

TethySL: A Domain-Specific Language for LRAUV Mission
Scripts
Eli Meckler, Williams College

Mentor: Carlos Rueda

Summer 2016

Keywords: Tethys, TethySL, AUV, LRAUV, Mission Planning, Scripting

ABSTRACT

The Tethys-class LRAUV’s long battery life provides a platform for studying

water chemistry and biology far offshore and following longer-term events such

as plankton blooms and upwelling events by drifting for long periods of time.

These AUVs currently run mission scripts written by operators in XML following

custom mission schemas. TethySL is an attempt to improve the user experience of

writing mission scripts by designing a domain-specific language that captures the

same functionality as the current system with a much simpler syntax and

additionally provides immediate and clear error reporting. The prototype, while

not yet reaching the full functionality of the XML scripts, provides a much better

user experience and lays a solid groundwork for future development.

INTRODUCTION

The Tethys-class long-range autonomous underwater vehicles (LRAUV) have an

impressive battery life, able to travel for up to 2000 kilometers at a speed of 1

meter per second or drift under the surface for around 2 weeks. Long-duration and

long-range functionality provides the opportunity to perform experiments and

�1

carry out observation not capable by other AUV lines currently in use at MBARI,

such as gliders and the Dorado-class AUVs. Possible missions include tracking

plankton blooms (Hobson et al. 2012) and upwelling events (Zhang et al. 2012).

Tethys-class AUVs run mission scripts written by operators and scientists

in XML. The mission files are kept under version control (at https://bitbucket.org/

mbari/lrauv-mission) and made available for submission to the vehicles during

operations through the TethysDash application (https://okeanids.mbari.org/

TethysDash/). These XML mission scripts are validated against a mission

schema, confirming that the new script conforms to the expected format of the

mission (Fig. 1). This insures some safety in mission structure: the mission must

have certain components (such as a mission timeout) to mitigate risks and make

sure the AUV can perform properly. After being validated, the XML is compiled

into AUV-recognized code before being sent to the surfaced vehicle.

Figure 1. The main components that make up LRAUV mission

scripts (Godin et al. 2010).

However, due to XML’s inherent structure (Fig. 2), the Tethys mission

scripts contain large amounts of boilerplate code, making it difficult to read and

time-intensive to write, especially for individuals not already comfortable writing

programs.

�2

https://bitbucket.org/mbari/lrauv-mission

Figure 2. An email (minus actual email addresses) and how it might be encoded in XML.

Additionally, XML does not provide immediate feedback on errors, as

most errors will be caught by the validator and all returned at one time. Although

there exist sophisticated XML editors that could greatly facilitate the task for the

user, they are not usually intended to be easily integrated in new applications,

which is a requirement for the use of the tool in the LRAUV software ecosystem.

A language dedicated to a particular domain application can afford a much

simpler syntax when compared to XML and additionally provide more

meaningful and instant feedback on syntactic and semantic errors.

TethySL is a domain-specific language for LRAUV mission scripting

designed with simple syntax and useful, immediate error reporting as objectives.

MATERIALS AND METHODS

Currently, TethySL does not compile the user input into AUV-recognized machine

code. Instead, the language produces the XML equivalent of the user’s input. This

was largely due to time constraints. Creating a compiler for a language is often

more challenging and time-intensive than translating the language into another

high-level language. By translating into XML, we can still utilize all the existing

backend without requiring the user to actually interact with the XML directly. The

�3

user inputs the new syntax, and TethySL produces XML for them, which can then

be compiled and sent to the AUV.

TethySL consists of several modular components that transform the user’s

input into XML. First, input is fed to the parser to syntactically validate the input

and to produce a corresponding Abstract Syntax Tree (AST). The validator then

semantically validates the AST before the translator produces the input’s XML-

equivalent. All components are written in Scala for its compatibility with the

existing TethysDash architecture (written in Java) and the availability of excellent

libraries and tools that greatly facilitate the development of the TethySL language.

In particular, these include the FastParse library (Haoyi, 2016) for parsing, and the

Scala.js framework (https://www.scala-js.org/), which allows to target web

browsers as the execution environment for the tool.

Parser and abstract syntax tree

User input is parsed into different components of the abstract syntax tree using the

FastParse library, which enables custom construction of recursive descent parsers.

