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The Total Variance of a Periodogram-Based Spectral
Estimate of a Stochastic Process With Spectral

Uncertainty and Its Application to Classifier Design
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Abstract—The variance of a spectral estimate of a stochastic
process is essential to the formulation and performance of a
spectral classifier. The overall variance of a spectral estimate
originates from two sources: the within-class spectral uncertainty
and the variance introduced in the spectral estimation procedure.
In this paper, we derive the total variance of a periodogram-based
spectral estimate under some assumptions. Using this result, we
formulate a linear spectral classifier based on Fisher’s separa-
bility metric. The classifier is used to classify two oceanographic
processes: ocean convection versus internal waves.

Index Terms—Classifier, periodogram, spectral uncertainty.

I. INTRODUCTION

THE Fourier transform retains all information in the orig-
inal time series since the transform basis is complete and

orthogonal. By the linear system theory, the Fourier transform
produces spectral outputs that are uncorrelated between disjoint
bands. The spectrum over disjoint bands provides a nonredun-
dant representation of a signal [1]. Thus we can use spectra to
distinguish between different classes of signals. Spectral classi-
fication has been applied to classifying speech [2], [3], images
[4]–[6], trees [7], and sea beds [8], [9].

The variance of a spectral estimate of a stochastic process
is essential for a classifier’s formulation and performance [10],
[11]. The overall variance of a spectral estimate originates from
two sources: the within-class spectral uncertainty and the vari-
ance introduced in the spectral estimation procedure. An analyt-
ical derivation of the total variance is not seen in the literature.
An insight of the composition of the total variance is needed for
formulating a spectral classifier, analyzing its performance, and
devising approaches to reduce the total variance and thus im-
proving the classifier’s performance.

In this paper, we analyze the formation of the total variance
of a periodogram-based spectral estimate of a stochastic process
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with spectral uncertainty. The total variance is derived under
some assumptions. The result gives a clear and concise expres-
sion of the contributions of the two variance sources. Thus it
provides a quantitative guide for devising approaches to reduce
the total variance. Using the total variance expression, we for-
mulate a linear spectral classifier based on Fisher’s separability
metric [10]. As an application example, the classifier is used to
classify two oceanographic processes.

II. TOTAL VARIANCE OF A PERIODOGRAM-BASED SPECTRAL

ESTIMATE OF A STOCHASTIC PROCESS WITH

SPECTRAL UNCERTAINTY

Due to the computational efficiency of fast Fourier transform,
the periodogram and its variants [12] are the most commonly
used methods for estimating the power spectrum density (PSD)
of a stochastic process. Suppose is one realization of a sto-
chastic process . Its periodogram is defined as [13]

(1)

where is a window function of duration . stands for
the Fourier transform.

The periodogram is an asymptotically unbiased es-
timate of the true PSD , but its standard deviation is as
large as its asymptotic mean [14]. To reduce the PSD estimate’s
variance, one can do frequency-domain smoothing (the Daniell
method [12]) with an interval of 1 , and take the smoothed
periodogram as the PSD estimate

(2)

where 2 1 is the total number of frequency points included
in the smoothing, and is the weighting function.

The expectation of formulated in (2) is [14]

(3)

Under the assumption that is a Gaussian process, the co-
variance of is [14] as shown in (4) at the bottom of the next
page, where is the Fourier transform of the window func-
tion and is the weight for frequency-domain smoothing.
Notation “ ” stresses that the expectation and the co-
variance are conditioned on the true PSD .
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The variance of is obtained directly from (4) as shown
in (5) at the bottom of the page.

When is smooth across the smoothing bandwidth
(2 1) , can be pulled out of the integration in (3)

(6)

Under the constraint ,
(6) becomes

(7)

Thus as long as is smooth over the smoothing band-
width, and the window and the weighting functions satisfy the
above constraint, is approximately an unbiased estimate
of .

