SYSTEM

Developer's Guide to Coding an MB-
System I/0 Module

David W. Caress

Monterey Bay Aquarium Research Institute

Version 3

24 February 2014

Introduction

MB-System is an open source software package for the processing and display of
swath mapping sonar data used to map the seafloor. The package consists of
programs that manipulate, process, list, or display swath sonar bathymetry,
amplitude, and sidescan data. The heart of the system is an input/output library
called MBIO which allows programs to work transparently with any of a number of
supported swath sonar data formats. This approach has allowed the creation of
utilities that can be applied in a uniform manner to remote sensing data from a
variety of sensors, mostly sonars. In order to allow MB-System to read and write

data in a great variety of native formats, the MBIO architecture allows for many
separate input/output (1/0) modules. This document is intended to be a guide for
writing a new MB-System I/O module and integrating that module with MB-
System.

Diversity of Seafloor Mapping Data

Seafloor mapping data, whether measuring topography, imaging seafloor
character, imaging subsurface structure, or a combination, derive from a great
variety of sensors and are structured in many different forms. The relevant
sensors are mostly sonars, and these can broadly be classed as single-beam
echosounders, multibeam echosounders, sidescan sonars, interferometric sonars,
and subbottom profilers. Since the first multibeam sonars became operational in
the 1960's, hundreds of different sonar models have been used to map the
seafloor, and the varied formats used to record digital data have been nearly as
numerous.

The data from the different sonar classes (e.g. multibeam vs sidescan) can have
very different structure (e.g. arrays of soundings from formed beams vs time
series of backscatter from port and starboard staves), and even among similar
sonars the key operational parameters and the detailed data structure can vary.
Some mapping data formats consist of a single data record type repeated through
entire files, and others interleave the primary sensor records with navigation,
attitude, sound speed, and other types of records derived from ancilliary sensors.
There are multiple data formats that contain essentially the same information (e.g.
different formats storing data from the same sonar). There are also data formats
that store data from multiple sensors, generally accomplishing this by leaving out
some original information. There is also great variability in the underlying file types
of data formats. Files may be constructed from ASCII text, records composed of
binary integer and float values, or built out of architecture-independent
representations such as XDR and netCDF. Most formats use single data files, but
some represent data using multiple parallel files.

Because there are so many different forms of mapping data, it is infeasible to
design a single "generic" data structure that can represent all of the currently used

data, or a single "generic" data format that can be used for all data. This problem
is compounded by our very limited ability to predict the details of new systems that
will become available and the new forms of data they will produce.

Modular Structure of MBIO

In order to support as broad a range of mapping data as possible without losing
information, and to allow for advances in the remote sensing technology we use,
we have architected MB-System to read and write data in the existing formats and
to store those data internally with all information preserved. The consequence is
that the MB-System input and output capability consists of a modular library
(MBIO) supporting dozens of different seafloor mapping data formats. Each
unigue format is associated with functions that read the data into an internal
representation, or data system, and write from that representation. A second level
of modularity includes the many different data systems that are supported; each
data system is defined by a structure used to store the data and a set of functions
that extract commonly used values from, or insert values into, that structure.

In the terminology of this document, each MBIO I/O module consists of a single
data system and at least one data format (Figure 1). Each data system includes
both a structure to store the data and functions that map commonly used values
to and from that structure. The data format includes functions that read and write
the data to and from the data structure of the associated data system.

MB-System 1/0 Architecture: MBIO I/O Modules

MB-System Applications

' MBIO API

Reson 7k
Data System

Format 88
RESON7KR

— s ST L

Figure 1. Schematic representation of MBIO structure with
three I/0 modules indicated by colored ellipses. Each I/O
module consists of a single data system and its associated
data formats. MB-System applications make calls to functions
within the MBIO API. These are passed to the relevant data
system, which can include one or more formats using the the
same internal data storage structure. There is one set of
data extraction and insertion functions for each data system
(and I/0 module), and separate read and write functions for
each format within that I/0 module.

Common API to read and write data in all supported
formats

MB-System supports heterogenous data types by layering a common application
programming interface (API) on top of the I/O modules that read and write sonar
data in the existing data formats. The MBIO API consists of high level functions

that allow applications to open data streams for reading or writing, read and write

data records sequentially, to straighforwardly extract and insert the commonly
used values, and to expose the complete data representation to access. Although
MB-System as a whole includes C, C++, and perl source code, the MBIO library is
entirely written in C.

MBIO handles three types of swath mapping data: beam bathymetry, beam
amplitude, and sidescan. Both amplitude and sidescan represent measures of
backscatter strength. Beam amplitudes are backscatter values associated with the
same preformed beams used to obtain bathymetry; MBIO assumes that a
bathymetry value exists for each amplitude value and uses the bathymetry beam
location for the amplitude. Sidescan is generally constructed with a higher spatial
resolution than bathymetry, and carries its own location parameters. In the context
of MB-System documentation, the discrete values of bathymetry and amplitude
are referred to as "beams", and the discrete values of sidescan are referred to as
"pixels". An additional difference between "beam" and "pixel" data involves data
flagging. An array of "beamflags" is carried by MBIO functions which allows the
bathymetry (and by extension the amplitude) data to be flagged as bad. The
details of the beamflagging scheme are presented below.

MBIO opens and initializes sonar data files for reading and writing using the
functions mb_read_init() and mb_write_init(), respectively. These functions return
a pointer to a data structure including all relevent information about the opened
file, the control parameters which determine how data is read or written, and the
arrays used for processing the data as it is read or written. This pointer is then
passed to the functions used for reading or writing. The structure (mb_io_struct{})
is defined in the file mbsystem/src/mbio/mb_io.h. There is no limit on the number
of files which may be opened for reading or writing at any given time in a program.
Both of the initialization functions call mb_format_register(), which in turn calls
mb_format_info().

The mb_read_init() and mb_write_init() functions also return initial maximum
numbers of bathymetry beams, amplitude beams, and sidescan pixels that can be
used to allocate data storage arrays of the appropriate sizes. However, for some
data formats there are no specified maximum numbers of beams and pixels, and
so in general the required dimensions may increase as data are read.

Applications must pass appropriately dimensioned arrays into data extraction
routines such as mb_read(), mb_get(), and mb_get_all(). In order to enable
dynamic memory management of thse application arrays, the application must
first register each array by passing the array pointer location to the function
mb_register_array().

Data files are closed using the function mb_close(). All internal and registered
arrays are deallocated as part of closing the file.

When it comes to actually reading and writing swath mapping sonar data, MBIO
has two levels of i/o functionality. The level 1 MBIO functions allow users to read
sonar data independent of format, with the limitation that only a limited set of
navigation information is passed. Thus, some of the information contained in
certain data formats (e.g. the "heave" value in Hydrosweep DS data) is not
passed by mb_read() or mb_get(). In general, the level 1 functions are useful for
applications such as graphics which require only the navigation and the depth
and/or backscatter values.

The level 2 functions (mb_get_all() and mb_put_all()) read and write the complete
data structures, translate the data to internal data structures associated with each
of the supported sonar systems, and pass pointers to these internal data
structures. Additional functions allow a variety of information to be extracted from
or inserted into the data structures (e.g. mb_extract() and mb_insert()). All
information stored by a data system may be accessed directy using the structure
definitions found in the data system header files. The great majority of processing
programs use level 2 functions.

MBIO API | mb_get() |
- | s .

MB-System 1/0 Architecture: Function Dependency

Format 21: ' Hydrosweep DS Structure and Functions
MBF_ HSATLRAW ‘ mbsys_hsds | "‘mbsys hsds extract()
mbr_rt hsatlraw() ’ data storage: mbsys_hsds_ttimes()
 mbr_wt_hsatlraw() struct mbsys_hsds_extract_nav()
""bSVS hsds_struct{} mbsys_hsds_insert()
: v .mbsys_hsds_insert_nav() =
" mbr_register_hsatlraw() - ‘
mbr_info_hsatlraw() mbsys_hsds_alloc()
mbr_alm_hsatlraw() | mbsys_hsds_deall()

. mbr_dem_hsatiraw()

Figure 2. Function dependency within the MBIO API and between
the

API and a single data format in an I/O module. The initializat
ion

and closing functions (red) access format-specific functions t
hat

in turn access the data system and its data storage structure.
The

level 1 (yellow) and level 2 (dark blue) reading and writing
functions (dark blue) access the format-specific reading and w
riting

functions to get data to and from the data system storage, and

then use the data extraction and insertion functions to access

the

information in the storage structure.

An abbreviated description of the most important MBIO API functionality follows:
o Level 1 reading

Level 1 functions are used for simple reading of swath data files. The primary

functions are:

o mb_read()
o mb_get()

The positions of individual beams and pixels are returned in longitude and
latitude by mb_read() and in acrosstrack and alongtrack distances by
mb_get(). Only a limited set of navigation information is returned. Comments
are also returned. These functions can be used without any special include
files or any knowledge of the actual data structures used by the data formats
or MBIO.

Level 2 reading and writing

Level 2 functions provide complete reading and writing of data structures
containing all of the available information. Data records may be read or
written without extracting any of the information, or the swath data may be
passed with the data structure. Several functions exist to extract information
from or insert information into the data structures; otherwise, special include
files are required to make sense of the sensor-specific data structures
passed by level 2 i/o functions. The basic read and write functions that only
pass pointers to internal data structures are:

o mb_read_ping()
o mb_write_ping()

The read and write routines which both pass the data structure and extract or
insert standard survey, navigation, or comment information are:

o mb_get_all()
o mb_put_all()
o mb_put_comment()

Once a pointer to the data structure is available following mb_read_ping() or
mb_get_all(), other functions are available to extract or insert a variety of
information. The extraction and insertion functions that are defined for all
data systems (and therefore all I/O modules) are:

o mb_extract()

o mb_insert()

o mb_ttimes()

o mb_detects()

o mb_extract_nav()

o mb_insert_nav()

o mb_extract_altitude()
o mb_insert_altitude()
o mb_copyrecord()

The additional information extraction and insertion functions that are defined
for only some data systems are:

o mb_dimensions()

o mb_pingnumber()

o mb_segynumber()

o mb_sonartype()

o mb_sidescantype()
o mb_preprocess()

o mb_extract_nnav()
o mb_insert_altitude()
o mb_extract_svp()

o mb_insert_svp()

o mb_pulses()

o mb_gains()

o mb_extract_rawss()
o mb_insert_rawss()

o mb_extract_segytraceheader()
o mb_extract_segy()

o mb_insert_segy()

o mb_ctd()

o mb_ancilliarysensor()

¢ Format id numbers and information

MBIO supports swath data in a number of different formats, each specified
by a unique id number. The function mb_format() determines if a format id is
valid. A set of additional functions returns information about the specified
format:

o mb_format_system()

o mb_format_dimensions()
o mb_format_description()
o mb_format_flags()

o mb_format_source()

o mb_format_beamwidth())

o Verbosity

Most MBIO functions have an integer verbose as the first parameter. This
value controls the degree to which the function prints out information to the
stdout stream (verbose < 2) or the stderr stream (verbose >= 2). MBIO
functions pass the verbose value on to any MBIO functions they call. MB-
System programs allow multiple calls of the -V command line argument to set
the verbose value greater than one. In general, the behavior can be
characterized as:

o verbose = 0: quiet

o verbose = 1: verbose

o verbose = 2: print a lot (all values on function entry and exit)

o verbose = 3: overwhelm with information, direct this to a file...

o verbose = 4: really overwhelm with information, direct this to a file

o verbose = 5: really really overwhelm with information, all values read
and written, direct this to a file

e Status and error values

Most MBIO functions return an integer value interpreted as the value status

and also have an integer pointer *error as the last parameter. The possible
status and error values are defined in mb_status.h. The status can be either
MB_SUCCESS (status = 1) or MB_FAILURE (status = 0), with obvious
meaning. The error value will be MB_ERROR_NO_ERROR if status =
MB_SUCCESS, but may take on dozens of different values if status =
MB_FAILURE. The most common meanings include:

o “error= MB_ERROR_NO_ERROR = 0: No error - read a valid survey
record
o “error < 0: Non-fatal errors, reading and writing can continue

= *error= MB_ERROR_COMMENT: Comment record instead of a
survey record

= “*error = MB_ERROR_NAV: Navigation record instead of a survey
record

» *error= MB_ERROR_UNINTELLIGIBLE: Unintelligible data read,
but can keep reading

o “error> 0: Fatal errors, reading and writing should be terminated

= *error=MB_ERROR_EOF: End of file
= “error= MB_ERROR_OPEN_FAIL: Unable to open file

¢ Organizing data files with datalists

Most MB-System programs can process multiple data files specified in
"datalist" files. Each line of a datalist file contains a file path and the
corresponding MBIO format id. Datalist files can be recursive and can
contain comments. The functions used to extract input swath data file paths
from datalist files includes:

o mb_datalist_open()
o mb_datalist_read()
o mb_datalist_close()

¢ MB-System memory management tools

MBIO includes functions for allocating, reallocation, and deallocating memory
that keep track of the allocated objects. This allows MBIO to deallocate all
such objects when an input or output file is closed using mb_close().

o mb_mallocd()
o mb_reallocd()
o mb_freed()

e Dynamic memory management for data arrays

The mb_read_init() and mb_write_init() functions return initial maximum
numbers of bathymetry beams, amplitude beams, and sidescan pixels that
can be used to allocate data storage arrays of the appropriate sizes.
However, for some data formats there are no specified maximum numbers of
beams and pixels, and so in general the required dimensions may increase
as data are read. Applications must pass appropriately dimensioned arrays
into data extraction routines such as mb_read(), mb_get(), and mb_get_all().
In order to enable dynamic memory management of thse application arrays,
the application must first register each array by passing the array pointer
location to the function:

o mb_register_array().

Once arrays are registered, then whenever a data record is encountered that
contains more beams or pixels than previously specified, those arrays are
reallocated to accomodate the new amount of data. All registered arrays are
deallocated when the associated data file is closed using the function
mb_close().

¢ On-the-Fly Merging of Asynchronous Navigation and Attitude

Many data formats combine survey data records produced by sonars with
navigation and attitude data records from other sensors, all sampled at
different times. Sometimes the sonar interpolates the navigation and attitude
values at the sonar ping time and includes these critical values in the survey
data records. In cases where the format's survey records either do not store
position and attitude at all (e.g. Kongsberg multibeam), or do not initially set
the values (e.g. Reson 7k multibeam), the MB-System I/O module reading
the data must interpolate (or extrapolate) the navigation and attitude at ping
time from the separately read asynchronous navigation and attitude records.

This "on-the-fly" navigation and attitude merging is accomplished by having
the mb_rt_*() function for the data format store values and timestamps as
asynchronous data records are read, and then interpolate those values onto
the ping timestamps as survey data records are read. This scheme uses the
MBIO functions mb_navint_add(), mb_navint_interp(), mb_attint_add(),
mb_attint_interp(), mb_hedint_add(), mb_hedint_interp(), mb_depint_add(),
mb_depint_interp(), mb_altint_add(), and mb_altint_interp().

¢ Optimized File Reading and Writing

Some data formats have very large data records (>100 KB) that can be slow
to read and write from a file system accessed across a network. In some
cases, I/0 performance can be enhanced by enlarging the data block buffer
used by system fread() and fwrite() calls. MBIO supports modifying the i/o
block buffer size for I/O modules that use mb_fileio_open(), mb_fileio_read(),
mb_fileio_write(), and mb_fileio_close() in place of fopen(), fread(), fwrite()
and fclose() . The modified block size is specified using the program
mbdefaults.

The complete list of MBIO functions available to applications is included in the
appendix, along with full prototypes and explanations. In addition to those
introduced above, there are other MBIO functions dealing with default values for
important parameters, error messages, memory management, and time
conversions.

Organization of MB-System Source Code

The MB-System source code can be obtained either as a distribution "tarball" with
a name something like mbsystem-5.4.2163.tar.gz, or by downloading directly from
the source repository at hiip://svn.ilab.ldeo.columbia.edu/listing.php?

repname=NMB-System. After unpacking, the MB-System source will be structured

as shown in Figure 3.

