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ABSTRACT (Body text, Times New Roman, 12 pt, bold) 

The motions of autonomous underwater vehicles (AUVs), especially slow-

moving vehicles, are perturbed by ocean flow. To account for the influence of flow, 

knowledge of ocean flow is incorporated in planning vehicle trajectories. An important 

source of knowledge of flow is ocean models. Surrogate is a data-driven ocean model 

whose model parameters are trained using historic ocean flow data. Surrogate has been 

validated using HF-radar data collected from the California coast of the United States. 

During January to April 2012, two gliders were deployed off the coast of Long Bay, 

South Carolina to investigate a mechanism that drives the formation of persistent 

wintertime phytoplankton blooms. The ocean in the survey area is characterized by 

strong tidal and Gulf stream currents, and to navigate the gliders, a hybrid ocean current 

model was developed to provide flow predictions in the vicinity of gliders. Motivated by 

the Long Bay deployment, in this paper, Surrogate is used to model ocean flow off the 

coast of Georgia. In general, higher ocean model accuracy requires higher computing 
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power and time. To balance AUV navigation performance and overhead associated with 

ocean model accuracy, we propose a metric called tradespace. 

 

INTRODUCTION 

An autonomous underwater vehicle (AUV) is an oceanic sensing platform that 

operates with minimal human input. Its navigation is mostly performed based on 

waypoints, which accounts for the navigation paths. In addition, the ocean currents have 

significant influence on the navigation paths, so they should be taken into account in the 

path planning. 

Ocean currents prediction methods are largely classified into empirical models 

and physics-based models. Physics-based models take into account recent observations to 

capture the unexpected ocean dynamics that is not accounted for in the models. However, 

this data assimilation usually takes a while due to the huge data processing. Thus, in a 

region where the ocean dynamics is highly variable, the physics-based models might not 

be able to provide AUVs with timely information for path planning. In this paper, we 

present an application of an empirical model to provide underwater gliders flying under 

strong currents with ocean currents predictions. 

Regardless of what type of ocean models, we have to deal with the currents 

prediction errors. In making efforts to improve ocean currents predictions, it has been an 

issue how much increase of the vehicle navigation performance is anticipated from the 

efforts. In this paper, we present how to evaluate the navigation performance given the 

prediction error to maximize the cost-effectiveness between them. 

 

MOTIVATION 

 In my last field experiment conducted to study persistent wintertime 

phytoplankton blooms in Long Bay, SC, two gliders were deployed. The gliders were 

controlled using waypoints, and the waypoints were generated by computing predicted 

glider trajectories based on ocean currents predictions. Compared to HF radar 

observations, existing operational physics-based ocean forecast models did not provide 
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good data quality enough for glider path planning in an area that is often affected by Gulf 

Stream. Thus, we are trying to use an empirical model that uses historic HF radar data for 

the following field experiment. 

 

METHODS 

 Two existing physics-based operational ocean models are tested for glider 

navigation in the field experiment in Long Bay, SC in 2012. However, they were not 

appropriate to use for glider path planning because the error between their ocean currents 

forecast and HF radar observation sometimes exceeds glider’s horizontal speed. 

Surrogate (S. Frolov et al.) is an empirical model that trains a prediction model using 

historic HF radar data and is proven to be better than some of the existing physicsbased 

ocean models for the West coast. 

 

SURROGATE 

 Surrogate first analyzes EOFs of the data to reduce the dimension of the system. 

Figure 1 shows the first EOF, and we can see that the first EOF excludes Gulf Stream 

components out of the data and takes the major tidal components. 

 

Figure 1. The first EOF. 
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Figure 2 shows how well EOFs capture the energy of the ocean dynamics in the 

domain. By using up to the first 20 EOF functions, we can capture 80% of the energy. 

Figure 2. Energy captured by EOFs 

 

METRICS FOR VEHICLE NAVIGATION PERFORMANCE 

To evaluate AUV navigation performance, five vehicle navigation performance 

metrics as in Fig. 3 are designed. The metrics are designed for waypoint-based navigation 

missions and return performance error in various aspects of vehicle navigation. Suppose 

we have a vehicle whose surfacing interval is h hours, and we have two target positions 

p1 and p2 for the vehicle. A transect mission is to travel between p1 and p2 back and forth, 

and a virtual mooring mission is to maintain its station at p1. The metrics shows error 

propagation as the mission keeps repeating. 
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ŝ3

 

(a) Error in vehicle speed 

s1

ŝ1
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dŝ2
3

 

(c) Error in closeness to the transect 
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(e) Error in virtual mooring 

Figure 3. Vehicle navigation performance metrics. Each of them provides performance error in various 

aspects of vehicle navigation 

 

There are various navigation algorithms, and the performance of AUV navigation 

would vary depending on the navigation algorithms. defined for each algorithm to 

measure the performance specific for a AUV mission. In this report, we define a general 

pattern that can be used to measure the AUV navigation performance. The metric in Fig. 