Similarly, under the smoothness assumption, (5) becomes1

(8), shown at the bottom of the page, where represents
the quantity in the curly braces and is called the “effective
number of degrees of freedom.” is shown [14] to approx-
imately obey a distribution with 2 degrees of freedom

(9)

Equation (8) shows that the periodogram-based PSD estimate
has an inherent variance that is proportional to the square of
the true PSD. By (4), we see that the PSD estimates are ap-
proximately uncorrelated between frequencies farther apart than

1Zero-frequency is special: Var[Ŝ (0)jS (0)] � 2S (0)=� . This spe-
cialty is properly treated in computations in this paper, but omitted in expres-
sions herein for the sake of conciseness.

, where is the bandwidth of and

Cov

when (10)

is dependent on the window function and the fre-
quency-domain smoothing function . When is a boxcar
window, and an -point smoothing with uniform weights is
done in the frequency domain, we have . The vari-
ance of is thus reduced by a factor of . The cost paid is
the smearing of the PSD estimate within the smoothing band-
width, so the total number of frequency points that provide un-
correlated PSD estimates is effectively reduced. The duration
of determines the bandwidth of . With a longer dura-
tion, the window’s bandwidth is smaller, so that the total number
of frequency points that provide uncorrelated PSD estimates
increases. The shape of determines the width of ’s
mainlobe and the height of its sidelobes. Bartlett, Hanning, and
Hamming windows have lower sidelobes than that of a boxcar
window, but their mainlobes are wider. A lower sidelobe means
less interference from nearby frequencies, but a wider mainlobe
means a larger bandwidth of , which leads to fewer fre-
quency points that provide uncorrelated PSD estimates.

For stochastic processes that belong to the same class, their
underlying physical properties can vary in a range. For example,
the PSD of ocean internal waves’ vertical flow velocity is depen-
dent on the buoyancy frequency [15], which is a function of the
vertical profile of water density. The buoyancy frequency typi-
cally varies in a range of several cycles per hour. Corresponding
to different buoyancy frequencies, the PSDs are different. As
the buoyancy frequency is uncertain, the PSD of the internal
waves’ vertical flow velocity correspondingly bears an uncer-
tainty. Thus the variability of the underlying physical properties
causes spectral uncertainty of the stochastic processes within
the same class. Corresponding to given values of the physical

Cov

(4)

Var (5)

Var

(8)
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properties of a stochastic process, its PSD is a determin-
istic quantity at any frequency . Over the variation range of
the physical properties, however, is actually a random
variable at any frequency. We denote the mean of by

. Note that the expectation and the covari-
ance of derived so far are conditioned on . The
successive decomposition of the variance of is illustrated
in Fig. 1.

Using (7), we have

(11)

Thus, as long as is smooth over the smoothing band-
width, and the window and the weighting functions satisfy the
above-mentioned constraint, is approximately an unbi-
ased estimate of . The variance of at any fre-
quency is derived as follows, where argument “ ” is omitted
for conciseness, as shown in (12) at the bottom of the page.

We integrate the three terms individually and then sum them.

1) Integration of the first term in (12)

(13)

where by (7) and (8), and the definition of conditional
variance, we get

Var

(14)

Fig. 1. Relationship between a periodogram-based PSD estimate and the class
mean of PSD.

Incorporating (14) into (13), we have (15) shown at the
bottom of the page.

By , integration of the first term equals
; that of the second term equals Var ; that of the

third term vanishes (note that
). Equation (15) then becomes

Var (16)

2) Integration of the second term in (12)

Var (17)

where we note that and
.

Var

(12)

(15)
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3) Integration of the third term in (12) results in (18), shown
at the bottom of the page, noting that

Summing (16)–(18), (12) finally reduces to

Var Var (19)

Equation (19) expresses the total variance of the PSD estimate
. It is composed of the periodogram’s inherent variance

(the first term) and the variance due to the spectral uncertainty
caused by the variability of the underlying physical properties
of the process (the second term). One can take two approaches
to reduce Var : 1) increasing by time-domain segmen-
tation and/or frequency-domain smoothing and 2) suppressing
the spectral uncertainty in each class so as to lower Var . Let
us observe (19) in two extreme cases.