MB-System: Source Directory Organization

The source files for the MBIO
library are found in the directory
mbsystem/src/mbio

| Directories and files of the build system:

| Automdte.cache/ conv_scripts/ md/ Makefile.am

. Makefile.in Makefile.template aclocal.m4 ar-lib

autogen.sh compile config.guess config.log

T C—— config.status config.sub configure configure.ac
Source directory: configure.cmd depcomp install-sh

sre/ \ install_makefiles libtool Itmain.sh missing /
. = p —

| Informational Files:
AUTHORS COPYING
Changelog GPL INSTALL
|| NEWS NOTES README

(Install directories
(may be elsewhere):
. bin/ lib/ include/

-

A

Figure 3. Schematic representation of the MB-System source
code directory tree. All of the source files for libraries,
programs, documentation, and supporting data are located
under mbsystem/src. The source files for the MBIO library
are entirely located within the mbsystem/src/mbio directory.

All of the source files associated with the MBIO library are found in
mbsystem/src/mbio. In order to implement support for a new /O module in MB-
System, one will have to write some new source files that must reside in
mbsystem/src/mbio, and modify a few of the existing files. No changes to files

http://svn.ilab.ldeo.columbia.edu/listing.php?repname=MB-System

outside of mbsystem/src/mbio are required to support either a new format tied to
an existing data system or an entire new |I/O module.

The directories other than mbio under mbsystem/src contain all of the other
source code, supporting data, and documentation comprising the MB-System
package. The source files for non-graphical MB-System programs such as mbinfo
and mbprocess are found mbsystem/src/utilities. The source files for the GMT-
compatible programs mbcontour and mbswath are located in mbsystem/src/gmt,
and all of the graphical utilities such as mbedit and mbgrdviz have their own
eponymous source directories (e.g. mbsystem/src/mbedit). A number of
specialized support libraries are sourced in mbsystem/src/mbaux. Three data
formats, GSFGENMB (MBIO id 121), SURFSAME (MBIO id 181), and
MR1PRHIG (MBIO id 61) are supported by externally supplied i/o libraries that are
sourced in the dedicated directories mbsystem/src/gsf, mbsystem/src/surf, and
mbsystem/src/mr1pr, respectively. The I/O modules for these formats include the
usual source files in mbsystem/src/mbio described below, but in these cases the
low level calls to read and write data are made to the specialized libraries. MB-
System documentation source files are located in the mbsystem/src/man,
mbsystem/src/htmlisrc, mbsystem/src/html, and mbsystem/src/ps directories.
Supporting data, specifically a cartographic projection list and a global water
sound speed database, are located in /mbsystem/src/share.

MB-System 1/0 Architecture: Source File Organization

All these source files are
found in mbsystem/src/mbio

Hydrosweep DS
1/0 Module

MBIO Representation for Hydrosweep DS Data
mbsys_hsds.c mbsys_hsds.h

Format21: @ Format22: Format23: Format24: Format25:
mbf_hsatlraw | = mbf_hsldedmb = mbf_hsuricen mbf_hsldeoih mbf_hsurivax
L mbr_hsldedmb.c | mbr_hsuricen.c

\ mbr_hsatlraw.c) | mbr_hsldeoih.c)

Y S

L mbr_hsurivax.c |

Figure 4. Organization of MBIO source files by name for one
of the I/O modules. The source files for MB-System programs
(e.g. mbinfo.c) that make calls to the MBIO library are
found in other directorys under mbsystem/src/. All of the
source files for the MBIO library are found in the
mbsystem/src/mbio/ directory. The API functions are defined
in source files with names of the form mb *.c, such as

mb format.c. The data system aspects of the Hydrosweep DS
multibeam I/0 module are found in the files mbsys hsds.c
and mbsys hsds.h, where hsds is a reasonably informative
shorthand name for the data system. The reading and writing
functions for format HSLDEOIH, the Lamont-Doherty in house
binary format for Hydrosweep DS data (MBIO format 24), are
found in the file mbr hsldeoih.c. The files mbsys hsds.c,
mbsys_hsds.h, mbr hsldeoih.c and the other mbr *.c files
associated with the HSDS data system comprise the I/0 module
for Hydrosweep DS data.

Figure 4 provides a sense (albeit incomplete) of the C source file names and
structure associated with the MBIO library. Within the mbsystem/src/mbio
directory, there are *.c C files with names of the form mb_*.c that include the
MBIO library functions accessible to all MB-System programs. Examples include
mb_read_init.c, which includes the code for function mb_read_init(), mb_format.c,
which includes several functions supporting the interfacing of data formats with
the API, and mb_access.c, which includes many of the functions used to extract
and insert information from and to data structures. There are also *.h header files
with names of the form mb_*.h that include the function prototypes, structure
definitions, and macro definitions needed for functions and programs to make use
of the MBIO library. All MB-System program source files must reference at least
these header files:

e mb_status.h
¢ mb_define.h
¢ mb_format.h

and many also reference one or both of:

e mb_io.h
e mb_process.h

The data system aspects of an I/O module are found in files named
mbsys_XXXX.c and mbsys_XXXX.h, where XXXXis a reasonably informative
shorthand name for the data system (e.g. hsds for Hydrosweep DS, reson7k for
Reson 7000 series multibeams). The XXXX string can be any length of
characters. The data format reading and writing functions are found in files named
mbr_YYYYYYYY.c, where YYYYYYYY is an eight character shorthand name for
the format (e.g. hsldeoih for the Lamont-Doherty in house binary format for
Hydrosweep DS data, or reson7kr for the Reson 7k vendor format for Reson 7000
series multibeam data). For a give data system XXXX and all associated data
formats YYYYYYYY, the mbsys_XXXX.c, mbsys_XXXX.h, and all associated
mbr_YYYYYYYY.c files comprise a single 1/0 module.

Example of a New MB-System I/O Module

The remainder of this document will be concerned with a specific example of
writing an MB-System 1/0 module. The data to be supported derive from WASSP
multibeam sonars in the data format output by the WMB-3230, WMB-3250, and
WMB-5230 models. These sonars are designed and sold by Electronic Navigation
Ltd (ENL)under the brand WASSP Lid. This format is only relevant for data files
created by logging the realtime records without modification; some commercial

datalogger systems will record in different proprietary formats. The specification
for the relevant native format can be found at:
http://www.mbari.org/data/mbsystem/formatdoc/WASSP Generic ICD 2.2.pdf
Using WASSP data in this context does not imply any endorsement of the sonar,
data produced by the sonar, or the sonar vendor. The WASSP data have been
chosen for this example because WASSP data have not been previously
supported in MB-System, and the data format is neither trivially simple nor
excessively complicated.

We have two WASSP data samples. One comes from ENL and is logged using
software that they use for testing but do not sell. The other comes from Jonathan
Beaudoin of the University of New Hampshire Center for Coastal and Ocean
Mapping (UNH/CCOM), and was logged using his own software.

The ENL sample is a file:

-rw-rw-r-- 675641961 GNLogger.nwsf

The UNH/CCOM sample is a file:

-YW-rw-r—-— 42891976 20131107_165148.000

We will primarily depend on the UNH/CCOM data sample for the development
and testing of this 1/0 module.

I/0 Module Source Files

The source files for this document's WASSP multibeam example 1/0O module are
in the mbsystem/src/mbio/ directory (and in Appendix 2 of this document) and are

http://www.enl.co.nz/
http://www.wassp.com/
http://www.mbari.org/data/mbsystem/formatdoc/WASSP_Generic_ICD_2.2.pdf

named:

e mbsys_wassp.h
e mbsys_wassp.c
e mbr_wasspenl.c

The discussion below includes sections of these source files, but readers will
doubtless need to refer to these files in their entirety.

I/0 Module Template Files

Templates for mbsys_*.c, mbsys_*.h, and mbr_*.c files are also available in the
mbsystem/src/mbio directory (and in Appendix 3 of this document). These are:

e mbsys_templatesystem.c
¢ mbsys_templatesystem.h
¢ mbr_tempform.c

These files can be copied, renamed, and used as the basis for coding new 1/0
modules for MB-System.

Overview of Coding an I/0O Module

This section provides a short list overview of the steps to creating a new 1/0
module. These steps are discussed in detail in the sections below.

In order to write a new MB-System I/O module and integrate it with MBIO, do the
following:

1. Select the data system name for the new I/O module, along with a name and
id number for each data format.
o In this example the data system will be "WASSP"." The single data
format will be named "wasspenl!" and have a format id of 241.

2. Copy the template files to generate appropriately named source files for the
I/O module.
o In this example the 1/0 module files will be: mbsys_wassp.h,

mbsys_wassp.c, and mbr_wasspenl.c.

3. Write the data structure (or structures) in file mbsys_*.h that are required to
represent all of the data in the relevant formats.
4. Fill in the functions for reading and writing the data in the mbr_*.c files for all
of the relevant formats.
5. Fill in the functions in file mbsys_*.c that are required to extract information
from and insert information into the data structure(s) defined in mbsys_*.h.
6. Integrate the new I/O module by modifying a few other key source files in
mbsystem/mbio.
o Add to the lists of data systems in mb_format.h.
= Add: #define MB_SYS_WASSP 36

o Add to the lists of data formats in mb_format.h.
= Add: #define MBF_WASSPENL 241
= |Increment #define MB_FORMATS 75

o Add prototype data format registration functions in mb_format.h.
= Add prototypes for functions mbr_register_wasspenl() and
mbr_info_wasspenl()

o Add references to the new formats in the following functions found in
mb_format.c:
= mb_format_register()
= mb_format_info()
= mb_get_format()

7. Update the MB-System build system to include the new source files.
8. Test the use of the new 1/0 module

Step 1: Select the Data System Name and Data Format
Names and ID's

The data system and format names of an 1/0 module should be both unique
(within MB-System) and moderately meaningful.

The data system name can be of any length, though a reasonable upper bound
might be 25 characters. Examples include "hsds" for Hydrosweep DS multibeam
data, "SB2100" for SeaBeam 2112/2120/2136 multibeam data, and RESON7K for
Reson 7000 series multibeam data.

Data format names must be eight characters long (this insures proper formatting
of some tables). Every format also has a unique MBIO format id number, and
when there are multiple formats in an I/O module the format id numbers should be
sequential. Figures 1 and 4 show the MBIO names and format id's for five
Hydrosweep DS multibeam formats associated with the HSDS data system:
HSATLRAW (21), HSLDEDMB (22), HSURICEN (23), HSLDEOIH (24),
HSURIVAX (25). In order to allow for new formats to be added to existing 1/0
modules, the starting id number for a new 1/0 module is always ten greater than
for the previous one, and is a multiple of ten plus one. The current highest
numbered format is "MBF_3DDEPTHP" with an id number of 231. Consequently,
the next 1/0 module will have a first format id number of 241.

Since the data to be supported in this example derive from the WASSP multibeam
sonars produced by ENL, we chose to name the new data system "WASSP" and
the first format "WASSPENL". As just noted, "WASSPENL" will have a format id of
241.

Step 2: Prepare the Source Files from the Templates

Template versions of the basic MBIO 1/0O module files are included in the MB-
System source distribution. These files are in the mbsystem/src/mbio directory,
and have the names:

e mbsys_templatesystem.h
e mbsys_templatesystem.c
e mbr_tempform.c

To make use of these files, we replace the existing data system name
(templatesystem) and format name (tempform) by the new names, and also
rename the files accordingly. Since the new data system is named "WASSP"" and
the new format is named "WASSPENL", we make the following changes:

e Copy mbsys_templatesystem.h to new file mbsys_wassp.h

e Copy mbsys_templatesystem.c to new file mbsys_wassp.c

e Copy mbr_tempform.c to new file mbr_wasspenl.c

¢ Within all three files, globally change "templatesystem" to "wassp"

¢ Within all three files, globally change "TEMPLATESYSTEM" to "WASSP"
o Within all three files, globally change "tempform" to "wasspenl"

¢ Within all three files, globally change "TEMPFORM" to "WASSPENL"

Once the 1/0 module files have been recast to the new names, we can begin to
write the actual code to read, write, store, and access the new data.

Step 3: Define Data Structures Required to Store the New
Data

The data structure used to store the WASSP multibeam data is defined in the file
mbsys_wassp.h. Since the data system is named "WASSP", the primary data
structure is named

struct mbsys wassp struct{};

For some 1/0 modules, the primary data structure contains all of the relevant
variables without any sub-structures. In other cases, there is a separate data
structure defined for each data record type, and the primary data structure is
essentially a holder for the various sub-structures. The approach used for any
particular I/O module is chosen by the developer, presumably to improve the
readability and maintenability of the code.

In the case of the WASSP multibeam data, we find from the ICD document that
these data files can contain at least six data record types, four of which may be
produced by each survey ping, and two of which are asynchronous with the
survey data. The records associated with survey data are named "GENBATHY",
"CORBATHY", "RAWSONAR", and "WCD_NAVI", and the asynchronous records
are named "NVUPDATE" and "GEN_SENS".

As one begins to code a data format, it is important to examine the sample data to

verify one's understanding of the format and to identify differences between the
specification document and the actual data. In general, most format

documentation contains some ambiguities and errors; a working 1/0 module must
be coded to the actual form of the data, not the documented form of the data.
Since in this case we have data samples from two sources, we need to closely

inspect both.

