonetheless important to note and/or 

fix: 

• User should not be able to give variables the name of unit identifiers.  

• The inserted file’s symbol table is not being properly used, as non-existent 

variables can be redefined within an Insert block.  

• Inside a behavior block, a user cannot reset one setting to be equal to another 

one of the behavior’s settings. This may or may not be a benefit: eliminating 

the possibility enforces good programming practice, and it does not limit  the 

expressiveness of TethySL. Operators should give feedback on this matter.  

Incomplete implementation  

Not all mission script elements and functionality are implemented in TethySL as 

of this prototype. Still to be implemented are the following: 

• Timeout command: while existing in the code, it is not complete and thus left 

commented out in the final implementation. In the AST, it should be 

categorized as a Behavioral. 

• Syslog command: exists in the AST, but is not currently being used by any 

other components. It should be categorized as a Behavioral. 

• Call command: exists in the AST, but not currently used. It should be 

categorized as a Behavioral. 

• Assign command: not implemented in the AST. It should be categorized as a 

Behavioral and needs to be able to update an inserted mission file’s settings by 

using the file’s alias.  
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• Insert alias: inserted mission files can be given an alias name for use within the 

mission script for use with Assign, but it is not mandatory. 

• Boolean units: Booleans are special units in the XML mission script in that 

they are implemented differently than all other units.  

• Boolean expressions: similar to numerical expressions but not yet implemented 

due to trouble with Boolean units. However, they can be modeled after the 

arithmetic expression structure to avoid infinite recurrence with a recursive 

descent parser.  

• Conditionals: this includes “while,” “when,” and “until” (and maybe others, 

unknown). Conditionals are used as control blocks inside aggregates. 

• Non-integer number support: this should be a very straightforward 

implementation, but it does depend on which number types (floats, doubles, 

etc.)  are used by the AUV.  

• Repeat: RunTypes can set how often they repeat. See sci2.xml’s “Lap” 

aggregate block for a usage example. 

Once these remaining mission elements are implemented, TethySL will be able to 

write any mission script that can be written in XML. 

CONCLUSIONS/RECOMMENDATIONS 

Tethys-class AUVs provide scientists with the opportunity to collect data not 

previously possible with autonomous vehicles, and easily written mission scripts 

are a large part of that process. When compared to XML, TethySL vastly 

improves user experience by providing an easier language to understand and write 

and by relaying immediate feedback to the user. The language has the potential to 

remove XML from the user’s experience entirely. 
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Future work 

I suggest future work be done to make TethySL an integral part of LRAUV 

missions. Firstly, I recommend implementing the remaining mission script 

elements as outlined above. This is the most crucial since it will allow a user to 

write any and all valid LRAUV mission scripts. Secondly, I recommend 

increasing semantic validation sophistication. While only one of the caught errors 

is a serious problem, it is possible that other errors exist; it warrants a more 

thorough investigation. Thirdly, I suggest adding advanced editing features such 

as auto-complete further down the line. Features frequently found in development 

environments are often there to improve user experience and should be emulated 

if possible. Finally, eventual integration with the TethysDash web application 

such to remove XML entirely from the mission pipeline would simplify the code 

base and homogenize all AUV mission scripts.  
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