

Software Development for a Low Voltage Load Switching Board

Jaine Elizabeth Perotti, Florida Institute of Technology

Mentor: Chad Kecy
Summer 2012

Keywords: software, embedded, electronics, FOCE, load switching, instrumentation

ABSTRACT

 Over the course of ten weeks, software was developed to establish functionality of a low-

voltage load switching board. Designed to protect scientific instruments deployed on the FOCE (Free

Ocean Carbon Enrichment experiment) platform, the load switcher's hardware automatically trips a

circuit breaker when certain fault conditions are present (over current, over voltage, and under voltage).

Then, the software switches the associated instrument's relay off in order to provide full galvanic

isolation. The software is also able to set the thresholds for each of the fault conditions, as provided by

the user.

INTRODUCTION

 Rising ocean acidity is emerging as one of the greatest scientific concerns of our time. Ocean

acidification is the result of increased anthropogenic CO2 emissions. Human combustion of fossil fuels

and land use practices in recent decades have lead to an unprecedented rate of increasing atmospheric

CO2 concentrations. The current rate of uptake of CO2 in the world's oceans is far greater than that

experienced by marine organisms for at least 20 million years. [1] That ocean acidification is occurring

is an easily observable fact; between 1751 and 1994, surface ocean pH has decreased from

approximately 8.25 to 8.14, which is an increase of almost 30%. [2]

 Marine scientists are increasingly concerned about the potential effects on marine organisms

and plant life. Impacts could have serious implications for the health of the global food web and human

economies. As a result, ocean acidification research has now become an increasingly important field of

study. Although experiments in the lab are useful to researchers, a need existed for the ability to

conduct in-situ ocean acidification experiments. In the lab, it is difficult to replicate all of the variables

that exist in real ocean environments.

 In response to this need, MBARI researchers devised an underwater science laboratory called

"FOCE", which stands for the Free Ocean Carbon Enrichment Experiment. The FOCE is essentially a

test chamber that makes precisely controlled, small changes to pH, and is deployed in the open ocean.

Between 2005 and 2011, the first FOCE experiment was deployed in the Monterey Bay in about 900

meters of water, where it is still operational today as part of the MARS observatory. [3]

Figure 1: FOCE Drawing

 As a result of the success of the deep water FOCE, researchers from all over the world showed

an interest in adapting the technology to suit their own experiments. One of the first collaboration

efforts resulted in the design and deployment of the Coral Prototype FOCE, which was installed at

Heron Island, off the coast of Northeast Australia. The success of this effort gave rise to the concept of

the "Exportable FOCE": an open-source version of the system that is intended to be inexpensive, easily

modified and easily installed for use in a variety of different applications. The Shallow-Water FOCE is

the first version of the Exportable FOCE to be developed.[3]

 The focus of work this summer was on developing software for the Shallow Water FOCE's low

voltage load switching board. The load switcher protects the FOCE's scientific instruments from being

damaged by a number of different fault conditions, including over current, over voltage, and under

voltage. Software needed to perform the following operations: digital input and output, reading voltage

and current information, setting thresholds for fault conditions, and communication with the various

devices on the board, as well as serial communication to the user.

MATERIALS AND METHODS

MPLAB IDE v.8.86 was the development environment that was used to write the actual code.

The C30 Compiler was selected to “translate” the higher-level C programming language into the lower-

level machine language that the PIC 24FJ256GA106 is able to understand. The MPLAB ICD 3

programmer physically connected the computer to the microcontroller via a USB programming cable.

RESULTS

PROGRAM FLOW OF EXECUTION

 The program starts by setting preprocessor directives and initializing the controllers digital I/O

banks, UART module, and SPI module. It then initializes the digital I/O expanders and card

information. Function prototypes for main() are then initialized, as are all global variables.

 Within the main loop, the program checks for commands from either the CPU or UART

(debugging station). If the controller has received a command, the program will be interrupted and the

command will be executed. The program also continuously polls for fault conditions. If a fault

condition is present, the program responds by checking for that condition three more times. If the

condition remains, the instrument will be permanently shut down until a reset of the low voltage load

switching board itself occurs.