20131107_165148.000
0| SA34F977 080C0000 S35I53SF 43464731 01000000 000000 CDCCCC3D COCCAC3E 9AIIIIBE C(DCCCCIE|[Z4™wd SYS_CFGL OAAW0AL>000>0RA>
40| 0000003F 9A99193F 3333333F C(DCCAC3F G666663F QO0R803F (DCCBC3F 9A99993F 66GGAG3F 3333833F 700 233320AL26FF2 A?20A8706002fF173327
£0| @0Q0CO3F C(DCCCCIF JA9093F G6666E63F 3333F33F Q00004 66660640 (DCCOC4Q 33331340 0A991940 || ;70AA700Y2¢FE73307 eff €0A €33 €00 €
120 | 00002040 66662640 (DCC2C40 33333340 9AI9I3040 QOVR4040 66664640 (DCCACAD 33335340 9A095940 effseli, 033360006 eeffFedALe33sesoYe
160 | 00006040 66666640 CDCCEC4D 33337340 9AI97240 Q0008040 33338340 66668640 2A998940 C(DCCBL4D ‘efffedA1e33s000ye Ae33feffleooaedise
200 | 02000040 33339340 66669640 9A999940 (DCCIC4D QOORARAD 3333A340 GGGOAGAD OA9A04Q C(DCCACAR || E@3318FFNEOOOE0ALE 1833£6ff 16000604 €
240 33338340 CDCCBC4Q DO0RCR4Q 3333(340 GE66CEAQ OAIICI4Q (DCCCC4D || ~E3326fFOR0ONBOAE ;€33/6fFA800. E0AAE
280 33330340 COCCOC4R 33336340 OAJIES4Q (DCCEC4R|| -@33"eff+e007e0Ace €33 efftecotedile
320 | 0000FR4Q 3333F340 6666F640 AIIFIMO (DCCFC4Q Q0000041 94090141 33330341 (DCCO441 66660641 || «@3308fF €00 €0A € A0O A33 ADA Aff A
360 | 00000841 0A990941 33330841 (DCCOC41 GGGERE4L 00001041 94991141 33331341 (DCC1441 66661641 ABO A33 ADA Aff A A0 A33 ADA Aff A
400 00001841 9A991941 33331841 C(DCC1C41 GGG61E41 Q002041 JAD92141 33332341 CDCC2441 66662641 ABO A33 AOA Aff A AGO!A33FADASAFFEA
440 | 00002841 9A992941 33332841 C(DCC2(41 G6662E41 QO003041 9A93141 33333341 CDCC3441 66663641 || (AGO)A33+A0A,AFF.A ©AGO1A333A0A4AFF6A
450 | 00003841 9A993941 33333841 C(DCC3C41 GGG63E41 QOORAD41 JAD4141 33334341 CDCCA441 66664641 || BAGOIA33;ADACAFf>A EAGOAA33CADADAFFFA
520 | 00004841 OA994941 33334841 (DCCAC4L GGOOAE4L OOOSO41 94995141 33335341 (DCCS441 66665641 | HAGOIA3ZIKAOALAFFNA PAGOQA33SADATASFVA
560 | 00005841 OA995941 33335841 CDCCSC41 GEEESE4] DOOV6R41 94996141 33336341 (DCCHA41 66666641 || XAGOYA33[ADANAFFAA ~ADOGA33CADAGAFFFA
600 | 00006841 9A996941 33336841 C(DCCECA1 G6666E41 QOOR7O41 JAI7141 33337341 CDCC7441 66667641|| hAGOLA33KADAIAfFNA pAGOQA33sADALAffvA
640 | 00007841 9A997341 33337841 C(DCC7C41 GGG67E41 QOOOSD41 C(DCCER41 OAIIB141 66668241 33338341 XABOYA33{AOAIAFF~A AAOAAAGOAAFFCA3ZEA
650 | 00008441 (DCC8441 1 33338741 CDCC8841 1 66668A41 33338841 || RAOARAGOOAFfUA336A OGADAGAGOOAfFOA330A
720 | 0RQQ8(41 (DCCBC41 9ATIBD41 66668E41 33338F41 Q00041 (DCCIV41 94999141 66669241 33333341 SADAGADOCAFFEA33EA CADACASOEAFFIA331A
760 | 00009441 CDCCO441 AT99541 66669641 33339741 00009841 (DCCIBAL 9A999341 66669441 33339841 || (ADALAGOTAFFAA330A OADAGAGOOAfFOA330A
500 | 00009C41 (DCCIC41 9A099041 66660E41 33330F41 QO0RAD41 CDCCARA1 JAJ9A141 6666A241 3333A341 || GAOAGAGOUAfFOA330A TADATASOAfFEA33ZLA
240 | 0000A441 (DCCA441 GAOASA1 6666AGA1 3333A741 1 COCCASAL 1 1 3333A841 SADASAGOASfIA338A GADABAGOOAfF™A33 A
880 0000AC41 CDCCACA1 9AO9AD41 GG6GAE41 3333AF41 00008241 C(DCCBR41 9A99B141 66668241 33338341 “AOA"AGO#AFFAA330A wADAWADOLAFFSA33ZA
920 | 02008441 (DCCB441 9A09BS41 66668641 33338741 Q0008841 C(DCCBSA1 JAIBI41 66668A41 33338841 || VAOAVAGOUAFFOA33JA [JADATASORASffA33°A
960 | 00Q08C41 CDCCBC41 9AIBD41 GOO6BE41 3333BF41 Q0RRCR41 C(DCCCR41 JAIIC141 6666C241 3333(341 cAQACAGONASfaA330A ;ADA;AGO{AFF-A33VA
1000 | 0000C441 (DCCC441 JATICSA1 6666C641 3333(741 QRRRCE41 C(DCCCBAL JAIICO4]1 GGE6CA4L 3333CB41|| FADAFAGOWATFAA33«A »ADADAGO.AFF A33AA
1040 | 2200CC41 (DCCCCAL IAIND41 6666CE41 3333CF41 QOOR0R41 C(DCCDR41 9AI9D141 66660241 33330341 AAOAAAGODAFFEA332A -ADA-ABO-AFF A33"A
1080 | 02000441 CDCCD441 33330741 €DCCO841 1 66660441 33330841 ‘ADA‘ABO’AFF+A330A JADAGAGOTAFF/A33€A
1120 | 02000C41 COCCDC41 94990041 6666DE41 3333DF41 QORREQ41 CDCCER41 JAITEL41 6666E241 3333E341 <ADACAGO>AFFRA3ZNA SADASADO-AFF,A33,A
1160 | 0000441 CDCCE441 9AIIESAL GOE6EGAL 33336741 QO0VES41 (DCCES41 DAIIEML 6666EA4L 3333EB41|| wADAWAGOAAFFEA33AA EAOAEAGOEAfFIA331A
1200 | 0RRQEC41 CDCCEC41 9AOIED41 G666EE41 3333EF41 QORRFO41 CDCCFR41 JAIIF141 6666F241 3333F341 TA0ATAGOIAFFOA330A eADAeABOOASFUA330A
1240 000OEALY (T (FAAY QAGOESAY RARAFAAT RIAIET7AY 1 COCOERAY 1 FALT RRAIERLY NABANAAAYAFF ARR™A “ABA-AAATAFF AR A

Unsigned Int : | htle :) 3224 40

Floats e : ©0.000000 =)+

4 bytes selected at offset 4 out of 42891976 bytes

Figure 5. View of the program Hex Fiend showing the start
of the UNH/CCOM data sample file 20131107_165148.000. The
first 16 bytes form the header of the first data record.
The 4-byte sync value is 0x5A34F977. The next four bytes

are an unsigned int value of 3224, corresponding to the

data record size in bytes. The following 8 bytes is the

data record name as UTF-8 characters, here showing "SYS CFG1l".

This record type is not listed in the ICD document.

A good hexadecimal editor allows one to interactively parse a complex binary data
file. Figure 5 shows the beginning of the UNH/CCOM data sample as displayed by
the program Hex Fiend. This program views the data in both hexadecimal and text
forms, and also shows the integer and floating point values of selected byte
groups. In this case, we see that the first four bytes have the form 0x5A34F977,

rather than the 0x77F9345A listed in the ICD. This apparent reversal of the byte
order is a result of the "little-endian" structure of these data; the sync value listed
is that of an unsigned four byte integer represented in little-endian form. The
second four-byte unsigned integer gives the record size of 3224 bytes. The next
eight bytes are the data record identifier as characters, here showing as
"SYS_CFG1". This is not a record type listed in the ICD!

Thus, we know that our I/O module code will need to handle at least one
undocumented record, and probably needs to be able to handle arbitrary
unknown records gracefully. In MB-System, handling an unknown data record
gracefully, means reading it all, storing it all, and writing it back out to the output
file unchanged, all without knowing anything about the contents.

For binary data formats, it is critical to understand the byte-order (little-endian vs
big-endian) used in the data files. In the case of the WASSP data, the ICD
indicates that integer and float values of all sizes are represented using little-
endian byte order. Some data formats allow both types of byte ordering, typically
determined by the type of computer used for sonar control and/or data logging. In
such cases the 1/0 module code must be capable of discerning the byte order of
the data it reads.

A thorough investigation of both data samples and the ICD vyields a number of
comments and issues with regard to reading and writing these data. These sorts
of comments should be embedded in the top of the /0O module header file, in this
case mbsys_wassp.h. For these data, the initial comments are:

/*

* Notes on the mbsys wassp data structure and associated form
at:

* 1. This MBIO format supports the generic interface messag

e output

* by the ENL WASSP multibeam sonars.

* 2. Reference: WASSP Generic ICD 2.2, 15 October 2013.

* 3. The WASSP data stream consists of several different da
ta

* records that can vary among models and installations.

* 4. The WASSP multibeam models as of January 2014 incude:

* WMB-3230, 160 kHz, 112 beams, 120 degree swath

* WMB-5230, 80 kHz, 112 beams, 120 degree swath

* WMB-3250, 160 kHz, 224 beams, 120 degree swath

* 5. The alongtrack beamwidths are 4 degrees, the acrosstra
ck

* beamwidths are estimated to be 2 degrees since the tra
nsducer

* arrays are about two times wider than long.

* 6. Each data record begins with a 16 byte sequence:

* unsigned int sync; \\ 0x77F9345A

* unsigned int size; \\ Size in bytes of this r
ecord from start

* \\ of sync pattern to
end of checksum

* char header[8]; \\ Data record name

* 7. All data are in little-endian form.

* 8. The data record names include:

* GENBATHY - Uncorrected Bathymetry

& GEN_SENS - External Sensor Data

* RAWSONAR - Raw water column data (roll stabilized so
nar)

* CORBATHY - Corrected Bathymetry

* NVUPDATE - Nav Data Message

& WCD_NAVI - Water Column Information

& SYS _CFGl - Unknown record at start of file

* (3224 bytes including sync and checksum

)
* 9. A sample file logged by the ENL datalogger has an 804

byte UTF-8
* header that looks like:
* R I S S S b S S S S S S S S I S b I b e S e S I S S S S e S S S S S

Kkkkkhkkhhkhhhhkhkkhhhkhhhhk
* Kkkhkkhkhhhhhhkhhhhhhkkhhkkkhhkkhkkkkk*kx**x*** PM Version: 2
V4.1 .288*kkkkkkhkhkkhkkk

* kkkkkkkhhkkhkhhkkhhkkhhkkhkkhhkkhkkhkkkkk*k*kk**k*** QUI Version:
2.4.1.125% % kkkkkkkhkhkk*

* Kkkkkkkkhkhkhkhkkkhkkhkkhkkkkkkkkkkkkk*kk*k*** Mity Verion:
20060** *kkkkkkhkkkkkk

* Khkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhkhhhhkhkhhk

Rk kb kS i S Sk o S

* Akhkhhhkk
Kkkkkkkhhkhhhhkhhkhhhhhhkkhk

* Kkkhkkhkhhhhhhkhhhhkhhkkhhkkkhhkkhkkk*kk*kx**x*** PM Version: 2
V4.1 .288*kkkkkkkkhkhhkkk

* kkkkkkkkkkhhhkkhhkkhhkkhkkhhkkhkkhkkkkk*k*kk**k*** QUI Version:
2.4.]1.125% % kkkkkkkhhhkkh*

* kKKK k Kk hkhhhkkkkhkkhhkkkkkkkkkkkkkk*kk***x* Mity Verion:
20060** *kkkkkkkkkkkkk

* Khkkhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhkhhhhkhkhhk

Rk kb b kb i b Sk o S

* The reading code will search for valid sync values and

so should ignore similar

* headers when encountered.

* A sample file logged by Jonathon Beaudoin of the Unive
rsity of New Hampshire

* Center for Coastal and Ocean Mapping does not contain
this header, so it is a

* feature of the ENL datalogger and not part of the data

stream output by the

* WASSP sonars.

* 10. The CORBATHY records do not have a full time stamp, an
d thus do not stand alone

* as survey data. Both a GENBATHY and a CORBATHY record
are required to form a useful

* survey record.

* 11. A survey record may or may not include a RAWSONAR reco
rd and a WCD_NAVI record.

* 12. The UNH/CCOM data samples contain adjacent GENBATHY an
d CORBATHY records for each ping.

* The ENL-logged data have separate groups of GENBATHY r
ecords and CORBATHY records,

* with each CORBATHY record occuring 10 to 30 records af
ter the corresponding

* GENBATHY record. Consequently, parsing these data woul
d require buffering the GENBATHY

* records to match them with the right CORBATHY record.

The current I/O module is

* not implemented with GENBATHY buffering, and will not
work with the ENL data sample.

* 13. The contents of the GEN_SENS records are not specified

and are presently unknown.

* 14. The NVUPDATE record does not include a time stamp and
thus does not usefully serve

* as asynchronous navigation and attitude.

* 15. The maximum number of beams is known, and can be stati

cally dimensioned for the

* GENBATHY and CORBATHY records. However, the maximum nu
mbers of samples in the RAWSONAR
@ and WCD_NAVI records are not defined, and so these str

uctures must allow for

* dynamic allocation of memory.

*

*/

Once some knowledge of the ideosyncrasies of the actual data format are known,
one can make decisions about how to best represent the data in memory. Since
there are a number of different data record types and some similar values
appearing in more than one record type (e.g. time, ping number), we choose to
define separate sub-structures for each data record type. The primary data
structure has the form:

/* Data system structure */
struct mbsys wassp struct

{
/* Type of most recently read data record */
int kind; /* MB-System record ID */

/* MB-System time stamp of most recently read record */
double time d;

int time i[7];

/* GENBATHY record */
struct mbsys wassp genbathy struct genbathy;

/* CORBATHY record */

struct mbsys wassp corbathy struct corbathy;

/* RAWSONAR record */

struct mbsys wassp rawsonar_ struct rawsonar;

/* GEN_SENS record */

struct mbsys wassp gen sens_struct gen sens;

/* NVUPDATE record */

struct mbsys wassp nvupdate struct nvupdate;

/* WCD_NAVI record */

struct mbsys wassp wcd navi_ struct wcd navi;

/* SYS CFGl record */

struct mbsys wassp sys cfgl struct sys cfgl;

/* MCOMMENT Record */

struct mbsys wassp mcomment struct mcomment;

/* unknown Record */

struct mbsys wassp unknownl struct mcomment;

}i

The structure begins with three critical parameters that must exist in every MBIO

primary data structure. The kind value indicates the type of data record most
recently read into this structure. Over sixty data record types are defined in
mb_status.h; the most common record types are:

e MB_DATA_DATA Survey data
o MB_DATA_NAV Navigation data
e MB_DATA_COMMENT Comment string

The time_d value is the time stamp of the most recent record in the first MB-
System standard form, which is seconds since the beginning of the year 1970.
This is also commonly known as "Unix" time or epoch time. The time_i value
represents the same time stamp in the second MB-System standard form, which
is as an array of seven integers where:

e time_[0] ==> year (e.g. 2014)

e time_[1] ==> month (e.g. 2)

o time_[2] ==> day (e.g. 16)

e time_[3] ==> hour (e.g. 12)

e time_[4] ==> minute (e.g. 18)

e time_[5] ==> second (e.g. 49)

e time_[6] ==> microsecond (e.g. 350627)

The MBIO functions mb_get_time() and mb_get_date() translate between the
time_d and time_i representations.

The sub-structures associated with the individual data records are defined above
the primary structure in mbsys_wassp.h. The two most important structures are
those holding the values read from GENBATHY and CORBATHY data records:

/* Individual data record structures */
struct mbsys wassp genbathy struct

{

/* GENBATHY Record */

/* Uncorrected Bathymetry

* All the bottom detection points will be supplied as
range and angle values.

* The length of the output message is variable, depen

dant on the number of beam data.

* In addition to the Flags the sample number will be

set to zero when detection is invalid. */

unsigned int
double

version;

msec;

d time stamp of rising edge

Transmit pulse in UTC time (UTC time

calculated from the timestamp of the

sentence and or a PPS signal when

ilable) No local time zone correction

applied. */
mb_u char
m NMEA ZDA */
mb_u_ char
m NMEA ZDA */
unsigned short
m NMEA ZDA */
unsigned int
umber. */
unsigned int
unsigned long
unsigned int
unsigned int
float
float
float
ts) rms applied to

nsmitter in dB.*/
float

in milliseconds */
float

value applied by WASSP.

float

day;

month;

year;

ping number;

sonar_model;

/*
/*

/*

/*

/*

/*

transducer serial number;

number_ beams;
modeflags;

sampling frequency;
acoustic_frequency;

tx_ power;

pulse width;

absorption loss;
7/
spreading loss;

as selected by WASSP GUI,

/*
/*
/*

/*

/*

3 %/

A millisecon

* of

* ZDA

* ava

UTC time fro
UTC time fro
UTC time fro

Sequential n

Hz */

Hz */

Voltage (vol
* tra

Pulse width

Configurable

0, 30 or 40

* uni

ts dB (as function of target range

* in
metres) */
unsigned int sample type; /* Set to 0 if
un-calibrated.
* Set
to 1 if calibrated. */
float sound velocity; /* Sound veloci
ty at the sonar head in m/s
* (th
at was used in beam forming) */
float detection_point[MBSYS_ WASSP_MAX BEAMS]
7
/* Non
—-corrected fractional sample number
* wit
h the reference to the receiver’s
* aco
ustic centre with the zero sample at
* the
transmit time. */
float rx_angle[MBSYS WASSP_MAX BEAMS];
/* Bea
m steering angle with reference to
* rec
eiver’s acoustic centre in the sonar
* ref
erence frame, at the detection point;
* in
degrees. */
unsigned int flags[MBSYS WASSP MAX BEAMS];
/* Bit
fields:
Bi
t 0: Detection Success
Bi
t 1: Detection Valid
Bi

t 2: WMT Detection

Bi
t 3: SAC Detection

Bi
ts 4-31: Reserved for future use */
float backscatter[MBSYS WASSP MAX BEAMS];
/* Max
target strength (dB) at seafloor on
* thi
s beam. */
unsigned int checksum; /* checksum for
mat TBD */
}i

struct mbsys wassp corbathy struct

{

/* CORBATHY Record */

/* Corrected Bathymetry

* Use this data for use as fully corrected bathymetry
data. The ships sensors

* integrated into the WASSP correct this information
for leaver arm, pitch, roll, yaw,

* heave, tide etc. Each total message contains the de
tections data for a single ping.

