MICROBIAL ECOLOGICAL ROLES

Genes can give us important information about the specific role an organism plays in its environment. Each microbe's ecological role is closely related to what they do. Some common functions of marine microbes are nitrogen fixation, photosynthesis, and heterotrophy.

Complete each part below. Record your answers and a detailed explanation/rationale for parts 2 to 4. You will need to conduct some research to supplement your background knowledge. You should use a minimum of 3 sources. You may use sources from the list provided and/or find your own.

PART ONE: Functional Genes

We will take a closer look at three different microbes by searching each of their genomes for functional genes for nitrogen fixation and photosynthesis.

- 1. Go to: <u>blast.ncbi.nlm.nih.gov/Blast.cgi</u>
- 2. Under "Basic BLAST," click on "nucleotide blast."
- 3. Download the "Functional Genes" file from the EARTH lesson plan page.
- **4.** Open the *Functional Genes* file, copy all the text, and paste it into the box at the top of the page (under the heading "Enter Query Sequence).
- 5. Under the heading "Choose Search Set," enter the name of one of the three microbes below (be sure to select the one that exactly matches the names listed):
 - a. Synechococcus elongatus (taxid: 32046)
 - **b.** *Canidatus pelagibacter* (taxid: 198251)
 - c. Trichodesmium erythraeum (taxid: 1206)
- 6. Under the heading "Program Selection," select the option "More dissimilar sequences."
- At the bottom of the page, click on the blue button that says "BLAST." (*Refer to the picture on the next page*)

BLAST®	Basic Local Alignment Search Tool Results Saved Strategies Help	
NCBI/ BLAST/ blastn	suite	Standard Nucleotide BLAST
blastn blastp blast Enter Query Se Enter accession n Or, upload file Job Title	itx tblastx iquence BLA umber(s), gi(s), or FASTA sequence(s) @ Clear Query subrange @ Fram To Choose File No file chosen @ Enter a descriptive title for your BLAST search @	Th programs search nucleotide databases using a nucleot Paste the functional gene sequence here.
Align two or me Choose Searc Database Organism	ore sequences ⊛ h Set ◯ Human genomic + transcript ◯ Mouse genomic + transcript ◉ Others (nr etc.): Nucleotide collection (nr/nt)	- Type the
Exclude Optional Entrez Query Optional	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.	microbe's name here.
Program Select	Enter an Entrez query to limit search 😡	Click to select this option.
BLAST	Search database Nucleotide collection (nr/nt) using Megablast (Optimize for highly sim	nilar sequences)

8. Look through the results to determine whether the microbe has the functional gene you searched for. *NOTE: You are searching for both functional genes at once. You will need to use the drop down menu (pictured below) to select the other functional gene.*

Your search is limited to records matching entrez query: txid32046 [ORGN].

9. If the functional gene sequence is found in the microbe's genome, record a "+" in the corresponding box in the data table below. If the functional gene sequence is not found in the microbe's genome, record a "-" in the corresponding box in the data table.

- **10.** Return to the nucleotide blast page and repeat steps 4-9 until you have searched *each* microbe for *each* functional gene.
- **11.** Classify each microbe as a nitrogen-fixer, photosynthesizer, or heterotroph, and record your classification in the corresponding box in the data table.

DATA TABLE:

MICROBE	N-FIX GENE	PHOTO GENE	CLASSIFICATION
Synechococcus elongatus (taxid: 32046)			
Canidatus pelagibacter (taxid: 198251)			
Trichodesmium erythraeum (taxid: 1206)			

PART TWO: Microbe locations

Now that you know what each microbe does, use this information to determine where in the ocean the microbe is likely to be found. *Think about what type of conditions the microbe needs in order to perform its function and where those conditions can be found in the ocean.*

PART THREE: Big Picture

Given the location and function of each microbe, where do they fit into the ocean food web or biogeochemical cycles. *For example: What consumes each microbe? Where does the nitrogen compound that the microbe "fixes" come from? Where does the nitrogen compound that the microbe produces go?*

PART FOUR: Ecological Role

Now put it all together to explain what each microbe's individual role is in the ocean. A good way to approach this is to think about what would happen if this microbe disappeared. Some microbes also have beneficial uses to humans!

THE PRODUCT

Create a product to communicate your conclusions. Your product can be a poster (virtual or paper), a Prezi, a PowerPoint, or a brochure. Whichever form you choose, your product must include each of the following:

- A diagram of the ocean with labeled layers/areas
- Each microbe's location labeled within the appropriate layer/area
- The basics about each organism:
 - \circ Function
 - $\circ~$ Place in the food web or biogeochemical cycle
 - Overall role (what the microbe does or how it is used by humans)
- Sources—at least 3 (any sources consulted must be credited if you create a poster, this can be on the back; if you create a presentation or brochure, this can be at the end)

Assessment Rubric

All	products	(regardless	of form)	will be	graded based	on the	following	rubric:
		1 0			0			

CRITERIA	1	2	3	4
Diagram	Diagram is not	Diagram is	Diagram is neat	Diagram is neat
	neat and 1 or	fairly neat and 2	and 2	and all 3
	less layer/area is	or less	appropriate	appropriate
	labeled.	layers/areas are	layers/areas are	layers/areas are
		labeled.	clearly labeled.	clearly labeled.
Microbe Locations	Microbes are	Location of 1	Locations of 2	Locations of all
	not labeled, or	microbe is	microbes are	3 microbes are
	labels are	clearly labeled.	clearly labeled.	clearly labeled.
	unclear.			
Function	Functions are	One microbes'	Two microbes'	All 3 microbes'
	not listed or	function is	functions are	functions are
	unclear.	clearly listed.	clearly listed.	clearly listed.
Place in food	Places in food	One microbe's	Two microbes'	All 3 microbes'
web/biogeochemical	web or	place in the food	places in the	places in the
cycle	biogeochemical	web or	food web or	food web or a
	cycle are not	biogeochemical	biogeochemical	biogeochemical
	explained or	cycle is clearly	cycle are clearly	cycle are clearly
	unclear.	explained.	explained.	explained.
Overall role	Overall roles are	The overall role	The overall	The overall
	not explained or	of 1 microbe is	roles of 2	roles of all 3
	unclear.	clearly	microbes are	microbes are
		explained.	clearly	clearly
			explained.	explained.
Sources	One source is	Two sources are	Three sources	More than 3
	credited at the	credited at the	are credited at	sources are
	end of the	end of the	the end of the	credited at the
	presentation.	presentation.	presentation.	end of the
				presentation.
Overall appearance	The product is	The product is	The product is	The product is
& organization	not aesthetically	not aesthetically	aesthetically	aesthetically
	pleasing, shows	pleasing, shows	pleasing, shows	pleasing, well-
	no planning, and	some thought in	thought in	planned, and
	no organization.	planning, and is	planning, and is	well-organized.
		somewhat	somewhat	
		organized.	organized.	