1) If , Var approaches Var . The PSD esti-
mate’s variance is dominated by the spectral uncertainty.
Var is actually the lower bound of Var .

2) When the spectral uncertainty is negligible, i.e.,
Var , we have Var . The
PSD estimate’s variance is then dominated by the peri-
odogram’s inherent variance.

III. APPLICATION TO LINEAR SPECTRAL CLASSIFIER DESIGN

A. Feature Extraction Based on Fisher’s Criterion

The objective of classification is to determine to which class a
given observation belongs [1], [10]. One obtains an observation
vector through a measurement process. By a decision rule, the
observation vector is assigned to one of the postulated classes.
In this paper, we consider two-class problems.

Feature extraction is to choose those components that are
most effective for separating classes. It is a process of trans-
forming the observation vector to a lower dimensional feature
vector for classification. The feature extraction algorithm is
crucial to the classifier design: if carries a significant distinc-
tion between classes, the classifier’s performance will be good.
Selection of the algorithm is based on a class separability crite-
rion. The Bayes error [1] is theoretically the ideal criterion for
class separability, but computational difficulties curb its appli-
cability [10].

In this paper, we adopt Fisher’s criterion [10]. It represents
clear physical meanings and leads to a linear classifier. The
linear classifier becomes the Bayes classifier under the condi-
tion of Gaussian distributions with equal covariance matrices
[1]. When that condition is not met, the linear classifier’s per-
formance is inferior to that of the Bayes classifier. In practice,
the linear classifier’s simplicity and robustness often compen-
sate for its loss in performance [10].

Fisher’s criterion is expressed by a within-class scatter ma-
trix and a between-class scatter matrix [10]. The within-class
scatter matrix depicts the scatter of samples around their
respective class means

(20)
where is the observation vector (a column vector);

is the prior probability of class ( and denote
the two classes); is the mean vector of in
class ; and is the covariance matrix of in class .

The between-class scatter matrix measures the “dis-
tance” between the two classes

(21)

Fisher’s class separability metric is defined as

(22)

The trace of a matrix equals the sum of its eigenvalues. So
(22) implies that a good separability requires a large between-
class scatter and a small within-class scatter. This makes sense.

Consider a linear mapping that transforms the observation
vector to a lower dimensional feature vector : ,
where is 1; is 1 ( for dimension reduction);
the transformation matrix is . The class separability
metric in the -space is . The optimum
transformation matrix should maximize . Since the
rank of equals one, actually reduces to a vector

[10]

(23)

where is an arbitrary nonzero coefficient.

(18)
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Fig. 2. Diagram of a linear spectral classifier.

Consequently, transforms the original observation vector
to a scalar feature . It can be proved [10] that .

Under Fisher’s separability criterion in (22), no separability in-
formation is lost due to the dimension reduction. The scalar fea-
ture is a linear function of

(24)

B. Architecture of a Linear Spectral Classifier

Now we apply (24) to spectral classification. The classifier’s
architecture is illustrated in Fig. 2. From temporal measure-
ment , a PSD estimate is obtained at discrete fre-
quencies, expressed as a random column vector ,

where is the totalnumberof frequencypoints.
For classification, the vector is transformed to a scalar feature

, where is the optimum transformation vector that
maximizes Fisher’s separability, expressed as (the coefficient
is dropped since it does not affect the classifier’s performance)

(25)

where

(26)

is the class mean and

(27)

is the within-class scatter matrix, where is the covariance
matrix in class

(28)

Finally, the scalar feature is compared with a threshold to
make the classification decision

(29)

where threshold is selected by minimizing the total cost (in
the Bayesian sense) or by satisfying a prescribed false alarm
probability (in the Neyman–Pearson sense) [1], [16], [17].