* NOTES:

* 1) Sign of Latitude (N = +ve)

* 2) Sign of Longitude (E = +ve)

* 3) All points are sent for every beam even if

they contain no detection data.

* So you can check if it is wvalid by checking
the Y value, if this is 0 then the
* detection is not valid and should not be us
ed.
* 4) The X,Y,Z positions are based on the fully

corrected output using leaver arm,

* sensor data and sound speed information ava
ilable. This means if the X, Y, Z

* offsets in the WASSP application are correc
t, there is no need to account for

X the distance between GPS antenna and transd

ucer or any pitch/roll/heave inclination.

* 5) Sign of Longitude is normal (East = positiv

e)
* 6) Depths are tide corrected unless tides are
disabled in the WASSP system.
*/
unsigned int version; /* 3 %/
double msec; /* A millisecon

d time stamp of rising edge

* of
Transmit pulse in UTC time (UTC time
* is
calculated from the timestamp of the
* ZDA
sentence and or a PPS signal when
* ava
ilable) No local time zone correction
* is
applied. */
unsigned int num_beams; /* Fixed by sof
tware. Invalid points have depth set to 0.0. */
unsigned int ping number; /* Ping sequenc

e number */
double latitude; /* Latitude at

transducer in degrees*/

double longitude; /* Longitude at
transducer in degrees */

float bearing; /* Bearing/Head
ing of vessel on transmit in degrees */

float roll; /* Roll of vess
el on transmit in radians */

float pitch; /* Pitch of ves

sel on transmit in radians */
float heave; /* Heave of ves

sel on transmit at transducer in meters */

unsigned int sample type; /* Set to 0 if
un-calibrated. Set to 1 if calibrated. */
unsigned int spare[6];
unsigned int beam index[MBSYS WASSP MAX BEAMS];
/* Bea

m index number */

float X[MBSYS_WASSP_MAX BEAMS];

/* Dis
tance to detection point in metres laterally along
* wes
t/east axis. East of vessel is positive. */
float y[MBSYS WASSP_MAX BEAMS];
/* Dis
tance to detection point in metres laterally along
* nor
th/south axis. South of vessel is positive. */
float z[MBSYS WASSP MAX BEAMS];
/* Dep
th in meters for the detection point. —ve = down.
* 0 =
not valid */
float beam angle[MBSYS WASSP MAX BEAMS];
/* Ang
le of the beam this detection appears on in radians
* pos
itive for starboard side of vessel. */
float backscatter [MBSYS_WASSP_MAX BEAMS];
/* Max
target strength (dB) at seafloor on this beam. */
mb_u char quality[MBSYS WASSP MAX BEAMS];
/* Det
ection information - (0O=none, 1=WMT, 2=SAC) */
mb_u char fish[MBSYS WASSP MAX BEAMS];
/* Fis
h intensity value for all fish targets vertically above
* det
ection point. */
mb_u char roughness[MBSYS WASSP_MAX BEAMS]; /* U
nused */
mb_u_char empty[MBSYS WASSP MAX BEAMS]; /* Unu
sed */
unsigned int pad[MBSYS_WASSP_MAX BEAMS]; /* Unu
sed */
unsigned int checksum; /* checksum fo

rmat TBD */
}i

As noted above, the RAWSONAR and WCD_NAVI records require dynamic
storage, and so the corresponding structures contain pointers. The arrays
attached to these pointers must be allocated large enough to hold the data read,
whatever that turns out to be.

struct mbsys wassp rawsonar struct

{

/* RAWSONAR Record */

/* Raw water column data (roll stabilized sonar)

* This packet is only roll stabilized if the WASSP sy
stem has valid roll information available.

* The data contained in this packet is to be dB signa
1 levels received by time and angle. Some

* filtering of the data may be applied to remove side

lobes and noise. This data is likely to be

* a subset of the full sampling resolution of the sys
tem — less beams and less samples. The first

* sample of raw data is the first sampling period sta
rting from the rising edge of the transmit

* pulse and ending at the end of the sampling period

determined by the Sample Rate.

*/
unsigned int version; /* 2 */
double msec; /* A millisecon

d time stamp of rising edge

* of
Transmit pulse in UTC time (UTC time

* is
calculated from the timestamp of the

* ZDA

sentence and or a PPS signal when

* ava
ilable) No local time zone correction

* is
applied. */

unsigned int ping number; /* Sequential n

umber. */

float sample rate; /* Frequency (H

z) of raw data in this packet */

unsigned int n; /* Number of be
ams of raw data in this packet */

unsigned int m; /* Number of sa
mples (per beam) of raw data in this packet */

float tx_power; /* Voltage (vol
ts) rms applied to

* tra

nsmitter in dB.*/

float pulse width; /* Pulse width

in milliseconds */

unsigned int sample type; /* Set to 0 if
un-calibrated.
* Set
to 1 if calibrated. */
unsigned short spare[MBSYS WASSP MAX BEAMS];
/* Set

to 0 until assigned a function */
unsigned short beam index[MBSYS WASSP_MAX BEAMS];

/* Equ
ivalent beam Index into uncorrected bathy
* (GE
NBATHY) record of each beam. */
unsigned int detection_point[MBSYS_WASSP_MAX BEAMS]
7
/* Ind
ex of sample which most closely matches
* sea
floor detection. 0 = not valid. */
float beam angle[MBSYS WASSP MAX BEAMS];
/* Bea
m angle for this beam in degrees (negative
* por
t side of nadir) */
size t rawdata_alloc; /* Number of sh
orts allocated for rawdata array */
short *rawdata; /* 1f Sample Ty
pe = 0 then Signal Levels at
* sam

ple/beam in dB*100 (divide by 100 to get

* act

ual signal level dB). The order is N x sample 1

* the
n N x sample 2... etc. If Sample Type =1
* the
n calibrated db*100. */
unsigned int checksum; /* checksum for
mat TBD */
}i

struct mbsys wassp wcd navi struct
{
/* WCD_NAVI Record */
/* Water Column Information
* This message is sent over the network after each de
tection message is sent, thus the water
* column data is valid for the previous ping that has
just been received. */
unsigned int version; /* 3 */
double latitude; /* Latitude fro
m GPS sensor in decimal degrees */
double longitude; /* Longitude fr
om GPS sensor in decimal degrees */
unsigned int num_points; /* Number of wa
ter column points to follow */
float bearing; /* Bearing of v
essel for fish targets, degrees */
double msec; /* A millisecon
d time stamp of rising edge

* of
Transmit pulse in UTC time (UTC time

* is
calculated from the timestamp of the

* ZDA

sentence and or a PPS signal when

* ava
ilable) No local time zone correction

* is

applied. */

unsigned int ping number; /* Ping sequenc

e number */

float sample rate; /* Sampling fre
quency in Hz for the Water Column Information */

size t wcdata_alloc; /* Number of po
ints allocated for wcdata arrays */

float *wcdata_x; /* Distance in

meters to water column point port/stbd

* fro

m vessels heading. Negative value is port. */

float *wcdata y; /* Depth in met
ers for the water column point. */

float *wcdata mag; /* Intensity va
lue for water column point, not referenced */

unsigned int checksum; /* checksum for
mat TBD */

}i

Step 4(a): Write the Initialization Functions in
mbr_wasspunl.c

As noted above, all of the code to read and write the data format
MBF_WASSPUNL should be located in the source file mbr_wasspunl.c. The
functions that must be present are:

int mbr register wasspenl(int verbose, void *mbio ptr,
int *error);

int mbr info wasspenl(int verbose,

int *systenm,

int *beams bath max,

int *beams amp max,

int *pixels_ ss max,

char *format name,

char *system name,

char *format description,

int *numfile,

int *filetype,

int *variable beams,

int *traveltime,

int *beam flagging,

int *nav_source,

int *heading_ source,

int *vru_source,

int *svp source,

double *beamwidth xtrack,

double *beamwidth ltrack,

int *error);
int mbr alm wasspenl(int verbose, void *mbio ptr, int *error);
int mbr dem wasspenl(int verbose, void *mbio ptr, int *error);
int mbr rt wasspenl(int verbose, void *mbio ptr, void *store p
tr, int *error);
int mbr wt wasspenl(int verbose, void *mbio ptr, void *store p

tr, int *error);

The first three functions (mbr_register_wasspenl(), mbr_info_wasspenl(), and
mbr_alm_wasspenl()) are part of the initialization following a call to mb_read_init()
and mb_write_init(), and mbr_dem_wasspenl() is called by mb_close(). The
reading and writing of files in the MBF_WASSPENL format is accomplished by
mbr_rt_wasspenl() and mbr_rt_wasspenl(), respectively.

The function mbr_register_wasspenl() loads pointers to the data access functions
in both mbr_wasspenl.c and mbsys_wassp.c into the MBIO data structure,
allowing the proper I1/0 module functions to be called when high level MBIO

function calls are made. For instance, a call to mb_extract() by program
mbprocess should result in a call to mbsys_wassp_extract() when the
MBF_WASSPENL format has been initialized. Similarly, a call to mb_read_ping(),
whether directly or through mb_read() or mb_get_all(), should result in a call to
mbr_rt_wasspenl(). The code within function mbr_register_wasspenl() that
accomplishes this registration looks like:

/* set format and system specific function pointers */
mb io ptr->mb io format alloc = &mbr alm wasspenl;
mb io ptr->mb io format free = &mbr dem wasspenl;
mb_io ptr->mb io store alloc = &mbsys wassp alloc;
mb_io ptr->mb io store free = &mbsys wassp deall;

mb io ptr->mb io read ping = &mbr rt wasspenl;

mb_io ptr->mb io write ping &mbr wt wasspenl;

mb_io_ptr->mb_io_dimensions &mbsys_wassp_dimensions;

mb io ptr->mb io pingnumber &mbsys wassp_ pingnumber;
mb io ptr->mb io sonartype = &mbsys wassp sonartype;
mb_io ptr->mb io sidescantype = NULL;
mb _io ptr->mb io extract = &mbsys wassp_ extract;
mb_io ptr->mb io insert = &mbsys wassp insert;
mb_io_ptr->mb_io_extract_nav = &mbsys_wassp_extract_nav;
mb io ptr->mb io extract nnav = NULL;
mb_io ptr->mb io insert nav = &mbsys wassp insert nav;
mb_io_ptr->mb_io_extract_altitude = &mbsys wassp_ extract_a
ltitude;
mb_io ptr->mb io insert altitude = NULL;
mb io ptr->mb io extract svp = NULL;
mb _io ptr->mb io insert svp = NULL;
mb_io ptr->mb io ttimes = &mbsys wassp ttimes;
mb _io ptr->mb io detects = &mbsys wassp detects;
mb io ptr->mb io gains = &mbsys wassp gains;
mb io ptr->mb io copyrecord = &mbsys wassp_ copy;
mb io ptr->mb io extract rawss = NULL;
mb io ptr->mb io insert rawss = NULL;
mb_io ptr->mb io extract segytraceheader = NULL;
mb_io ptr->mb io extract segy = NULL;
mb _io ptr->mb io insert segy = NULL;
mb_io ptr->mb io ctd = NULL;
mb_io_ptr->mb_io_ancilliarysensor = NULL;

Note that not all of the possible functions are registered. Only functions that are
either required or sensible for this particular data format should be defined in
mbsys_wassp.h, coded in mbsys_wassp.c, and registered in
mbr_register_wasspenl().

The function mbr_info_wasspenl() sets parameters and modes associated with

the data format, again as part of the initialization of reading or writing a file. The
key code looks like:

/* set format info parameters */

status = MB_SUCCESS;

*error = MB_ERROR_NO_ ERROR;

*system = MB_SYS WASSP;

*beams bath max = MBSYS WASSP MAX BEAMS;
*beams_amp max = MBSYS WASSP MAX BEAMS;
*pixels ss _max = MBSYS WASSP_MAX PIXELS;
strncpy(format name, "WASSPENL", MB NAME LENGTH);
strncpy(system name, "WASSP", MB NAME LENGTH);

strncpy(format description, "Format name: MBF_WAS
SPENL\nInformal Description: WASSP Multibeam Vendor Format\nAt
tributes: WASSP multibeams, \n
bathymetry and amplitude,\n 122 or 244 beams, bina
ry, Electronic Navigation Ltd.\n", MB DESCRIPTION LENGTH);
*numfile = 1;

*filetype = MB FILETYPE SINGLE;
*variable beams = MB YES;
*traveltime = MB_YES;

*beam flagging = MB_YES;
*nav_source = MB DATA DATA;
*heading source = MB_DATA DATA;
*vru_source = MB_DATA DATA;
*svp_source = MB DATA NONE;
4.0;

4.0;

*beamwidth_xtrack
*beamwidth ltrack

Here some of the values are self-explanatory, but others reflect the great variety is
seafloor mapping data formats. The "MBSYS_WASSP_*" macros are declared in
mbsys_wassp.h.

The numfile value is 1 for all formats storing data in single files, but can be 2 or 3
for formats with multiple parallel files. The filetype value identifies what i/o
mechanism is used to read and files in this format; this must correspond to the
actual reading and writing functions that are used in the functions in source file
mbr_wasspenl.c. The possible values are:

/* types of files used by swath sonar data formats */
#define MB FILETYPE NORMAL 1
#define MB FILETYPE SINGLE 2
#define MB FILETYPE XDR 3
#define MB FILETYPE GSF 4
#define MB_ FILETYPE NETCDF 5
#define MB FILETYPE SURF 6
#define MB FILETYPE SEGY 7

Files accessed through simple fopen(), fread(), fwrite(), and fclose() system calls
are "normal". Files accessed using the mb_fileio_open(), mb_fileio_read(),
mb_fileio_write(), and mb_fileio_close() functions are "single", and support
optimization of the data block buffer size through program mbdefaults. The other
possible values denote formats accessed through external i/o libraries such as
XDR, GSF, netCDF, SURF, and SEGY. Since the filetype value is
MB_FILETYPE_SINGLE here, the mb_{fileio_*()* family of functions will be used in
mbr_wasspenl.c.

For this format the number for beams can vary from ping to ping, and so
variable_beams is true. The traveltime variable being true indicates that raw travel
times (ranges) and angles are available, allowing recalcuation of bathymetry by
raytracing.

The nav_source, heading_source, vru_source, and svp_source values indicate
whether the primary source of these ancilliary data types are the survey records
(MB_DATA_DATA), or other types of data records (defined in
mbsystem/src/mbio/mb_status.h). Each of these values should be
MB_DATA_DATA unless the information is only available in asynchronous records
for this format. Values that are purely asynchronous (e.g. heading only available in
MB_DATA_HEADING records) will need to stored and interpolated onto survey
ping times within the mbr_wasspenl_rt() function using the mb_navint_*() family of
functions.

The beamwidth_xtrack and beamwidth_ltrack values are the default acrosstrack
and alongtrack beam widths for sounding in this format. In general, these values
should be reset for each new ping in the I/O module. Future versions of MBIO will

include a more robust approach to defining beam widths of soundings.

Step 4(b): Write the Reading and Writing Functions in
mbr_wasspunl.c

Basic Behavior of mbr_rt*() and mbr_wt*() Functions

The basic format-specific read and write functions for format MBF_WASSPENL
are mbr_rt_wasspenl() and mbr_wt_wasspenl(), respectively. The full prototypes
for these functions are:

int mbr rt wasspenl(int verbose, void *mbio ptr,
void *store ptr, int *error);
int mbr wt wasspenl(int verbose, void *mbio ptr,

void *store ptr, int *error);

where
e verbose ------- verbosity
e mbio_ptr ------ point to mb_io structure defining the reading or writing of a file

through MBIO

e store_ptr ----- pointer to the primary data structure (usually also available in
mb_io structure)

® error ---------- pointer to error value

The mbio_ptr and store_ptr pointers are obtained through mb_read_init() or
mb_write_init(). The verbose value is set by the MB-System program, and the
error value is used to return specific error states.