This library allows for composition of Parser objects, such that one particular

parser can be expressed in terms of other parser objects. In general, during

execution, a parser searches for corresponding contextual syntax in the given

input (e.g., “define { … }”) and can record any information it is asked to capture

into elements that can be used to build the AST (Fig. 3). (The FastParse Index

parser, which is used in most implemented parsers in TethySL, allows to capture

the current input stream location, so this information can later be used in semantic

error reporting during validation.)

�4

https://www.scala-js.org/

Figure 3. Shown are two of the defined parsers in TethySL. The "setting" parser first records

index, searches for an identifier (recording its value), and then the expression it’s being set equal
to following an equal sign (“=”). The define parser, in turn, uses the setting parser: after

recognizing the "define" keyword and recording the index, it finds as many settings as there are

between to curly braces. The suffixes (beginning with “map”) in both lines store the captured
information in the corresponding AST component.

Information is captured in an abstract syntax tree (AST) represented by a

Scala case class (http://docs.scala-lang.org/tutorials/tour/case-classes.html)

hierarchy (Fig. 4).

Figure 4. A basic AUV mission that defines one variable and then assigns it to a behavior setting has an abstract

syntax tree of this form. Note how most elements track index; knowing where each component occurs in the input

enables highlighting in the case of user error.

�5

The top level is the mission, which contains an ID, a list of argument

definitions, and then “behaviorals,” which is a wrapper for anything contained

within the main body of the mission. Argument definitions are a list of setting

components, which contain an index, a variable name, and the expression being

assigned to that variable name. Expressions are either numerical, other variable

names, or arithmetic compositions of simpler expressions (Fig. 5).

Figure 5. In the AST, expressions take the form of a number followed by a unit

(NumberExpression), a variable (IdExpression), or an arithmetic sequence of other expressions
(ArithExpression). Unit value is a field of Expression (not pictured) that can be changed for each

instance above.

Currently, the only “behaviorals” are behaviors, aggregate blocks, and

insert blocks (Fig. 6).

Figure 6. The behavioral components of the AST have different fields reflecting their implementations. An

aggregate block contains behaviorals (possibly including another aggregate) and tracks RunType, which describes

when the aggregate block is run in comparison to other aggregates or components. Behaviors and inserts both

contain lists of definitions represented by settings. These two are semantically validated, so their indices are also

recorded.

Validator

 The validator semantically analyzes the given mission script by traversing the

AST built during the parse stage. Semantic validation has many steps depending

on which component of the AST is being analyzed. Validation functions are called

on subcomponents to construct a list of errors, if any. The first error in that list is

reported to the user. Validation checks take place on numerous component levels,

�6

often using a maintained symbol table for reference. All validation checks return

the same class of error for ease of display in the user interface. The error objects

returned contain “index,” “expected,” and “found” fields used for detailed error

reporting.

 At the mission level (Fig. 7), the validator calls helper functions to

validate the list of argument definitions. Argument definitions are checked for

uniqueness: no variable should be defined twice, as well as the assigned

expression being semantically sound. As the helper function is called on each

definition in the list, the symbol table is referenced to check if that variable has

already been defined. If not, no error is returned and the symbol table is updated

to include the variable name and its associated units.

Fig 7. Mission validation first validates all

of the mission’s argument definitions

(referred to here as “assigns”) in a helper

method. If that process doesn’t return an

error, the behaviorals are validated in a

similar way, finally returning an all-clear if

no errors are thrown. If any of the helper

functions do throw errors, they are passed up

and shown to the user.

 If the argument definitions produce no errors, the list of behaviorals is

iterated across for semantic validation and broken down further from there

depending on the behavioral case. For behaviors, the validator searches through a

pre-constructed library of valid names, associated settings, and setting units to

confirm that the given behavior and its settings are recognized (Fig. 8). If a

behavior and its settings are found (and thus valid), the validator checks the

�7

settings to insure that the user assigned a value of the appropriate measurement

family (e.g., distance, temperature, etc.).

Figure 8. The behavior validator checks the pre-constructed list of valid behaviors to verify that the user-specified

behavior is recognized by the the AUV. If so, its settings are validated in a similar manner. If the behavior isn’t

recognized, it creates an error instance with enough information to produce a helpful error message.

 Similarly, the insert instance of a behavioral is checked for file existence

on the server. Since files can be saved without being error-free, the inserted file is

recursively parsed and validated. If successful, the inserted file’s symbol table is

returned and used to confirm that any changed argument definitions do exist (this

is not currently functional; see Discussion below) and that they are assigned an

appropriate value.