DISCUSSION

INSTRUMENT CHASSIS

 This is a diagram illustrating the way the FOCE manages it's scientific instruments. It is

important for the shallow water FOCE to be able to monitor the operating conditions of each

instrument, as well as to supply or cut off power to them.

Figure 2: FOCE Chassis Block Diagram

 Power and communication is distributed to all of the different system components through the

backplane. The power supply board makes all of the power conversions needed for the components on

the various boards (12 vdc, 5 vdc, and 3.3 vdc). The main CPU board receives information from the

individual daughter boards, consolidates that information, and sends it to another, more powerful

computer that talks to the surface. The CPU board can also send various commands to its daughter

boards.

 The environmental daughter board is used to monitor conditions inside the pressure housing,

such as temperature, pressure, and humidity. This ensures that the scientific instruments aren't

compromised by their environment. The ground fault detection board is used to detect the presence of

sea water in the pressure housing. Finally, the load switching boards are used to monitor the amount of

current and voltage each instrument is pulling. If there is too much current, too much voltage, or too

little voltage, the load switching board will automatically shut off power to that instrument, preventing

that instrument from damaging itself.

Figure 3: Low Voltage Load Switching Board

 The load switcher uses two different components to turn power on/off to the scientific

instruments: a circuit breaker that is automatically tripped by hardware in the presence of a dangerous

condition, and a relay which is subsequently turned off to provide full galvanic isolation (small

amounts of current can pass through the circuit otherwise).

 The "brain" of the load switcher, so to speak, is a PIC 24FJ256GA106 microcontroller. It

monitors current and voltage flowing to the instruments on board, and detects hardware generated

signals which indicate the presence of over current, over voltage, and under voltage conditions. The

controller is also used to adjust the thresholds for these conditions. In addition to these tasks, the

controller also performs certain actions in response, such as resetting the circuit breaker and turning the

relays on and off.

Figure 3: Low-Voltage Load Switching Board Block Diagram

SYSTEM DEFINITIONS

Digital I/Os

Table 1: Digital Outputs

Name Value
PIC_DIO_01_RST LATFbits.LATF4
PIC_DIO_02_RST LATFbits.LATF5
PIC_DIO_03_RST LATFbits.LATF6
PIC_DIO_04_RST LATGbits.LATG2
PIC_DIO_05_RST LATEbits.LATE6
PIC_ADC_01_SHDN LATFbits.LATF0
PIC_ADC_02_SHDN LATFbits.LATF1
PIC_ADC_03_SHDN LATFbits.LATF2
PIC_ADC_04_SHDN LATFbits.LATF3
PIC_DIO_05_CS LATEbits.LATE5
CS_ADD_EN LATEbits.LATE4
CS_ADD_A0 LATEbits.LATE3
CS_ADD_A1 LATEbits.LATE2
CS_ADD_A2 LATEbits.LATE1
CS_ADD_A3 LATEbits.LATE0
BD_ADD_0 LATDbits.LATD0
BD_ADD_1 LATDbits.LATD1
BD_ADD_2 LATDbits.LATD2

PIC_INT_OE LATDbits.LATD11

Table 2: Digital Inputs

Name Value
PIC_DIO_01_INT PORTDbits.RD3
PIC_DIO_02_INT PORTDbits.RD4
PIC_DIO_03_INT PORTDbits.RD5
PIC_DIO_04_INT PORTDbits.RD6
PIC_DIO_05_INT PORTEbits.RE7

Daughterboard Types

Chip Select

I/O Expanders

Digital Potentiometers

Instrument Channels

Analog-to-digital Converters

PERIPHERAL DEVICES

 The Low Voltage Load Switching board features a number of different peripheral devices and

microcontroller modules. Peripheral devices included digital I/O expander banks, analog-to-digital

converters, digital potentiometers, resettable circuit breakers, and relays. The microcontroller utilized

its digital I/O, UART (Universal Asynchronous Receive and Transmit), and SPI (Serial Peripheral

Interface) modules in order to interface with these peripheral devices.