The behavior of mbr_rt_wasspenl() is to attempt to read the next data record from
the open file referenced by mbio_ptr into the data structure referenced by
store_ptr. The status and *error return values indicate success or failure, and the
store->kind value in the data structure indicates what type of record has been
read. The return values are defined as follows:

o If a survey record is successfully read:

status=MB_SUCCESS;
*error=MB_ERROR NO_ERROR;
store->kind = MB DATA DATA;

e |f a comment record is successfully read:

status=MB_SUCCESS;
*error=MB_ERROR NO_ERROR;
store->kind = MB DATA COMMENT;

¢ |f some other record type is read:

status=MB_SUCCESS;
*error=MB_ERROR NO_ERROR;
store->kind = MB DATA *;

e If the read fails:

status=MB_FAILURE;
*error=MB_ERROR_EOF;
store->kind = MB DATA NONE;

At the I/0 module level in MBIO, any successful reading of a data record results in
a status of MB_SUCCESS and an “error of MB_ERROR_NO_ERROR. Higher
level functions like mb_get_all() or mb_read() only return success for survey data
(store->kind == MB_DATA_DATA), and will set nonfatal error conditions for
comments, asynchronous navigation, and other sorts of data records.

The behavior of mbr_wt_wasspenl() is to attempt to write the current data record
in the data structure referenced by store_ptr to the open file referenced by
mbio_ptr. the store->kind value in the data structure indicates what type of record
will be written. The status and *error return values indicate success or failure.

The Structure of mb_rt_*() Functions: Simple Reading vs Multiple
Functions

If the data format consists of one or two record types, then the reading and writing
of those data can sensibly be coded directly in the mb_rt_*)* function, and no
other functions need be written or called. However, if the format is more
complicated, with many data record types and possible variability in the type and
order of records encountered in any particular file, then the format-specific code
should be broken into many functions. The structure used for the writing functions
should mirror that used for reading. The architecture used for reading and writing
a particular format is always the choice of the developer. The only specific
requirements are that the code work and be maintainable.

Reading by mbr_rt_wasspenl() and Subordinate Functions

For the MBF_WASSPENL format, we keep mbr_rt_wasspenl() quite simple, and
architect the reading with two lower levels of functions. The function
mbr_wasspenl_rd_data actually reads the file, identifying the start and size of
records, and reading those records into a buffer. It then calls one of several
functions to parse the specific record type and store the values in the data
structure.

Here is the heart of mbr_rt_wasspenl():

/* get pointers to mbio descriptor */

mb io ptr = (struct mb io struct *) mbio ptr;

/* read next data from file */
status = mbr wasspenl rd data(verbose,mbio ptr,

store ptr,error);

/* get pointers to data structures */

store = (struct mbsys wassp struct *) store ptr;

/* set error and kind in mb _io ptr */
mb_io ptr->new _error = *error;

mb_io_ptr->new_kind = store->kind;

The function mbr_wasspenl_rd_data() is a great deal more complicated. First, it
must find the start of the next record. The MBF_WASSPENL format data records

all begin with a similar first 16 bytes of the form:

unsigned int sync; // As a little endian unsigned int
// value: 0x77F9345A
// The raw byte order is: 5A 34 F9 77
unsigned int size; // Number of bytes in record from start
// of sync to end of checksum
char name[8]; // Record name - 8 characters,
// not null terminated
// Possible values: "GENBATHY",
// "CORBATHY", "RAWSONAR",
// "GEN_SENS", "NVUPDATE",
// "WCD_NAVI", "SYS CFG1l", "MCOMMENT"

To find the start of a valid record, the code reads the next 16 bytes into the start of
a buffer, and then checks if the first four bytes match the expected sync value. If
not, the code repeatedly drops the first byte, shifts the remaining 15 bytes over,
and checks again until the sync value is found. The second four bytes give the
size of the record; the code reads the rest of the record into the buffer starting at
byte 16.

Note that the reading is done with mb_fileio_get() rather than fread(). This is
because the mb_io_ptr->filetype parameter has been set to
MB_FILETYPE_SINGLE, and allows the potential for optimizing system settings
for file i/o.

Here is the code fragment that finds and reads the next record in the buffer:

/* read next record header into buffer */
read_len = (size t)16;
status = mb_fileio get(verbose, mbio ptr,

buffer, &read len, error);

/* check header - if not a good header read a byte
at a time until a good header is found */

skip = 0;

while (status == MB_SUCCESS
&& *synctest != MBSYS WASSP_SYNC)

)i

=/

{

/* get next byte */

for (i=0;i<15;i++)

buffer[i] = buffer[i+l];

read len = (size t)1;

status = mb fileio get(verbose, mbio ptr,
&buffer[15],
&read len, error);

skip++;

}

/* get record id string */
memcpy ((void *)recordid, (void *)&buffer[8], (size t)8

recordid[9] = '\0';

/* allocate memory to read rest of record if necessary

if (*bufferalloc < *record _size)
{
status = mb_reallocd(verbose, _ FILE , _ LINE ,
*record_size,
(void **)bufferptr, error)

if (status != MB_SUCCESS)
{
*bufferalloc = 0;
done = MB_YES;
}
else
{
*bufferalloc = *record size;
buffer = (char *) *bufferptr;

}

/* read the rest of the record */
if (status == MB_SUCCESS)
{

read len = (size t)(*record size - 16);

status = mb_fileio get(verbose, mbio ptr,
&buffer[1l6],

&read_len, error);

As can be seen above, the allocation of memory for the buffer is increased as
necessary to hold the new record. Both the buffer pointer and the amount of
memory allocated to it are stored in the mb_io_struct structure. There are number

of integer, double, and pointer values in the mb_io_struct that are available for use

by 1/0 modules. Here are example variable declarations and assignments:

char **pufferptr;
char *buffer;

int *bufferalloc;
unsigned int *synctest;

unsigned int *record size;

bufferptr = (char **) &mb io ptr->saveptrl;
buffer = (char *) *bufferptr;

bufferalloc = (int *) &mb io ptr->save6;
synctest = (unsigned int *) buffer;

record size = (unsigned int *)&buffer[4];

Since a sonar ping produces both the GENBATHY and CORBATHY records (and
possibly the RAWSONAR record), the code must only return successful survey
data when both GENBATHY and CORBATHY records have been read from the
same ping. The GENBATHY record seems to come first, so the code never sets
done true for GENBATHY records, and only checks for a full ping for CORBATHY
records. All other records are assumed to stand alone (even the RAWSONAR),
and so done is set true when they are read. The basic overall reading loop has
the following structure:

/* loop over reading data until a record is ready for retu
rn */

done = MB_NO;

*error = MB_ERROR_NO_ ERROR;

while (done == MB NO)

{

// Code here to read the next record into a byte buffe
r called "buffer"

/* if valid parse the record */

if (status == MB_SUCCESS)
{
/* read GENBATHY record */
if (strncmp(recordid, "GENBATHY", 8) == 0)
{

status = mbr wasspenl rd genbathy(verbose, buf
fer, store ptr, error);

}

/* read CORBATHY record */
else if (strncmp(recordid, "CORBATHY", 8) == 0)
{
status = mbr wasspenl rd corbathy(verbose, buf
fer, store ptr, error);
if (status == MB_SUCCESS)

{
if (genbathy->ping number == corbathy->pin
g_number)
done = MB_YES;
else
{
status = MB_FAILURE;
*error = MB_ERROR_UNINTELLIGIBLE;
}
}

/* read RAWSONAR record */
else if (strncmp(recordid, "RAWSONAR", 8) == 0)
{
status = mbr wasspenl rd rawsonar(verbose, buf
fer, store ptr, error);
if (status == MB_SUCCESS)
done = MB_YES;

// Code to

/* done if

if (status

read other record types here....

read success or EOF */
== MB_SUCCESS)

{
done = MB_YES;
}
else if (*error == MB_ERROR_EOF)
{
done = MB_YES;
}

/* set done if

else

{

read failure */

done = MB_YES;

}

The functions that are used to parse the various data records after they are read

are:

e mbr_wasspenl_rd_genbathy()

e mbr_wasspenl_rd_corbathy()

e mbr_wasspenl_rd_rawsonar()

e mbr_wasspenl_rd_gen_sens()

e mbr_wasspenl_rd_nvupdate()

e mbr_wasspenl_rd_wcd_navi()

e mbr_wasspenl_rd_sys_cfg1()

e mbr_wasspenl_rd_mcomment()

o mbr_wasspenl_rd_unknowni()

These functions follow a similar structure in which individual values are extracted
from the buffer using functions like mb_get_binary_int(). These functions also set
the kind and timestamp values in the data structure before returning. The function

to parse GENBATHY records is shown here:

int mbr wasspenl rd genbathy(int verbose, char *buffer, void *
store ptr, int *error)
{

char *function name = "mbr wasspenl rd genbathy";

int status = MB_SUCCESS;

struct mbsys wassp struct *store;

struct mbsys wassp genbathy struct *genbathy;

int index;

int i;

/* print input debug statements */
if (verbose >= 2)
{
fprintf(stderr, "\ndbg2 MBIO function <%s> called\n",f
unction name);
fprintf(stderr,"dbg2 Revision id: %s\n",rcs_id);
fprintf(stderr,"dbg2 Input arguments:\n");

fprintf (stderr, "dbg2 verbose: ¢d\n" ,verbose);

fprintf (stderr, "dbg2 buffer: gp\n", (void *)b
uffer);

fprintf (stderr, "dbg2 store ptr: %p\n",(void *)s
tore ptr);

}

/* get pointer to raw data structure */
store = (struct mbsys wassp struct *) store ptr;
genbathy = &(store->genbathy);

/* extract the data */

index = 16;

mb get binary int(MB_YES, &buffer[index], &(genbathy->vers
ion)); index += 4;

mb get binary double(MB YES, &buffer[index], &(genbathy->m
sec)); index += 8;

genbathy->day = buffer[index]; index++;

genbathy->month = buffer[index]; index++;

mb get binary short(MB YES, &buffer[index], &(genbathy->ye
ar)); index += 2;

mb get binary int(MB_YES, &buffer[index], &(genbathy->ping

_number)); index += 4;
mb get binary int(MB YES, &buffer[index], &(genbathy->sona
r model)); index += 4;
mb get binary long(MB YES, &buffer[index], &(genbathy->tra
nsducer_ serial number)); index += 8;
mb_get binary int(MB_YES, &buffer[index], &(genbathy->numb
er beams)); index += 4;
mb get binary int(MB_YES, &buffer[index], &(genbathy->mode
flags)); index += 4;
mb get binary float(MB_YES, &buffer[index], &(genbathy->sa
mpling frequency)); index += 4;
mb_get binary float(MB_YES, &buffer[index], &(genbathy->ac
oustic_ frequency)); index += 4;
mb get binary float(MB YES, &buffer[index], &(genbathy->tx
_power)); index += 4;
mb get binary float(MB_YES, &buffer[index], &(genbathy->pu
lse width)); index += 4;
mb_get binary float(MB_YES, &buffer[index], &(genbathy->ab
sorption loss)); index += 4;
mb get binary float(MB_YES, &buffer[index], &(genbathy->sp
reading loss)); index += 4;
mb get binary int(MB_YES, &buffer[index], &(genbathy->samp
le type)); index += 4;
mb_get binary float(MB_YES, &buffer[index], &(genbathy->so
und velocity)); index += 4;
for (i=0;i<genbathy->number beams;i++)
{
mb get binary float(MB_YES, &buffer[index], &(genbathy
->detection point[i])); index += 4;
mb_get binary float(MB_YES, &buffer[index], &(genbathy
->rx _angle[i])); index += 4;
mb get binary int(MB_YES, &buffer[index], &(genbathy->
flags[i])); index += 4;
mb get binary float(MB_YES, &buffer[index], &(genbathy
->backscatter[i])); index += 4;
}
mb get binary int(MB_YES, &buffer[index], &(genbathy->chec
ksum)); index += 4;

/* set kind */

if (status == MB_SUCCESS)
{
/* set kind */
store->kind = MB DATA DATA;

/* get the time */

store->time i[0]

genbathy->year;

store->time i[1] genbathy->month;

genbathy->day;
(int)floor (genbathy->msec / 3600000

store->time i[2]

store->time i[3]
.0);

store->time i[4] (int)floor ((genbathy->msec - 360000
0.0 * store->time i[3]) / 60000.0);
store->time i[5] = (int)floor((genbathy->msec
- 3600000.0 * store->time i[3]
- 60000.0 * store->time i[4]) / 100

0.0);;
store->time i[6] = (int) ((genbathy->msec
- 3600000.0 * store->time i[3]
- 60000.0 * store->time i[4]
- 1000.0 * store->time i[5]) * 1000
-0)i3;
mb_get time(verbose, store->time i, &(store->time d));
}
else
{
store->kind = MB_DATA NONE;
}

/* print debug statements */
if (verbose >= 5)
{
fprintf(stderr, "\ndbg5 Values read in MBIO function <
$s>\n",function name);
fprintf (stderr, "dbg5 genbathy->version:
gu\n",genbathy->version);
fprintf (stderr, "dbg5 genbathy->msec:
$f\n",genbathy->msec);
fprintf (stderr, "dbg5 genbathy->day:
$u\n",genbathy->day);

_number:

nt[%3d]:

3d]:

fprintf (stderr, "dbg5 genbathy->month:
su\n",genbathy->month);

fprintf(stderr, "dbg5 genbathy->year:
gu\n",genbathy->year);

fprintf (stderr, "dbg5 genbathy->ping number:
gu\n",genbathy->ping number);

fprintf (stderr, "dbg5 genbathy->sonar model:
su\n",genbathy->sonar model);

fprintf (stderr, "dbg5 genbathy->transducer serial
$lu\n",genbathy->transducer serial number);

fprintf (stderr, "dbg5 genbathy->number beams:
gu\n",genbathy->number beams);

fprintf (stderr, "dbg5 genbathy->modeflags:
gu\n",genbathy->modeflags);

fprintf (stderr, "dbg5 genbathy->sampling frequenc
$f\n",genbathy->sampling frequency);

fprintf(stderr, "dbg5 genbathy->acoustic frequenc
2f\n",genbathy->acoustic_ frequency);

fprintf (stderr, "dbg5 genbathy->tx power:
$f\n",genbathy->tx power);

fprintf(stderr, "dbg5 genbathy->pulse width:
$f\n",genbathy->pulse width);

fprintf(stderr, "dbg5 genbathy->absorption loss:
$f\n",genbathy->absorption loss);

fprintf (stderr, "dbg5 genbathy->spreading loss:
$f\n",genbathy->spreading loss);

fprintf (stderr, "dbg5 genbathy->sample type:
gu\n",genbathy->sample type);

fprintf(stderr, "dbg5 genbathy->sound velocity:

2f\n",genbathy->sound velocity);

for (i=0;i<genbathy->number beams;i++)

{

fprintf (stderr, "dbg5 genbathy->detection poi
$f\n",i,genbathy->detection point[i]);

fprintf (stderr, "dbg5 genbathy->rx angle[%3d]
$f\n",i,genbathy->rx angle[i]);

fprintf (stderr, "dbg5s genbathy->flags[%3d]:
gu\n",i,genbathy->flags[i]);

fprintf(stderr, "dbg5 genbathy->backscatter[$%

$f\n",i,genbathy->backscatter[i]);

}
fprintf(stderr, "dbg5 genbathy->checksum:
$u\n",genbathy->checksum) ;

/* print output debug statements */
if (verbose >= 2)
{
fprintf(stderr,"\ndbg2 MBIO function <%s> completed\n
",function_name);

fprintf(stderr,"dbg2 Return values:\n");

fprintf (stderr, "dbg2 error: ¢d\n", *error);
fprintf(stderr,"dbg2 Return status:\n");

fprintf (stderr, "dbg2 status: %d\n",status);

}

/* return status */

return(status);

The mbr_wasspenl_rd_genbathy() function also illustrates a couple of MB-System
coding conventions. First, all MB-System functions should print out the entry and
return values if verbose >= 2 to stderr. Second, if verbose >= 5, all functions that
read or write data records should print out all of the values being read or written.