 An aggregate instance of a behavioral is not itself checked (as all it

contains is information validated by the parser), but the helper function

recursively validates the behaviorals the aggregate contains, returning the first

error found within (if any).

 At the bottom level of most branches, the validator semantically checks

expressions, tracking unit family consistency and existence of referenced variable

names. Arithmetic expressions must have all individual expressions validated and

compared to make sure units are consistent. If no error is found, then the helper

function returns the expression’s units, which the symbol table stores.

�8

Translator

The validated AST is then translated to XML component-by-component, as each

AST element corresponds to an existing structure in the XML representation of a

mission (Fig. 9). The AST is traversed and XML is generated with the specific

values stored in the AST. The output is a string representation of the XML.

Figure 9. Translating an insert
component to XML can happen one of
two ways. If the insert contains any

redefinitions (marked here as
“source.settings”), it takes the form
<Insert Filename=“…”> … </Insert>.

If there are no redefinitions, only one
tag is needed, and it takes the form
<Insert Filename=“…”/>

Error reporting

Both the parser and the validator can return errors that are passed along to the

user. FastParse provides built-in error reporting functionality by returning a

failure instance after an unsuccessful parse that includes the failed parser, what

string it failed to parse, and the index at which the failure occurred. Combined

with the user interface, these provide a meaningful error message to the user.

 The validator, in the case of a semantic error, returns an error message

containing an index, what was expected, and what was found. Unlike in the

parser, the “expected” and “found” messages are often hard-coded messages

specific to the helper function that originally caught the error, sometimes

including specific contextual information.

�9

User interface

Carlos Rueda, my project mentor, developed the user interface (UI). It has a

window for the user to type the new language’s syntax, and to the right it displays

the XML translation in real time (Fig. 10). In the case of an error, the user’s input

that triggered the error is highlighted, and an error message appears on the right

side.

Figure 10. The user writes the mission script in the new TethySL syntax on the left while XML (or error messages)

are automatically generated on the right. Additionally, the user can save files and open ones saved earlier.

RESULTS

Syntax

TethySL’s user input syntax follows a much more streamlined structure when

compared to equivalent statements in the XML mission script (Fig. 11). By

replacing XML-style open and close tags with a keyword and brackets, TethySL

�10

mission scripts appear much less cluttered and provide the same necessary

information with much less boilerplate syntax.

Figure 11. Both of the above sections of code provide the same information. The top section, written in TethySL, is

much clearer and easier to write.

Error Reporting

Errors from both the parser and the validator are shown to the user through the UI.

The erroneous input is highlighted, and the “expected” and “found” messages

display for the user. The UI does this in real time in response to user error

(Fig. 12).

Figure 12. After the user makes an error, it is immediately highlighted. An error message displays, telling the user

what went wrong.

�11

Code repository and test deployment

All code developed for TethySL can be found on its Bitbucket repository at

https://bitbucket.org/mbari/tethysl. The test system has been deployed at

okeanids.mbari.org/tethysl.

DISCUSSION

Improved user experience

To reiterate, the goal of TethySL is to improve the user experience for writing

mission scripts. Specifically, the language sought to accomplish this by making

mission scripts easier to read and write and by providing immediate and useful

feedback on user input. These two characteristics provide a clear benefit over

writing mission scripts in XML. The prototype as described in this report

demonstrates that this is certainly obtainable. While not yet implementing all

features and elements of AUV mission scripts, the language does showcase how a

domain-specific language can improve the user experience.

 The syntax, when compared to XML mission scripts, is much simpler and

easy to read. In Fig. 3, we see a comparison of argument definitions in TethySL

versus in XML. Note that the latter contains redundant syntax and obscured

readability. Additionally, the syntax can be further updated in response to user

feedback in order to maximize ease of use. This will be an ongoing process as

more scripts are written in TethySL.

 The error messages provided by TethySL are instantaneous and incredibly

useful. Appearing immediately after the error is made, the messages inform the

user where the error is in the script, what the language was expecting to find, and

what was found instead. A user with limited exposure to programming and script

writing can easily understand these messages and fix the script in response to this

feedback.

�12

https://bitbucket.org/mbari/tethysl
http://okeanids.mbari.org/tethysl

Incomplete validation

The semantic validation does not catch all errors as of yet. The known errors with

validation are very unusual scenarios, but are nonetheless important to note and/or

fix:

• User should not be able to give variables the name of unit identifiers.