C. Expressing the Linear Spectral Classifier in Terms of the
Mean and the Variance of the PSD Estimate

The transformation vector is the key to the classifier. To
compute as in (25), we need class mean vectors and

, as well as the within-class scatter matrix . Class
mean vectors are

(30)

(31)

Matrix is composed of covariance matrices and
, as expressed in (27). We pick frequency points with

an interval of so that the PSD estimates are uncorre-
lated according to (10). Covariance matrix is consequently
diagonal

Var Var Var

(32)

With and , the within-class scatter matrix can
be constructed by (27) as shown in (33) at the bottom of the
page.

Incorporating (33) into (25), we have

Var Var

Var Var
(34)

The numerators in (34) show that the classifier exploits the
difference between the means of the two classes of spectra. The
bigger that difference, the easier the classification. The denomi-
nators, however, restrain the extent of exploiting that difference.
Larger spectrum variances mean larger uncertainty of spectra,
hence less confidence in the spectral difference. Fig. 3 illustrates
the impact of larger spectrum variances on the transformation
vector, where and are assumed equal, and represents

. Larger variances increase the denominators in (34), and
hence reduce the magnitude of . Consequently, the difference
between the two mean spectra is discounted in classification,
which in turn lowers the classifier’s performance.

Var Var Var Var (33)
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Fig. 3. Larger spectrum variances reduce the magnitude of the transformation
vector V .

Incorporating (19) into (34), we get (35) shown at the bottom
of the page, and accordingly by (29), the statistic of the linear
spectral classifier is expressed as shown in (36) at the bottom of
the page.

D. Performance of the Linear Spectral Classifier

For performance comparison purposes, we do not introduce
spectral uncertainties into and . Hence the variance of

is just the periodogram’s inherent variance that is propor-
tional to or .

Equation (9) shows that under some assumptions,
approximately obeys a distribution with 2 degrees of

freedom. When is large, approaches a Gaussian
distribution

(37)

To do classification, we pick frequency points with an in-
terval of so that ( ) are un-
correlated. Then as approximately obeys a Gaussian dis-
tribution, can be further considered to be approximately
independent. Thus at a large , the probability density func-
tions of vector in class 1 and class 2 can be approximated
by

(38)

(39)

The likelihood ratio test (LRT) [1] is

(40)

Incorporating (38) and (39) into (40), and taking the
natural logarithm of both sides, we derive the LRT, as
shown in (41) at the bottom of the page, where

.

Var Var

Var Var
(35)

Var Var
(36)

(41)
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Fig. 4. A 1400-s segment of a realization of process class 1 and class 2 and
the corresponding averaged periodograms.

Thus at a large , the sufficient statistic is a quadratic
function of . Let us compare the performance of the
linear spectral classifier presented in Section III-C and that of
the quadratic spectral classifier expressed by (41).

We employ first-order autoregressive (AR) models [18] to
generate two classes of stochastic processes

(42)

(43)

where , . and are two inde-
pendent white noise sequences.

Each realization of process class 1 or class 2 has a duration of
56 000 s with a sampling rate of 0.1 Hz. It is partitioned into 40
nonoverlapping segments, so each segment’s duration is 1400 s.
A periodogram is calculated for each segment. The average of
the periodograms of all 40 segments is taken as the PSD estimate

for classification. Hence . A 1400-s segment of
a realization of process class 1 and class 2 and the corresponding
averaged periodograms are displayed in Fig. 4.

Now we test the linear spectral classifier as shown in Fig. 2.
To form the transformation vector as expressed by (34), we
pick frequency points with an interval of s

Hz. is assumed. We feed 200
56 000-s time series of class 1 and another 200 of class 2 to the

Fig. 5. Histograms of z of the linear spectral classifier.