3(a) represents error in vehicle speed and is computed as 

J1 =

P
i{si � si�1}

�
�

P
i{ŝi � ŝi�1}

� , 

where si and ŝi are ith surfacing and predicted surfacing, respectively, and �  is given 

time. Figure 3(b) describes error in vehicle velocity computed as 
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J2 =
l

tf � t0
� l

t̂f � t0
,
 

where l is the length of the transect line, t0 is the mission start time, tf is the mission 

completion time, and t̂f is the predicted mission completion time. Figures 3(c) and 3(d) 

are errors in closeness to the transect and in surfacing position, respectively, such that 

J3 =
1

n

nX

i=1

(
dsi3 � dŝi3

h

)

 

J4 =
1

n

nX

i=1

(
dsiŝi4

h

)

, 

where n is the number of surfacings, d
si
3  and d

ŝi
3  are the distances from ith surfacing and 

predicted surfacing to the transect line, respectively, and d
siŝi
4  are the distance between 

ith actual and predicted surfacings. The last metric in Fig. 3(e) is error in virtual mooring 

defined as 

J5 =
1

n

nX

i=1

(
dsi5 � dŝi5

h

)

, 

where d
si
5  and d

ŝi
5  are the distances from ith actual and predicted surfacings to the virtual 

mooring position, respectively. The last three metrics account for the error between the 

actual surfacing position and the predicted surfacing position. 

 

TRADESPACE 

 Incorporating ocean currents prediction into AUV path planning will enable 

optimal path planning, but it would not be perfect due to prediction error. The prediction 

may be able to improve, but we need to quantify how the decrease of the prediction error 

relates to the navigation performance improvement. To evaluate vehicle navigation 

performance given currents prediction errors, we propose a tradespace between the 

vehicle navigation performance error and the currents prediction error as in Fig. 5. The 

idea is that we would like to set up a performance error threshold that maximizes cost-
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effectiveness between the vehicle navigation performance error and the currents 

prediction error. 
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Figure 4. Tradespace for navigation performance associated with ocean model accuracy 

 Suppose we have a predicted flow field fp and a real-time observed flow field fo. 

The prediction error is defined as the residual between the two vector fields such that 

r
f

= f
p

� f
o. 

The idea is that we want to improve the ocean prediction model towards the real-time 

measurement. Let us define test prediction such that 

f
test

= f
o

+ ↵r
f , 

where ↵ = [0, 1]. When ↵ = 1, ftest is equal to the original predicted flow field. As ↵ ! 0, 

ftest becomes close to the real-time measurement. Then, we denote by x root mean square 

error between fo and ftest such that 

x =

����
1

ml

(f
o

� f
test

)

����
2, 

where k·k2 is L2 norm, m is the number of spatial samples, and l is the number of time 

samples. 

We have defined five vehicle navigation performance metrics. The metrics will be 

measured using fo and ftest. Let J = [J1, J2, J3, J4, J5]T  and W be a diagonal matrix 
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with wi, i = {1, · · · , 5}, which is a relative weight to each of the performance metric. 

We define the navigation performance error y as  

y =
1

tr(W )
JTWJ

. 

 

RESULTS (Normal, Times New Roman, 12 pt, bold) 

SURROGATE VALIDATION 

The prediction outputs for the Georgia HF radar data are verified using drifter 

simulation in Fig. 4. A drifter is a Lagrangian platform that drifts under currents without 

any other motion. Figure 4(a) shows trajectories of drifters under both observations and 

predictions, and we can verify the validity of the outputs by checking how close to each 

other these two trajectories stay. The separation error is shown in Fig. 4(b) to show how 

the error of the drifter trajectories under observations and predictions propagates by using 

further future forecast data. Compared to the separation results in S. Frolov et al., we’ve 

come to the close results to the ones using the West coast data.  

 

(a) Error in vehicle speed 
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(b) Error in Vehicle velocity 

Figure 5. Simulation results of Surrogate using Georgia coast HF-radar data 

 

CONCLUSIONS/RECOMMENDATIONS (Heading 3, Times New Roman, 12 pt, 

bold) 

We would like to extend the tradespace to evaluate the vehicle navigation 

performance in terms of both the prediction error and the environmental severity. 
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Figure 6. Tradespace for navigation performance associated with environmental severity and ocean model 

accuracy 
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