• The inserted file’s symbol table is not being properly used, as non-existent

variables can be redefined within an Insert block.

• Inside a behavior block, a user cannot reset one setting to be equal to another

one of the behavior’s settings. This may or may not be a benefit: eliminating

the possibility enforces good programming practice, and it does not limit the

expressiveness of TethySL. Operators should give feedback on this matter.

Incomplete implementation

Not all mission script elements and functionality are implemented in TethySL as

of this prototype. Still to be implemented are the following:

• Timeout command: while existing in the code, it is not complete and thus left

commented out in the final implementation. In the AST, it should be

categorized as a Behavioral.

• Syslog command: exists in the AST, but is not currently being used by any

other components. It should be categorized as a Behavioral.

• Call command: exists in the AST, but not currently used. It should be

categorized as a Behavioral.

• Assign command: not implemented in the AST. It should be categorized as a

Behavioral and needs to be able to update an inserted mission file’s settings by

using the file’s alias.

�13

• Insert alias: inserted mission files can be given an alias name for use within the

mission script for use with Assign, but it is not mandatory.

• Boolean units: Booleans are special units in the XML mission script in that

they are implemented differently than all other units.

• Boolean expressions: similar to numerical expressions but not yet implemented

due to trouble with Boolean units. However, they can be modeled after the

arithmetic expression structure to avoid infinite recurrence with a recursive

descent parser.

• Conditionals: this includes “while,” “when,” and “until” (and maybe others,

unknown). Conditionals are used as control blocks inside aggregates.

• Non-integer number support: this should be a very straightforward

implementation, but it does depend on which number types (floats, doubles,

etc.) are used by the AUV.

• Repeat: RunTypes can set how often they repeat. See sci2.xml’s “Lap”

aggregate block for a usage example.

Once these remaining mission elements are implemented, TethySL will be able to

write any mission script that can be written in XML.

CONCLUSIONS/RECOMMENDATIONS

Tethys-class AUVs provide scientists with the opportunity to collect data not

previously possible with autonomous vehicles, and easily written mission scripts

are a large part of that process. When compared to XML, TethySL vastly

improves user experience by providing an easier language to understand and write

and by relaying immediate feedback to the user. The language has the potential to

remove XML from the user’s experience entirely.

�14

Future work

I suggest future work be done to make TethySL an integral part of LRAUV

missions. Firstly, I recommend implementing the remaining mission script

elements as outlined above. This is the most crucial since it will allow a user to

write any and all valid LRAUV mission scripts. Secondly, I recommend

increasing semantic validation sophistication. While only one of the caught errors

is a serious problem, it is possible that other errors exist; it warrants a more

thorough investigation. Thirdly, I suggest adding advanced editing features such

as auto-complete further down the line. Features frequently found in development

environments are often there to improve user experience and should be emulated

if possible. Finally, eventual integration with the TethysDash web application

such to remove XML entirely from the mission pipeline would simplify the code

base and homogenize all AUV mission scripts.

ACKNOWLEDGEMENTS

Many thanks to Carlos Rueda, my mentor, for all he taught me and for his

involvement in this project. I couldn’t have done it without his help. Thank you to

Mike Godin and Brian Kieft for providing clarification on the XML mission

scripts. Special thanks to George Matsumoto and Linda Kunhz, the intern

coordinators for all their work this summer. I also want to thank the other interns

and the MBARI community as a whole for a great summer experience.

�15

References:

Godin, M. A., Bellingham, J. G., Kieft, B., McEwen, R. (2010). Scripting
 language for state configured layer control of the Tethys autonomous
 underwater vehicle. Presented at the OCEANS, 2010 MTS/IEEE, Seattle,
 OR.

Haoyi, L. (2016). Scala FastParse API. lihaoyi.com/fastparse

Hobson, B. W., Bellingham, J. G., Kieft, B., McEwen, R., Godin, M., & Zhang, Y.
 (2012, September). Tethys-class long range AUVs-extending the
 endurance of propeller-driven cruising AUVs from days to weeks.
 Presented at the Autonomous Underwater Vehicles (AUV), 2012 IEEE/
 OES, Southampton, UK.

Zhang, Y., Godin, M. A., Bellingham, J. G., & Ryan, J. P. (2012). Using an
 autonomous underwater vehicle to track a coastal upwelling front. IEEE
 Journal of Oceanic Engineering, 37, 338–347.

�16

http://lihaoyi.com/fastparse