Fig. 6. Histograms of r of the quadratic spectral classifier.

linear classifier. The histograms of are displayed in Fig. 5. The
corresponding receiver operating characteristic (ROC) curve [1]
is shown by the “ ” curve in Fig. 7, where is the probability
of declaring class 2 when class 1 is true and is the probability
of declaring class 2 when class 2 is indeed true.

For comparison, we now test the quadratic spectral classifier
as expressed by (41), using the same data sets as for testing the
linear spectral classifier. Frequency points picked are also the
same. The histograms of the sufficient statistic are displayed
in Fig. 6. The corresponding ROC curve is shown by the “ ”
curve in Fig. 7.

We know that when both classes obey Gaussian distributions,
the Bayes classifier is a quadratic classifier [10]. If furthermore,
the two classes have equal covariance matrices, the Bayes
quadratic classifier reduces to a linear classifier [10]. For the
two classes of test processes, is close to , so
is also close to , as seen in the third panel of Fig. 4.
Consequently, the variances of
and are close too. Hence the
covariance matrices of class 1 and class 2 do not bear much
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Fig. 7. Comparison of classification performance of the linear spectral
classifier and the quadratic spectral classifier.

difference. Therefore, it is not surprising that the linear spectral
classifier’s performance is close to that of the quadratic spectral
classifier. It is noted that if we used more distinct and ,
both classifiers would produce nonoverlapping histograms for
class 1 and class 2, so that both ROC curves would appear
ideal, prohibiting performance comparison.

At a small , it is improper to approximate a distribution
to a Gaussian distribution. Then the Bayes classifier is no longer
quadratic, and its closed-form expression is difficult to formu-
late. Consequently, the above performance comparison of the
linear spectral classifier and the quadratic spectral classifier does
not apply well to small- cases. Nonetheless, the above per-
formance comparison indicates that the presented linear spectral
classifier can be useful.

Note that the linear spectral classifier by (36) requires about
multiplications and additions, while the quadratic spectral

classifier by (41) requires about 2 multiplications and 2 ad-
ditions. Hence the computational load of the linear classifier is
only half that of the quadratic classifier.

IV. USING THE LINEAR SPECTRAL CLASSIFIER TO CLASSIFY

TWO OCEANOGRAPHIC PROCESSES

We use the linear spectral classifier to classify two oceano-
graphic processes: ocean convection and internal waves. Con-
vection is the transfer of heat by mass motion of fluid. It happens
when the density distribution becomes unstable [19]. Strong
winter cooling of ocean surface water causes it to become denser
than the water beneath. The cooled surface water sinks and mixes
with deeper water which enters the global ocean circulation [20].
This process releasesheat fromtheoverturnedwater to theatmos-
phere and thus maintains a moderate winter climate on the land.
Hence ocean convection is important for global heat transfer.

Internal waves are the water’s response to a disturbance to
its equilibrium of hydrostatically stable density stratification,
via the gravitational restoring force [21]. As opposed to con-
vection, which occurs in a vertically mixed water column, in-
ternal waves are found in stably stratified water. Stable strati-
fication is depicted by the buoyancy frequency (also called the
Brunt–Väisälä frequency) [21] that is determined by the vertical
profile of water density. Internal waves play an important role
in mass and momentum transfer in the ocean. Their dynamics is
essential for understanding ocean circulation, and temperature
and salinity structures [15].

An oceanographic process varies in both time and
space. We assume that the studied process is temporally sta-
tionary within the survey duration and spatially homogeneous
within the survey area. Then the oceanographic process can
be described by its temporal-spatial PSD , where is
the frequency and is the wavenumber. Vertical flow veloci-
ties of convection and internal waves show distinct spectral fea-
tures [22]. Thus we use the measurement of vertical flow ve-
locity for classification. Based on the Massachusetts Institute of
Technology (MIT) ocean convection model [20] and the Gar-
rett–Munk internal waves model [15], s of convective
vertical velocity and internal waves vertical velocity are shown
in Fig. 8.