Table 1: Peripherals and Associated Source Files

Peripheral Name Source File Name(s)
Analog-to-digital converter adcnew.c
Circuit breaker breaker.c

Digital I/O expander expander.c
Digital potentiometer potentiometer.c
Relay relay.c

Table 2: PIC Modules and Associated Source Files

Module Name Source File Name(s)
Digital I/O dig_io.c
UART serial.c
SPI spi.c, spi2.c

PIC Modules

 The microcontroller's onboard digital I/O bank was used mainly to set up chip select lines to the

digital I/O expander banks, as well as to control the addressing of the 4-to-16 line multiplexer (which

handled the chip select lines of the other peripherals). The digital I/O expanders handled the remaining

digital I/O tasks (turning relays on/off, resetting circuit breakers, reading in fault conditions).

 The UART module was used to send and receive serial data to/from a PC user for debugging

purposes. HyperTerminal, or some other terminal emulation program, may be used for this purpose.

The program responds to these inputs in the same way it would if they originated from the CPU via the

SPI1 bus.

 The SPI module (SPI2) was utilized for communication to virtually all of the board peripherals,

including the digital I/O expanders, analog-to-digital converter, and digital potentiometers. The SPI

module (SPI1) was also used for communication between the CPU and the low-voltage load switching

board, as well as between the CPU and its other daughter boards.

Digital I/O Expander Banks

 The digital I/O expander banks constitute an extremely important part of the functionality of the

board. Their outputs control the board's relays and circuit breakers, as well as controlling the write-

protect and reset pins on the digital potentiometers. Their inputs read in the states of the relays and

circuit breakers, as well as the presence of over current, over voltage, and under voltage fault

conditions. On the current iteration of the board, there are two I/O expanders which serve two different

instrument channels. On future versions of the instrument, additional I/O expanders will be added to

accommodate eight separate instrument channels. The digital I/O expander bank is accessed by the

microcontroller using the SPI2 bus.

Table 3: Digital I/O Expander Bank – Inputs and Outputs

Expander # Inputs Outputs
DIO_01 RELAY_01_STATE RELAY_01_ON
 CKT_BRKR_01_STATE RELAY_01_OFF
 CHAN_01_OC CKT_BRKR_01_RST

 CHAN_01_OV RELAY_02_ON
 CHAN_01_UV RELAY_02_OFF
 RELAY_02_STATE CKT_BRKR_02_RST
 CKT_BRKR_02_STATE
 CHAN_02_OC
 CHAN_02_OV
 CHAN_02_UV
DIO_05 POT_01_RST
 POT_01_WP
 POT_02_RST
 POT_02_WP

Table 4: Digital I/O Expander Function List

Function Name Description
expInit() Initializes the LVLS board's I/O expanders by setting pins as either

inputs/outputs, and initializing outputs as either high or low.
expReset(int device_select) Resets the digital I/O expanders.
expClr(int device_select, int
regstr)

Clears the value (sets to 0x00) of a GPIO register in the LVLS
board's digital I/O Expanders , as well as clearing the slot in the array
that holds the value of that register (if that register is a GPIO).

expRead(int device_select, int
regstr)

Performs a simple read of any register in the LVLS board's digital
I/O expanders.

expWrite(int device_select, int
regstr, int data)

Performs a simple write of any register in the LVLS board's digital
I/O expanders.

expSetHigh(int device_select,
int regstr, int val)

Sets an individual bit high in the digital I/O Expanders' GPIO
registers, without changing the value of the other bits in that register.

expSetLow(int device_select,
int regstr, int val)

Sets an individual bit low in the digital I/O Expanders' GPIO
registers, without changing the value of the other bits in that register.

expReadBit(int device_select,
int regstr, int val)

This function performs a read of an individual bit within a register in
the LVLS board's digital I/O expanders. Returns true if bit is set,
false if bit is not set.

expDigInit() This function initializes the values of each of the I/Os associated with

each expander, in a manner analogous to that done in digInit().
Output initialization routines will be added in later versions of the
board for DIOs 02, 03, & 04.