On-The-Fly Interpolation of Asynchronous Values (Not Needed for
WASSP)

In the case of data formats that have no navigation, heading, sensor depth, or
attitude data stored in the survey records, these values must be obtained by
interpolation of values found in asynchronous records. For the WASSP data, this
is not an issue. If on-the-fly interpolation of the ancilliary values is needed, the
general logic that should be placed in the mbr_rt_*() function is something this:

// This example is for general illustration only!!!

// Also, in real I/O modules the key parameters are never simp
ly

// stored as store->longitude, store->heading, etc...

// This is where the code goes to read the next data record
// In mbr rt wasspenl() this is the call to mb wasspenl rd dat

a()

// Add asynchronous

values to the interpolation arrays if

// this is the right kind of data record
if (mb_io ptr->nav_source != MB DATA DATA

&& (store->kin

== mb_io ptr->nav_source

| | store->kind == mb_io ptr->heading source

|| store->kind == mb_io ptr->vru_source))

{

status = mb_extract nav(verbose, mbio ptr, *store ptr,

&heading,

heave,

if (store->kind

&kind, time i, &time d,
&longitude, &latitude, &speed,

&sensordepth, &roll, &pitch, &

error);

== mb_io ptr->nav_source)

status = mb_navint add(verbose, mbio ptr, store->time

{
d,
)i
status =
d,
}
if (store->kind
status = mb_
d,
if (store->kind
status = mb_.
d,

~e

longitude, latitude, error

mb depint add(verbose, mbio ptr, store->time

sensordepth, error);

== mb io ptr->heading source)

hedint add(verbose, mbio ptr, store->time
heading, error);
== mb_io ptr->vru source)

attint add(verbose, mbio ptr, store->time

roll, pitch, heave, error)

// If this is a survey record then interpolate ancilliary valu

es
if (store->kind == MB DATA DATA)

{

interp status = mb_hedint interp(verbose, mbio ptr, store-
>time d,

&store->heading, &interp error);

interp_ status mb_navint interp(verbose, mbio ptr, store-
>time d, heading, 0.0,
&store->longitude, &store->latitude, &
store->speed, &interp error);
interp status = mb_depint interp(verbose, mbio ptr, store-

>time d,

&store->sensordepth, &interp error);

interp_ status

>time d,

mb_attint interp(verbose, mbio ptr, store-

&store->heave, &store->roll, &store->p

itch, &interp error);

}

The above code is for illustration only, this is not actual code from any of the 1/0
modules. In most of the cases where on-the-fly interpolation is needed, there are
multiple possible types of asynchronous records, and so the actual code is more
complicated. Also, the actual storage variables are rarely as simple as "store-
>heading".

Writing by mbr_wt_wasspenl() and Subordinate Functions

The mbr_wt_wasspenl() function is similar to mbr_rt_wasspenl() in that it does
little more than call mbr_wasspenl_wr_data():

/* get pointer to mbio descriptor */
mb_io ptr = (struct mb io struct *) mbio ptr;

/* get pointer to raw data structure */
store = (struct mbsys wassp struct *) store ptr;

/* write next data to file */

status = mbr wasspenl wr data(verbose,mbio ptr,store ptr,e
rror);

The function mbr_wasspenl_wr_data() in turn simply calls functions to insert the
desired output data record into the buffer, and then writes that buffer to the output
file referenced by mbio_ptr. In the case of survey data, both GENBATHY and
CORBATHY records are written out.

/* get pointer to mbio descriptor */
mb_io ptr = (struct mb io struct *) mbio ptr;

/* get pointer to raw data structure */
store = (struct mbsys wassp struct *) store ptr;

/* get saved values */

bufferptr = (char **) &mb io ptr->saveptrl;
buffer = (char *) *bufferptr;

bufferalloc = (int *) &mb io ptr->save6;

/* write the current data record */

/* write GENBATHY record */
if (store->kind == MB_ DATA DATA)
{
status = mbr wasspenl wr_ genbathy(verbose, bufferalloc
, bufferptr, store ptr, &size, error);
buffer = (char *) *bufferptr;
write len = (size t)size;
status = mb_fileio put(verbose, mbio ptr, buffer, &wri
te len, error);

status = mbr wasspenl wr_ corbathy(verbose, bufferalloc
, bufferptr, store ptr, &size, error);

buffer = (char *) *bufferptr;

write len = (size_ t)size;

status = mb fileio put(verbose, mbio ptr, buffer, &wri

te_len, error);

}

/* write RAWSONAR record */
else if (store->kind == MB DATA WATER COLUMN)

{

status = mbr wasspenl wr_ rawsonar(verbose, bufferalloc
, bufferptr, store ptr, &size, error);

buffer = (char *) *bufferptr;

write len = (size t)size;

status = mb_fileio put(verbose, mbio ptr, buffer, &wri

te len, error);

}

// more code to write all the other record types....

The functions that are used to construct the various data records before they are
written are:

e mbr_wasspenl_wr_genbathy()
e mbr_wasspenl_wr_corbathy()

e mbr_wasspenl_wr_rawsonar()
e mbr_wasspenl_wr_gen_sens()
e mbr_wasspenl_wr_nvupdate()
o mbr_wasspenl_wr_wcd_navi()
e mbr_wasspenl_wr_sys_cfg1()

e mbr_wasspenl_wr_mcomment()
e mbr_wasspenl_wr_unknown1()

These functions follow a similar structure in which individual values are inserted
into the buffer using functions like mb_put_binary_int(). The function to construct
GENBATHY records is shown here:

int mbr wasspenl wr genbathy(int verbose, int *bufferalloc, ch
ar **pbufferptr, void *store ptr, int *size, int *error)
{

char *function name = "mbr wasspenl wr genbathy";

int status = MB_SUCCESS;

struct mbsys wassp struct *store;

struct mbsys wassp genbathy struct *genbathy;

char *buffer;

int index;

int i;

/* print input debug statements */
if (verbose >= 2)
{
fprintf(stderr, "\ndbg2 MBIO function <%s> called\n",f
unction_ name);
fprintf(stderr,"dbg2 Revision id: %s\n",rcs_id);
fprintf(stderr,"dbg2 Input arguments:\n");

fprintf(stderr, "dbg2 verbose: %d\n",verbose);

fprintf(stderr, "dbg2 bufferalloc:%d\n", *bufferal
loc);

fprintf (stderr, "dbg2 bufferptr: %p\n", (void *)b

ufferptr);

fprintf (stderr, "dbg2 store ptr: %p\n",(void *)s
tore ptr);

}

/* get pointer to raw data structure */
store = (struct mbsys wassp struct *) store ptr;
genbathy = &(store->genbathy);

/* print debug statements */
if (verbose >= 5)
{
fprintf(stderr, "\ndbg5 Values to be written in MBIO f
unction <%s>\n",function name);
fprintf (stderr, "dbg5 genbathy->version:
gu\n",genbathy->version);
fprintf (stderr, "dbg5 genbathy->msec:

$f\n",genbathy->msec);

fprintf (stderr, "dbg5 genbathy->day:
gu\n",genbathy->day);
fprintf (stderr, "dbg5 genbathy->month:
gu\n",genbathy->month) ;
fprintf(stderr, "dbg5 genbathy->year:
gu\n",genbathy->year);
fprintf(stderr, "dbg5 genbathy->ping number:
gu\n",genbathy->ping number);
fprintf (stderr, "dbg5 genbathy->sonar model:
gu\n",genbathy->sonar model);
fprintf (stderr, "dbg5 genbathy->transducer serial
_number: $lu\n",genbathy->transducer serial number);
fprintf (stderr, "dbg5 genbathy->number beams:
gu\n",genbathy->number beams);
fprintf (stderr, "dbg5 genbathy->modeflags:
gu\n",genbathy->modeflags);
fprintf (stderr, "dbg5 genbathy->sampling frequenc
y: $f\n",genbathy->sampling frequency);
fprintf(stderr, "dbg5 genbathy->acoustic frequenc
y: $f\n",genbathy->acoustic_ frequency);
fprintf (stderr, "dbg5 genbathy->tx power:

$f\n",genbathy->tx power);

fprintf(stderr, "dbg5 genbathy->pulse width:
$f\n",genbathy->pulse width);

fprintf (stderr, "dbg5 genbathy->absorption loss:
$f\n",genbathy->absorption loss);

fprintf (stderr, "dbg5 genbathy->spreading loss:
$f\n",genbathy->spreading loss);

fprintf (stderr, "dbg5 genbathy->sample type:
gu\n",genbathy->sample type);

fprintf(stderr, "dbg5 genbathy->sound velocity:
$f\n",genbathy->sound velocity);

for (i=0;i<genbathy->number beams;i++)

{

fprintf (stderr, "dbg5 genbathy->detection poi
nt[%3d]: $f\n",i,genbathy->detection point[i]);

fprintf(stderr, "dbg5 genbathy->rx angle[%3d]

2f\n",i,genbathy->rx angle[i]);
fprintf (stderr, "dbg5 genbathy->flags[%3d]:

$u\n",i,genbathy->flags[i]);

fprintf(stderr, "dbg5 genbathy->backscatter[$%
3d]: $f\n",i,genbathy->backscatter[i]);
}
fprintf (stderr, "dbg5 genbathy->checksum:

$u\n",genbathy->checksum) ;

/* figure out size of output record */
*size = 92 + 16 * genbathy->number beams;

/* allocate memory to write rest of record if necessary */
if (*bufferalloc < *size)

{

status = mb_reallocd(verbose, _ FILE_, _ LINE_, *siz
ey
(void **)bufferptr, error);
if (status != MB_SUCCESS)
*bufferalloc = 0;
else
*pbufferalloc = *size;

/* proceed to write if buffer allocated */

if (status == MB_SUCCESS)
{
/* get buffer for writing */
buffer = (char *) *bufferptr;

/* insert the data */

index = 0;

mb_put binary int(MB_YES, MBSYS WASSP SYNC, &buffer[in
dex]); index += 4;

mb put binary int(MB_YES, *size, &buffer[index]); inde
X += 4;

strncpy(&buffer[index], "GENBATHY", 8); index += 8;

mb put binary int(MB_YES, genbathy->version, &buffer[i
ndex]); index += 4;

mb_put binary double(MB YES, genbathy->msec, &buffer[i

ndex]); index += 8;

buffer[index] = genbathy->day; index++;
buffer[index] = genbathy->month; index++;
mb_put binary short(MB_YES, genbathy->year, &buffer[in
dex]); index += 2;
mb_put binary int(MB_YES, genbathy->ping number, &buff
er[index]); index += 4;
mb_put_binary int(MB_YES, genbathy->sonar model, &buff
er[index]); index += 4;
mb_put binary long(MB YES, genbathy->transducer serial
_number, &buffer[index]); index += 8;
mb_put binary int(MB_YES, genbathy->number beams, &buf
fer[index]); index += 4;
mb put binary int(MB_YES, genbathy->modeflags, &buffer
[index]); index += 4;
mb_put binary float(MB_YES, genbathy->sampling frequen
cy, &buffer[index]); index += 4;
mb_put binary float(MB_YES, genbathy->acoustic_frequen
cy, &buffer[index]); index += 4;
mb put binary float(MB_YES, genbathy->tx power, &buffe
r[index]); index += 4;
mb_put binary float(MB_YES, genbathy->pulse width, &bu
ffer[index]); index += 4;
mb_put binary float(MB_YES, genbathy->absorption loss,
&buffer[index]); index += 4;
mb put binary float(MB_YES, genbathy->spreading loss,
&buffer[index]); index += 4;
mb_put binary int(MB_YES, genbathy->sample type, &buff
er[index]); index += 4;
mb_put binary float(MB_YES, genbathy->sound velocity,
&buffer[index]); index += 4;
for (i=0;i<genbathy->number beams;i++)
{
mb_put binary float(MB_YES, genbathy->detection po
int[i], &buffer[index]); index += 4;
mb_put binary float(MB_YES, genbathy->rx angle[i],
&buffer[index]); index += 4;
mb put binary int(MB_YES, genbathy->flags[i], &buf
fer[index]); index += 4;
mb_put binary float(MB_YES, genbathy->backscatter|

i], &buffer[index]); index += 4;

/* now add the checksum */
genbathy->checksum = 0;
for (i=0;i<index;i++)
genbathy->checksum += (unsigned char) buffer[i];
mb put binary int(MB_YES, genbathy->checksum, &buffer|
index]); index += 4;

}

/* print output debug statements */
if (verbose >= 2)
{
fprintf(stderr, "\ndbg2 MBIO function <%s> completed\n
",function name);

fprintf(stderr,"dbg2 Return values:\n");

fprintf (stderr, "dbg2 error: ¢d\n", *error);
fprintf(stderr,"dbg2 Return status:\n");

fprintf (stderr, "dbg2 status: %d\n",status);

}

/* return status */

return(status);

Step 5. Write the Data Access Functions in mbsys_wassp.c

As noted above, the source file mbsystem/src/mbio/mbsys_wassp.c must contain
the code for all of the mbsys_wassp_*() functions loaded into the mb_io_struct I/O
structure by the mbr_register_wasspenl() function. These are:

e mbsys_wassp_dimensions()
e mbsys_wassp_pingnumber()
e mbsys_wassp_sonartype()
e mbsys_wassp_extract()

e mbsys_wassp_insert()

e mbsys_wassp_ttimes()

e mbsys_wassp_detects()

e mbsys_wassp_extract_nav()

e mbsys_wassp_insert_nav()

e mbsys_wassp_extract_altitude()
e mbsys_wassp_detects()

e mbsys_wassp_gains()

e mbsys_wassp_copyrecord()

Each of these functions either extracts or inserts a well defined set of values from
or to the data structure. Care must be taken to translate the values correctly
between the units used in the data format and those used by the MBIO API. For
instance, the longitude and latitude values are in decimal degrees, the sensor
depth value is in meters, and the speed value is in km/hour.

One interesting complication with the WASSP format is that the sounding
locations in the CORBATHY records are stored as distances east and north of the
sensor navigation point. Most multibeam formats store these locations as
distances acrosstrack-starboard and alongtrack-forward of the sensor, and that is
certainly the form expected in the arrays returned by mbsys_wassp_extract(). The
sounding positions must be translated between the two conventions in both
mbsys_wassp_extract() and mbsys_wassp_insert(), a calculation that depends on
the heading value. The translation from relative easting-northing to acrosstrack
and alongtrack distances in mbsys_wassp_extract() is in this code fragment:

/* get coordinate scaling */
headingx = sin(-(*heading)*DTR);
headingy = cos(-(*heading)*DTR);

/* read distance and depth values into storage arrays
*/
*nbath = corbathy->num beams;
*namp = *nbath;
for (i=0;i<*nbath;i++)
{
bath[i] = 0.0;
beamflag[i] = MB FLAG NULL;
bathacrosstrack[i] = 0.0;
bathalongtrack[i] = 0.0;
amp[i] = 0.0;

}
for (i=0;i<*nbath;i++)
{
j = corbathy->beam index[i];
bath[j] = -corbathy->z[i];

beamflag[j] = corbathy->empty[i];

bathacrosstrack[j] = headingy * corbathy->x[i] + h
eadingx * (-corbathy->y[i]);

bathalongtrack[j] = -headingx * corbathy->x[i] + h
eadingy * (-corbathy->y[i]);

amp[j] = corbathy->backscatter([i];

}

Here the sin() and cos() calculations include use of a preprocessor macro DTR.
This stands for degrees-to-radians and is defined as M_P1/180.0 in the header
file mbsystem/src/mbio/mb_define.h (along with RTD, or radians-to-degrees). Also
note that the WASSP beam data arrays include beam_index[], which is the actual
beam number for each sounding. The use of index values means that some
beams may not be specified and should presumably be treated as null.
Consequently, each extraction must begin by initializing the target arrays to null,
as is done in the first loop over *nbath.