When an autonomous underwater vehicle (AUV) [23] con-
ducts a line survey in an ocean field, as illustrated in Fig. 9, the
vehicle makes a time-series measurement . mingles
temporal and spatial variations of the process, so we can call
it a mingled measurement. Under the assumptions that
is temporally stationary and spatially homogeneous, is a
stationary process. So can be depicted by its PSD ,
which we call the mingled spectrum since it mingles spectral
information of time and space. The mingled spectrum principle
[22] reveals that is related to the frequency-wavenumber
spectrum by

(44)

where is the AUV’s speed.
We apply (44) at m/s. The resultant mingled spectra of

convective and internal waves vertical velocities are displayed in
the upper panel of Fig. 10. The effect of a 1400-s boxcar window
has been included in the computations.

From the viewpoint of spectral classification, is simply
the PSD of the AUV’s time series measurement . To decide
which class of oceanographic processes belongs to, we
feed its periodogram-based PSD estimate to the linear
spectral classifier presented in Section III.

In the Labrador Sea experiment in 1998, we installed an
acoustic Doppler velocimeter (ADV) in an MIT Odyssey IIB
AUV to measure vertical flow velocity [24]. The AUV-borne
ADV made a 1400-s measurement of vertical flow velocity at
the 250-m depth in Mission B9804107, at a vehicle speed of
about 1 m/s. In consideration of the instrument noise, the upper
bound of the usable frequency range is about 0.009 Hz [24].

Note that the mean PSDs and in the upper panel of
Fig. 10 are derived using model parameters listed in the “mean”
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Fig. 8. Temporal-spatial PSD of vertical velocity of (upper) convection and (lower) internal waves, with parameters in the “mean” column of Table I. The unit of
vertical bars = 10log ((m=s) =(Hz � m )).

Fig. 9. Line survey of an autonomous underwater vehicle.

column of Table I: for internal waves, the buoyancy frequency
rad/s; for convection, the surface heat flux

W m and the mixed layer depth m. The values of the
surface heat flux and the mixed-layer depth for convection are
set using the meteorological and hydrographic measurements
acquired during the AUV mission.

The values of the physical properties of internal waves and
convection can vary due to environmental uncertainties. Internal
waves’ buoyancy frequency can be as high as 1.0 10 rad/s.
We call internal waves under this setting an “extreme” in-
ternal wave case, and denote the resultant mingled spectrum
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TABLE I
PARAMETERS FOR M AND S

Fig. 10. Class mean vectors M and M , and the feature transformation
vector V for AUV speed 1 m/s.

. Convection’s surface heat flux and mixed layer
depth can be as large as 900 W m and 1050 m, respectively,
as listed in the “extreme” column of Table I. We denote the
resultant mingled spectrum as .

We take and
as the estimates of Var and Var , i.e., at frequency

Var (45)

Var (46)

The 1400-s duration of each time series is short. To retain
enough frequency points for uncorrelated PSD estimates, we do
no time-domain segmentation or frequency-domain smoothing,
so .

Ocean internal waves occur in a vertically stratified water
column, while ocean convection occurs in a vertically mixed
(i.e., unstable) water column. The probability of a water column
being stable versus unstable is about equal. Therefore, we set

. Plugging , , Var , Var ,
, , and into (35), we obtain the transformation vector

as shown by the “ ” curve in the lower panel of Fig. 10.
Now we test the classifier by convection and internal waves

vertical velocity data in simulated AUV line-surveys at a speed
of 1 m/s, using the settings of physical property values listed
in the “mean” column of Table I. The horizontal size of the
convection model is 2000 by 2000 m with a grid size of 10 m,
evolving over time. This provides 200 lines, each of 2000 m,
in the or direction. An AUV traveling at 1 m/s covers 1400

m in 1400 s. We take one 1400-s data series from each of the
200 lines in the direction alone, thus forming 200 1400-s time
series. Two hundred time series of AUV data in the convection
field and another 200 in the internal wave field are used in this
test. For each time series, its PSD estimate is transformed to
a scalar by (36). The 1400-s measurement of the vertical flow
velocity made by the AUV at the 250-m depth in the Labrador
Sea [22] is also tested.

The histograms of are shown in Fig. 11. In this test, the
distributions of in the two classes do not overlap. The stem in
Fig. 11 marks the value corresponding to the AUV’s measure-
ment. This experimental value falls in the cluster of the model-
based convection. The classifier thus declares that the AUV-
measured vertical flow velocity was convective. This finding is
supported by other independent oceanographic observations in
the same experiment [22].

Next we test the classifier using the settings of physical prop-
erty values listed in the “extreme” column of Table I. Compared
with the “mean” versus “mean” case, the PSDs of the “extreme”
convection’s vertical velocity comes closer to that of the “ex-
treme” internal waves [25]. We select this more difficult case
to test the classifier’s robustness. Two hundred lines of AUV
data in the convection field and another 200 lines in the internal
waves field are used in this test. Fig. 12 shows some overlap of

clusters between the two classes. This degradation in classifi-
cation performance is expected. The ROC curves of the “mean”
versus “mean” case and the “extreme” versus “extreme” case
are compared in Fig. 13.

When longer time series are available, we can apply time-
domain segmentation to increase so as to reduce the
periodogram’s inherent variance. Now we lengthen each
simulation time series to s s . Each time
series contains samples from three adjacent 2000-m lines
in the convection model, one series followed by another,
but with no overlap. This way, the direction can provide

m m time series. We take another
29 5600-s time series from the direction. We partition each
5600-s time series into four nonoverlapping segments. The
average of the periodograms of the four segments is fed to the
spectral classifier. Thus equals four, which reduces the
periodogram’s inherent variance by a factor of four.

A larger lowers Var and Var by (19). The mag-
nitude of the transformation vector is consequently larger (il-
lustrated in Fig. 3). When at AUV speed 1 m/s, is
shown by the “ ” curve in the lower panel of Fig. 10. Its mag-
nitude is larger than when .

When , we test the classifier again by the “extreme”
convection versus the “extreme” internal waves case. The classi-
fier’s performance is shown in Fig. 14. Compared with



4566 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 12, DECEMBER 2005

Fig. 11. At an AUV speed of 1 m/s and � = 1, histograms of feature z for
internal waves and convection. The value of z corresponding to the
AUV’s measurement is marked by the stem’s horizontal location.

Fig. 12. At an AUV speed of 1 m/s and � = 1, histograms of feature z for
the “extreme” internal waves versus the “extreme” convection.

in Fig. 11, clusters of the two classes are pulled apart. Hence
the classifier’s performance improves.

V. CONCLUSION

The overall variance of a spectral estimate originates from
two sources: the within-class spectral uncertainty due to un-
certain values of the underlying physical properties and the
variance introduced in the spectral estimation procedure. In this
paper, we derived the total variance of a periodogram-based
spectral estimate under some assumptions. Using the total
variance expression, we formulated a linear spectral classifier
based on Fisher’s separability metric. The classifier is applied
to classifying vertical flow velocities of two oceanographic

Fig. 13. Classification performance of the “mean” convection versus the
“mean” internal waves, and the “extreme” convection versus the “extreme”
internal waves.

Fig. 14. At AUV speed 1 m/s and � = 4, histograms of feature z for the
“extreme” internal waves versus the “extreme” convection.

processes: ocean convection versus internal waves. The im-
pact of the within-class spectral uncertainty on the classifier’s
performance is shown. It is also demonstrated that reducing
the periodogram’s inherent variance improves the classifier’s
performance.
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