Here is the full code for the most used data access function,

mbsys_wassp_extract():

int mbsys wassp extract(int verbose, void *mbio ptr, void *sto

re ptr,

int *kind, int time i[7], double *time d,

double *navlon,
double *speed, double *heading,

double *navlat,

int *nbath, int *namp, int *nss,

char *beamflag,

double *bath, double *amp,

double *bathacrosstrack, double *bathalongtrack,

double *ss, double *ssacrosstrack, double *ssalongtrac

char *comment, int *error)

char

*function name = "mbsys wassp extract";

int status = MB_ SUCCESS;

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
double
double

int i,

mb_io struct *mb_io ptr;
mbsys _wassp_struct *store;
mbsys wassp_ genbathy struct
mbsys wassp corbathy struct
mbsys wassp_ rawsonar_ struct
mbsys _wassp_gen_ sens_struct
mbsys wassp nvupdate struct
mbsys_wassp wcd navi struct
mbsys wassp_ sys_cfgl struct
mbsys wassp mcomment struct

headingx, headingy;

dx, dy;

Ji

/* print input debug statements */

if (verbose >= 2)

{

fprintf(stderr, "\ndbg2

unction_ name);

fprintf(stderr, "dbg2
fprintf (stderr, "dbg2
fprintf(stderr, "dbg2
fprintf(stderr, "dbg2

*genbathy;
*corbathy;
*rawsonar;
*gen_sens;
*nvupdate;
*wcd_navi;
*sys_cfgl;

*mcomment ;

MBIO function <%s> called\n",f

Revision id: %s\n",version_id);
Input arguments:\n");
verbose: ¢d\n" ,verbose);
mb_ ptr: ¢p\n", (void *)m

bio ptr);

fprintf(stderr, "dbg2 store ptr: %p\n",(void *)s
tore ptr);

}

/* get mbio descriptor */

mb io ptr = (struct mb io struct *) mbio ptr;

/* get data structure pointer */

store = (struct mbsys wassp struct *) store ptr;

genbathy = (struct mbsys wassp genbathy struct *) &(store-
>genbathy);

corbathy = (struct mbsys wassp corbathy struct *) &(store-
>corbathy);
rawsonar = (struct mbsys wassp rawsonar struct *) &(store-

>rawsonar) ;

gen sens = (struct mbsys wassp gen sens struct *) &(store-
>gen_sens);

nvupdate = (struct mbsys wassp nvupdate struct *) &(store-
>nvupdate);

wcd navi = (struct mbsys wassp wcd navi struct *) &(store-
>wcd_navi);

sys _cfgl = (struct mbsys wassp sys cfgl struct *) &(store-
>sys_cfgl);

mcomment = (struct mbsys wassp mcomment struct *) &(store-

>mcomment) ;

/* get data kind */
*kind = store->kind;

/* extract data from structure */
if (*kind == MB DATA DATA)
{
/* get time */
for (i=0;i<7;i++)
time i[i] = store->time i[i];

*time d = store->time_d;

/* get navigation */

*navlon = corbathy->longitude;

*navlat = corbathy->latitude;

/* get speed */
*speed = 1.8520 * nvupdate->sog;

/* get heading */

*heading = corbathy->bearing;

/* set beamwidths in mb_io structure */
mb io ptr->beamwidth xtrack = 4.0;
mb_io ptr->beamwidth ltrack = 4.0;

/* get coordinate scaling */
headingx = sin(-(*heading)*DTR);
headingy = cos(-(*heading)*DTR);

/* read distance and depth values into storage arrays
*/
*nbath = corbathy->num beams;
*namp = *nbath;
for (i=0;i<*nbath;i++)
{
bath[i] = 0.0;
beamflag[i] = MB FLAG NULL;

bathacrosstrack[i] = 0.0;
bathalongtrack[i] = 0.0;
amp[i] = 0.0;
}

for (i=0;i<*nbath;i++)
{
j = corbathy->beam index[i];
bath[j] = -corbathy->z[i];

beamflag[j] = corbathy->empty[i];

bathacrosstrack[j] = headingy * corbathy->x[i] + h
eadingx * (-corbathy->y[i]);

bathalongtrack[j] = -headingx * corbathy->x[i] + h
eadingy * (-corbathy->y[i]);

amp[j] = corbathy->backscatter[i];

}

/* extract sidescan */

*nss = 0;

/* print debug statements */
if (verbose >= 5)

{

fprintf(stderr, "\ndbg4

ction <%s>\n",

d);

or);

_i[01);

_if11);

_i[r21);

_i[31);

_ir41);

_i[51);

_i[61);

e d);

lon);

lat);

ed);

ding);

th);

function_name);

fprintf(stderr, "dbg4d Extracted values:\n");

fprintf (stderr, "dbg4

fprintf (stderr, "dbg4

fprintf(stderr, "dbg4

fprintf(stderr, "dbg4

fprintf (stderr, "dbg4

fprintf(stderr, "dbg4

fprintf(stderr, "dbg4

fprintf (stderr, "dbg4

fprintf(stderr, "dbg4

fprintf (stderr, "dbg4

fprintf (stderr, "dbg4

fprintf(stderr, "dbg4

fprintf (stderr, "dbg4

fprintf (stderr, "dbg4

fprintf(stderr, "dbg4

kind:

error:

time i[0]:

time i[1]:

time i[2]:

time i[3]:

time i[4]:

time i[5]:

time i[6]:

time d:

longitude:

latitude:

speed:

heading:

nbath:

gd\n",

¢d\n",

¢d\n",

gd\n",

¢d\n",

¢d\n",

gd\n",

¢d\n",

¢d\n",

$f\n",

$f\n",

$f\n",

$f\n",

$f\n",

¢d\n",

Data extracted by MBIO fun

*kin

*err

time

time

time

time

time

time

time

*tim

*nav

*nav

*spe

*hea

*nba

for (i=0;i<*nbath;i++)
fprintf(stderr, "dbg4 beam:%d flag:%3d ba
th:%f acrosstrack:%f alongtrack:%f\n",
i,beamflag[i],bath[i],
bathacrosstrack[i],bathalongtrack([i]);
fprintf(stderr, "dbg4 namp: $d\n", *namp
)i
for (i=0;i<*namp;i++)
fprintf(stderr, "dbg4 beam: %d amp:%f ac
rosstrack:%f alongtrack:%f\n",
i,amp[i],bathacrosstrack[i],bathalongtrack[i])

fprintf (stderr, "dbg4 nss: &d\n", *nss)

for (i=0;i<*nss;it++)
fprintf (stderr, "dbg4 pixel:sd ss:%f ac
rosstrack:%f alongtrack:%f\n",
i,ss[i],ssacrosstrack[i],ssalongtrack[i]);

/* done translating values */

/* extract data from structure */
else if (*kind == MB_DATA NAV)
{
/* get time */
for (i=0;i<7;i++)
time i[i] = store->time i[i];

*time d = store->time_d;

/* get navigation */

*navlon nvupdate->longitude;

*navlat nvupdate->latitude;

/* get speed */
*speed = 1.8520 * nvupdate->sog;

/* get heading */

d);

or);

_i[01);

_if11);

_ir21);

_i[31);

_if41);

_i[51);

_i[e1);

e d);

lon);

lat);

ed);

*heading = nvupdate->heading;

/* set beam and pixel numbers
*nbath = 0;
*namp = 0;

*nss = 0;

/* print debug statements */
if (verbose >= 5)

{

=y

fprintf(stderr,"\ndbg4d Data extracted by MBIO fun

ction <%s>\n",

function name);

fprintf(stderr, "dbg4d Extracted values:\n");

fprintf(stderr, "dbg4

fprintf(stderr, "dbg4

fprintf (stderr, "dbg4

fprintf(stderr, "dbg4

fprintf(stderr, "dbg4

fprintf (stderr, "dbg4

fprintf(stderr, "dbg4

fprintf (stderr, "dbg4

fprintf (stderr, "dbg4

fprintf(stderr, "dbg4

fprintf (stderr, "dbg4

fprintf (stderr, "dbg4

fprintf(stderr, "dbg4

kind:

error:

time i[0]:

time i[1]:

time i[2]:

time i[3]:

time i[4]:

time i[5]:

time i[6]:

time d:

longitude:

latitude:

speed:

¢d\n",

gd\n",

¢d\n",

¢d\n",

gd\n",

¢d\n",

¢d\n",

gd\n",

¢d\n",

$f\n",

$f\n",

$f\n",

$f\n",

*kin

*err

time

time

time

time

time

time

time

*tim

*nav

*nav

*spe

fprintf (stderr, "dbg4 heading: $f\n", *hea
ding);

/* done translating values */

/* extract comment from structure */
else if (*kind == MB DATA COMMENT)
{
/* get time */
for (i=0;i<7;i++)
time i[i] = store->time i[i];

*time d = store->time d;

/* copy comment */
if (mcomment->comment length > 0)
strncpy(comment, mcomment->comment message, MIN(mc
omment->comment length, MB COMMENT MAXLINE));
else

comment[0] = '\0';

/* print debug statements */
if (verbose >= 4)
{
fprintf(stderr, "\ndbgd Comment extracted by MBIO
function <%s>\n",
function name);

fprintf(stderr,"dbgd New ping values:\n");

fprintf(stderr, "dbg4 kind: &d\n", *kin
d);

fprintf(stderr, "dbg4 error: $d\n", *err
or);

fprintf (stderr, "dbg4 time i[0]: %d\n", time
_i[01);

fprintf (stderr, "dbg4 time i[l]: %d\n", time

_if11);
fprintf(stderr, "dbg4 time i[2]: %d\n", time
_ir21);

fprintf (stderr, "dbg4
_ir31);

fprintf(stderr, "dbg4
_if4n);

fprintf (stderr, "dbg4
_i[51);

fprintf (stderr, "dbg4
_i[61);

fprintf(stderr, "dbg4
e d);

fprintf (stderr, "dbg4
ent);

time i[3]:

time i[4]:

time i[5]:

time i[6]:

time d:

comment:

/* set time for other data records */

else
{
/* get time */
for (i=0;i<7;i++)

time i[i] = store->time i[i];

*time d = store->time_d;

/* print debug statements */

if (verbose >= 4)

{

fprintf(stderr, "\ndbg4

ction <%s>\n",
function name);

fprintf(stderr, "dbg4

fprintf (stderr, "dbg4
)i

fprintf(stderr, "dbg4
r);

fprintf (stderr, "dbg4
i[01);

fprintf (stderr, "dbg4
i[11);

fprintf(stderr, "dbg4
i[21);

¢d\n",

$d\n",

gd\n",

¢d\n",

$f\n",

gs\n",

time

time

time

time

*tim

comm

Data extracted by MBIO fun

Extracted values:\n");
¢d\n", *kind

kind:

error:

time i[0]:

time i[1]:

time i[2]:

¢d\n", *erro

2d\n",time

gd\n",time

2d\n",time_

fprintf (stderr, "dbg4 time i[3]: %d\n",time
i[31);

fprintf (stderr, "dbg4 time i[4]: %d\n",time
i[41);

fprintf (stderr, "dbg4 time i[5]: %d\n",time
i[51);

fprintf (stderr, "dbg4 time i[6]: %d\n",time
i[61);

fprintf (stderr, "dbg4 time d: $f\n", *time
_d);

fprintf(stderr, "dbg4 comment : ¢s\n", comme
nt);

}

/* print output debug statements */
if (verbose >= 2)
{
fprintf(stderr,"\ndbg2 MBIO function <%s> completed\n
",function name);

fprintf(stderr,"dbg2 Return values:\n");

fprintf(stderr, "dbg2 kind: &d\n",*kind);
}
if (verbose >= 2 && *error <= MB_ERROR_NO_ERROR
&& *kind == MB_DATA COMMENT)
{
fprintf (stderr, "dbg2 comment : \ndbg2 %
s\n",
comment) ;
}
else if (verbose >= 2 && *error <= MB ERROR_NO_ ERROR
&& *kind != MB DATA COMMENT)
{
fprintf (stderr, "dbg2 time i[0]: gd\n",time i
[01);
fprintf(stderr, "dbg2 time i[1]: gd\n",time i
[(11);
fprintf(stderr, "dbg2 time i[2]: 2d\n",time i

[21);
fprintf (stderr, "dbg2 time i[3]: gd\n",time i

[31);
fprintf(stderr, "dbg2 time i[4]: 2d\n",time i

[41);:

fprintf (stderr, "dbg2 time i[5]: gd\n",time i
[51);
fprintf(stderr, "dbg2 time i[6]: gd\n",time i
[61);
fprintf(stderr, "dbg2 time d: $f\n", *time
d);
}
if (verbose >= 2 && (*kind == MB DATA DATA || *kind == MB_
DATA NAV))
{
fprintf (stderr, "dbg2 longitude: $f\n", *navlo
n);
fprintf (stderr, "dbg2 latitude: $f\n", *navla
t);
fprintf(stderr, "dbg2 speed: 2f\n", *speed
)i
fprintf(stderr, "dbg2 heading: $f\n", *headi
ng);
}
if (verbose >= 2 && *error <= MB_ERROR NO ERROR
&& *kind == MB DATA DATA)
{
fprintf(stderr, "dbg2 nbath: $d\n",
*nbath);
for (i=0;i<*nbath;i++)
fprintf (stderr, "dbg2 beam:%d flag:%3d bath:%

f acrosstrack:%f alongtrack:%f\n",
i,beamflag[i],bath[i],
bathacrosstrack[i],bathalongtrack([i]);
fprintf (stderr, "dbg2 namp: gd\n",
*namp) ;
for (i=0;i<*namp;i++)
fprintf(stderr, "dbg2 beam: %d amp:%f acrosst
rack:%f alongtrack:%f\n",
i,amp[i],bathacrosstrack[i],bathalongtrack[i]);
fprintf (stderr, "dbg2 nss: gd\n",

*nss);

for (i=0;i<*nss;i++)
fprintf(stderr, "dbg2 pixel:%d ss:%f across
track:%f alongtrack:%f\n",

i,ss[i],ssacrosstrack[i],ssalongtrack[i]);

}

if (verbose >= 2)
{
fprintf (stderr, "dbg2 error: ¢d\n", *error);
fprintf(stderr,"dbg2 Return status:\n");
fprintf (stderr, "dbg2 status: &d\n",status);
}

/* return status */

return(status);

The other data access functions in mbsys_wassp.c are structured similarly to
mbsys_wassp_extract().

Step 6. Integrate the New IO module Into MBIO

Once the I/0 module source files have been written, there are a few modifications
to the files:

e mbsystem/src/mbio/mb_format.h
e mbsystem/src/mbio/mb_format.c

that are required to integrate the new I/O module with the MBIO library. The code
fragments below include the changes.

The new data system MB_SYS_WASSP must be added to the list of data
systems in mb_format.h:

/* Supported swath sonar systems */

#define MB_SYS_ NONE 0
#define MB SYS SB 1

#define MB SYS 3DATDEPTHLIDAR
#define MB_SYS WASSP

35
36

The number of supported formats must be incremented (in this case from 73 to
74) and the new format MBF_WASSPENL must be added to the list of formats in

mb_format.h:

/* Number of supported MBIO data formats */

#define MB_FORMATS 74
/* Data
#define
#define
#define

MBF DATALIST -1
MBF NONE 0
MBF_SBSIOMRG 11 /+*
0. */

#define MBF_SBSIOCEN 12 /=*

#define MBF_ 3DDEPTHP
for 3DatDepth LIDAR,

etry, amplitude,
3DatDepth. */

#define MBF WASSPENL
at,

241

de,

ry, Electronic Navigation Ltd.

formats supported by MBIO */

SeaBeam, 16 beam, bathymetry,

binary, uncentered, SI

SeaBeam, 19 beam, bathymetry,

binary, centered, SIO.
deleted------- - - -\ -\ - —
/* 3DatDepth processed format

variable beams, bathym

binary, single files,

/* WASSP Multibeam Vendor Form

WASSP multibeams,
bathymetry and amplitu

122 or 244 beams, bina

Prototypes for the MBIO registration functions mbr_register_wasspenl() and
mbr_info_wasspenl() must be added to mb_format.h:

/* format registration function prototypes */

int mbr register sbsiomrg(int verbose, void *mbio ptr, int *er
ror);

int mbr register sbsiocen(int verbose, void *mbio ptr, int *er

ror);

int mbr register 3ddepthp(int verbose, void *mbio ptr, int *er
ror);
int mbr register wasspenl(int verbose, void *mbio ptr, int *er
ror);
int mbr info sbsiomrg(int verbose,
int *system,
int *beams bath max,
int *beams amp max,
int *pixels_ss_max,
char *format name,
char *system name,
char *format_description,
int *numfile,
int *filetype,
int *variable beams,
int *traveltime,
int *beam flagging,
int *nav_source,
int *heading source,
int *vru_source,
int *svp_source,
double *beamwidth xtrack,
double *beamwidth ltrack,

int *error);

int mbr info wasspenl(int verbose,
int *system,
int *beams bath max,
int *beams amp max,
int *pixels_ss_max,
char *format name,
char *system name,
char *format_description,
int *numfile,
int *filetype,
int *variable beams,
int *traveltime,
int *beam flagging,
int *nav_source,
int *heading source,
int *vru_source,
int *svp_source,
double *beamwidth xtrack,
double *beamwidth ltrack,

int *error);

References to the new format must be added to function mb_format_register() in
mb_format.c:

int mb_ format register(int verbose,
int *format,
void *mbio ptr,

int *error)
char *function name = "mb format register";
int status;

struct mb_io struct *mb_io ptr;

int i;

/* look for a corresponding format */

if (*format == MBF_ SBSIOMRG)
{

status = mbr register sbsiomrg(verbose, mbio ptr, erro

else if (*format == MBF_3DDEPTHP)
{

status = mbr register 3ddepthp(verbose, mbio ptr, erro

}
else if (*format == MBF_WASSPENL)
{
status = mbr register wasspenl(verbose, mbio ptr, erro
r);
}
else
{
status = MB_FAILURE;
*error = MB_ERROR_BAD FORMAT;
}

/* return status */

return(status);

References to the new format must be added to function mb_format_info() in
mb_format.c:

int mb_format info(int verbose,
int *format,
int *systenm,

int *beams bath max,

int *beams amp max,

int *pixels_ ss max,

char *format_name,

char *system name,

char *format description,
int *numfile,

int *filetype,

int *variable beams,

int *traveltime,

int *beam flagging,

int *nav_source,

int *heading_ source,

int *vru_source,

int *svp source,

double *beamwidth xtrack,
double *beamwidth ltrack,

int *error)

char *function name = "mb format info";
int status;

int i;

/* look for a corresponding format */
if (*format == MBF_SBSIOMRG)
{
status = mbr info sbsiomrg(verbose, system,
beams bath max, beams amp max, pixels ss max,
format name, system name, format description,
numfile, filetype,
variable beams, traveltime, beam flagging,

nav_source, heading source, vru_source, svp_source

beamwidth_ xtrack, beamwidth_ ltrack,

error);

else if (*format == MBF_3DDEPTHP)
{
status = mbr info 3ddepthp(verbose, system,
beams_bath _max, beams_amp max, pixels_ss_max,
format name, system name, format description,
numfile, filetype,
variable beams, traveltime, beam flagging,

nav_source, heading source, vru_source, svp_source

beamwidth xtrack, beamwidth_ ltrack,
error);

}
else if (*format == MBF_WASSPENL)

{

status = mbr info wasspenl(verbose, system,
beams_bath max, beams_ amp max, pixels_ss_max,
format name, system name, format description,
numfile, filetype,
variable beams, traveltime, beam flagging,

nav_source, heading source, vru_source, svp_source

beamwidth_ xtrack, beamwidth_ ltrack,

error);
}
else if (*format == MBF_DATALIST)
{
*format = MBF_ DATALIST;
*system = MB_SYS NONE;

*beams _bath max = 0;
*beams _amp max = 0;
*pixels_ss _max = 0;
strcpy(format name, "MBF DATALIST");
strcpy(system name, "MB SYS DATALIST");
strcpy(format description, "MBF DATALIST");
strncpy(format description, "Format name: MBF
_DATALIST\nInformal Description: Datalist\nAttributes:
List of swath data files, each filename \n\tfollowed by MB-
System format id.\n", MB_DESCRIPTION_LENGTH);

*numfile = 0;

*filetype = 0;

*variable beams = MB NO;
*traveltime = MB NO;

*beam flagging = MB NO;
*nav_source = MB DATA NONE;
*heading source = MB DATA NONE;
*vru_source = MB DATA NONE;
*svp_source = MB DATA NONE;
*beamwidth xtrack = 0.0;

*beamwidth ltrack = 0.0;

status = MB_FAILURE;
*error = MB_ERROR_BAD FORMAT;
}

/* return status */

return(status);

References to the new format must be added to function mb_get_format() in
mb_format.c:

int mb_get format(int verbose, char *filename, char *fileroot,

int *format, int *error)

char *function name = "mb_get format";
int status = MB_SUCCESS;

/* first look for MB suffix convention */
if (found == MB NO)
{

if (strlen(filename) > 6)

i = strlen(filename) - 6;

else

i=0;

if ((suffix = strstr(&filename[i],".mb")) != NULL
|| (suffix = strstr(&filename[i],".MB")) != NULL)
{

suffix len

strlen(suffix);

if (suffix len >= 4 && suffix len <= 6)

uffix len);

{
if (fileroot != NULL)

{

strncpy(fileroot,

fileroot[strlen(filename)-suffix len] =

}

if (sscanf(suffix, ".mb%d", format) > 0

filename, strlen(filename)-s

v\ov;

| | sscanf(suffix, ".MB%d", format) > 0)

found = MB_YES;
}

/* look for a 3DatDepth *.raa file format convention*/

if (found == MB NO)
{
if (strlen(filename) >= 5)
i = strlen(filename) - 4;
else
i=0;
if ((suffix = strstr(&filename[i],".raa")) != NULL)

suffix len = 4;

else if
L)

suffix len

else

((suffix = strstr(&filename[i],".RAA"))

4;

suffix len = 0;

if (suffix len == 4)

!= NUL

{
if (fileroot != NULL)

{
strncpy(fileroot, filename, strlen(filename)-s
uffix len);
fileroot[strlen(filename)-suffix len] = '\0';
}
*format = MBF_3DDEPTHP;
found = MB_YES;
}

/* look for a WASSP *.000 file format convention*/
if (found == MB NO)

{

if (strlen(filename) >= 5)

i = strlen(filename) - 4;

else

i=0;

if ((suffix = strstr(&filename[i],".000")) != NULL)
4;

suffix len

else

suffix len 0;
if (suffix len == 4)
{
if (fileroot != NULL)
{
strncpy(fileroot, filename, strlen(filename)-s
uffix len);
fileroot[strlen(filename)-suffix len] = '\0';
}
*format = MBF_WASSPENL;
found = MB_YES;

}

/* finally check for parameter file */
sprintf(parfile, "%s.par", filename);
if (stat(parfile, &statbuf) == 0)

{

if ((checkfp = fopen(parfile,"r")) != NULL)

{
while ((result = fgets(buffer,MBP FILENAMESIZE,che
ckfp)) == buffer)
{
if (buffer([0] != '#'")
{
if (strlen(buffer) > 0)
{
if (buffer[strlen(buffer)-1] == '\n')
buffer[strlen(buffer)-1] = '\0';
}
if (strncmp(buffer, "FORMAT", 6) == 0)
{
sscanf (buffer, "%s %d", dummy, &pforma
t);
if (pformat != 0)
{
*format = pformat;
if (found == MB NO)
{
strcpy(fileroot, filename);
found = MB_YES;
}
}
}
}
}
fclose(checkfp);
}

/* return status */

return(status);

Step 7: Update the MB-System Build

In order to update the MB-System build system, we must first add the three new
source files to the Makefile.am file in mbsystem/src/mbio/, and then rerun a series
of commands from the GNU autotools package to regenerate a number of
required files.

With the mbsys_wassp.h, mbsys_wassp.c, and mbr_wasspenl.c files added, the
Makefile.am files looks like:

lib LTLIBRARIES libmbio.la

include HEADERS = mb_config.h \
mb format.h mb status.h \
mb _io.h mb swap.h \

mb define.h mb process.h \

mbsys_benthos.h mbsys swathplus.h \
mbsys_ 3datdepthlidar.h mbsys wassp.h \

mbf sbsiomrg.h mbf sbsiocen.h \

mbf mbarirov.h mbf mbarrov2.h \
mbf mbpronav.h mbf xtfr8101.h

libmbio_la_ SOURCES = \

mb_ format.c mb_error.c \

mbsys_benthos.c mbsys swathplus.c \
mbsys_ 3datdepthlidar.c mbsys wassp.c \

mbr sbsiomrg.c mbr sbsiocen.c \

mbr swplssxp.c mbr 3ddepthp.c \

mbr wasspenl.c

To reconstruct the build system, in a shell execute the following from mbsystem/
(i.e. from the top of the MB-System source tree):

#

Full autotools command sequence after modifying the build sy
stem

#

First clean up old installation and build

make uninstall

make clean

Reconstruct the build system
libtoolize --force --copy

aclocal

autoheader

automake --add-missing --include-deps
autoconf

autoupdate

autoreconf --force --install --warnings=all

Following these commands, run configure, make, and make install in the usual
fashion to build and install MB-System with the new 1/0 module.

Step 8: Test the New I/0 Module

In order to test the functioning of the new 1/0 module, we attempt to process and
display the data sample from UNH/CCOM. The following commands will suffice:

i i
Process the WASSP data
HAHHHHHHHAHAHAHHHHHAH A A A
#

Get datalist plus ancilliary files

/bin/ls -1 *.000 | awk '{print $1" 241"}' > datalist.mb-1
mbdatalist -o -v

mbdatalist -z

Get tide models and set for use by mbprocess
mbotps -I datalist.mb-1 -M -D60.0 -V

set roll and pitch bias
mbset -PROLLBIAS:0.0 -PPITCHBIAS:0.0

Edit bathymetry
mbedit
mbeditviz -I datalist.mb-1

Calculate amplitude correction
mbbackangle -I datalist.mb-1 \

-Al -Q -V -N87/86.0 -R50 -G2/85/1500.0/85/100
mbset -PAMPCORRFILE:datalist.mb-1 tot.aga

Process the data
mbprocess

Screen grabs of the bathymetry editing are shown here:

File

View Controls

Acrosstrack Width (m): 1

Vertical Exaggeration: 0.01 p— e 20.00
Mode: 4 Toggle « Pick Erase «- Restore « Grab « Info

N\ MBedit
Start | Reverse| Forward| End |

Next Buffer| Done]

Quit I About |

— 0 Pings shown:

1.00

File 1 of 1:20131107_165148,000

ofl

Pings to step:
Flag View

20

-

a0

S
T 20

I Unflag View I Unflag Fownrdl

] 7424

22

63
62
61
60
59
58
57
56
55
54
53

23

1

88¢

a7
a6

1170772013 16:51:51,623
11/707/2013 16:51:51.509
11/07/2013 16:51:51.509
11/07/2013 16:51:51.394
11/07/2013 16:51:51,394
11/07/2013 16:51:51.279
11/07/2013 16:51:51.279
11/07/2013 16:51:51.164
11/07/2013 16:51:51.164
11/07/2013 16:51:51.,049
11/07/2013 16:51:51.049
11/07/2013 16:51:50,933
11/07/2013 16:51:50,933
11/07/2013 16:51:50,819
1170772013 16:51:50.819
1170772013 16:51:50.703
11/707/2013 16:51:50,703
11/07/2013 16:51:50,588
1170772013 16:51:50.588
11/07/2013 16:51:50.474

19,373
19.373
19.384
19,384
19,434
19,494
19.471
19,471
18,577
19.577
19,673
19,673
19,732
19,732
19,755
19,755
19,750
19.750
19.808
19,808

Sounding Colors by Flogging:
Vertical Exageration: 1,00

Unflagged Honuol Filter
ALl

Sonar

s and Depths in Meters

p--p-q--1-

-

Figure 6. WASSP Multibeam data loaded into mbedit as format 24
1.

\' JO Soundogs]
View | [A8305.30) Eev: 29,00 | Bxager1 00} e] " ot
Mot | o feggle Pk Trme L Mestere L Gob e 1 Pan a0 Z¢

Actien 000 00 &
oy | (PSS ey Cywe—" T Tem— pm—] Fem—T Y Jwmy

Figure 7. WASSP Multibeam data loaded into mbeditviz as format

24

1.

Below are some examples of WASSP topography and amplitude maps generated
with MB-System through the new I/O module. The associated commands are
shown as well.

To generate a topography grid, use mbgrid:

Generate topography grid
mbgrid -I datalistp.mb-1 -A2 -C5 -F5 -N -0 ZTopo -V
mbgrdviz -I ZTopo.grd &

Below are example maps generated from the topography grid. To generate a
bathymetry map with slope shading use mbm_grdplot with the -G5 option:

Topo slope map
mbm_grdplot -I ZTopo.grd \
-0 ZTopoSlope \
-G5 -D0/1 -A2 \
-L"WASSP Multibeam Sonar Example":"Topography (meters)

-MGLfx4/1/43.0/0.5+1"km" \
-Pa -V
ZTopoSlope.cmd

WASSP Multibeam Sonar Example

43°04'40° 430440

43°0430°

-70°4500" TO 4" 70°4440" 704430 70°4420"
S] . I T T]
L} T 1 T] 1

3 30 27 24 21 18 15 12 9] 3

Topography (motors)

Figure 8. WASSP bathymetry with slope shading

To generate a bathymetry map with contours use mbm_grdplot with the -G1 and -
C options:

mbm_grdplot -I ZTopo.grd \
-0 ZTopoCont \
-Gl -C1 -MCWOp -A2 \
-L"WASSP Multibeam Sonar Example":"Topography (meters)

-MGLfx4/1/43.0/0.5+1"km" \
-Pa -V
ZTopoCont.cmd

WASSP Multibeam Sonar Example

70°4500° 70450 2088 70430 70° 420"
T
s0ee0 =3 aoekr
v
m
0 05
43°04'30° 43'0430"
70°4500° O 20 4880° 704450 T
M])
-33 -30 27 24 21 -18 -15 12 9 -6 -3
Topography (molors)

Figure 9. WASSP bathymetry with contours

To add navigation lines to the slope shaded map, add the -MNI option:

mbm grdplot -I ZTopo.grd \
-0 ZTopoSlopeNav \
-G5 -D0/1 -A2 \
-L"WASSP Multibeam Sonar Example":"Topography (meters)

-MGLfx4/1/43.0/0.5+1"km" \
-MNIdatalistp.mb-1 \
-Pa -V

ZTopoSlopeNav.cmd

WASSP Multibeam Sonar Example

43°04'40° 430440

43°0430°

-70"4500" 704450 70°44°40" T70°4430" 70°4420"

& -1
&

33 30 27 24 21 18 15 12 9
Topography (motors)

Figure 10. WASSP bathymetry with slope shading and navigation

To generate a corrected amplitude grid, use mbmosaic:

Generate first cut mosaics and maps

mbmosaic -I datalistp.mb-1 -A3 -N -Y2 -F0.05 \
-0 ZAmpC -V

mbgrdviz -I ZTopo.grd -J ZAmpC.grd &

To generate a grayscale amplitude map use mbm_grdplot with the -G1 and -W1/4
options:

Generate first cut mosaics and maps
mbmosaic -I datalistp.mb-1 -A3 -E1/0! -N -Y2 -F0.05 \
-0 ZAmpC -V
mbm_grdplot -I ZAmpC.grd \
-0 ZAmpCPlot \
-Gl -W1/4 -D -S \
-L"WASSP Multibeam Sonar Example":"Multibeam Amplitude

n \
-MGLfx4/1/43.0/0.5+1"km" \
-Pa -V

ZAmpCPlot.cmd

WASSP Multibeam Sonar Example

43°04'40° aovwr

43°04°30°

%y 43°04°30°
L EEEEE————
70"4500" 70450 70°44'40" 70'4430" 70°4420"
| ! 1 1
r T T T
254642 1354470 1396230 1425940 1448540 1468220 1435260 150.9250 1534840 157.0040 1629790
MUEboom Ampit.do

Figure 11. WASSP Corrected Amplitude