Analog-to-digital Converters

 The analog-to-digital converters perform the important task of reading in voltage and current

information to the controller. Like the digital I/O expanders, they communicate with the

microcontroller through the SPI2 bus. The function adcRead() is optimized for the addition of more

instrument channels and ADCs. Currently, ADC_01 is the only analog-to-digital converter installed on

the board.

Table ?: Analog-to-digital Converter Quantity List

ADC # Name ADC Channel
ADC_01 CHAN_01_VOLT CH0
 CHAN_01_CURR CH1
 CHAN_02_VOLT CH2
 CHAN_02_CURR CH3
ADC_02 CHAN_03_VOLT CH0
 CHAN_03_CURR CH1
 CHAN_04_VOLT CH2
 CHAN_04_CURR CH3
ADC_03 CHAN_05_VOLT CH0
 CHAN_05_CURR CH1
 CHAN_06_VOLT CH2
 CHAN_06_CURR CH3
ADC_04 CHAN_07_VOLT CH0
 CHAN_07_CURR CH1
 CHAN_08_VOLT CH2
 CHAN_08_CURR CH3

Table ?: Analog-to-digital Converter Function List

Function Name Description
adcRead(int quantity) Reads a 16-bit value from the analog to digital converter. ADC_02,

ADC_03 and ADC_04 do not yet exist on current board.

Digital Potentiometers

 The digital potentiometers are used to set the thresholds for the over current, over voltage, and

under voltage fault conditions. Like the digital I/O expanders and ADCs, the digital potentiometers are

read and written to using the SPI2 bus. In this software, writes and reads are made to non-volatile

memory locations (EEPROM) so that settings are not lost when board is turned off.

Table ?: Digital Potentiometer Quantity List

Potentiometer # Name Wiper
POT_01 OVER_CURR_01 POT_01_P0W
 OVER_VOLT_01 POT_01_P1W
 UNDER_VOLT_01 POT_01_P2W
 INRUSH_LIM_01 POT_01_P3W
POT_02 OVER_CURR_02 POT_02_P0W
 OVER_VOLT_02 POT_02_P1W
 UNDER_VOLT_02 POT_02_P2W
 INRUSH_LIM_02 POT_02_P3W

Table ?: Digital Potentiometer Function List

Function Name Description
potReset(int pot_select) Resets the digital potentiometers. The argument pot_select will take

one of two possible defs, POT_01_RST, or POT_02_RST, as set up
in sys_defs.h. More pot defs may be added in later iterations of
board with more than two digital potentiometers.

potReadWrite(int pot_select,
int cmd, int wiper, int value)

Formats a command using bit shifts and a logical "or" into two 8-bit
pieces, then writes them to one of the board's digital potentiometers.
When using this function to read, just set the argument 'value' equal
to 0x00.

potIncrDecr(int pot_select, int
cmd, int wiper, int cycles)

This function increments or decrements the wiper using an 8-bit
command. Does not work with non-volatile memory locations. Not
used.

Relays

Circuit Breakers

COMMAND ARCHITECTURE

CONCLUSION/RECOMMENDATIONS

[REMOVE “I” LANGUAGE]

First, a couple of hardware fixes need to be made. A problem with the inrush limiting circuit repeatedly

destroyed one of the digital potentiometers I was working with while testing my code. That will need to

be changed. Also, while the current software has the board continuously monitoring for fault

conditions, I would like to change the software so that it only looks at fault conditions when the

hardware signals it to do so - thus "interrupting" the program instead of bogging it down with constant

commands. Communication also needs to be established between the board and the CPU. This aspect

of the project was something that I did not have time to test. The next version of the hardware will also

include 8 channels for scientific instruments, instead of just two.

REFERENCES

[4] http://www.mbari.org/mars/

[3] http://www.mbari.org/news/homepage/2012/cpfoce/cpfoce.html

[1]: http://www.epoca-project.eu/index.php/what-do-we-do/outreach/rug/oa-questions-answered.html

[2]: Jacobson, M.Z. (2005). "Studying ocean acidification with conservative, stable numerical schemes

for nonequilibrium air-ocean exchange and ocean equilibrium chemistry". Journal of Geophysical

Research – Atmospheres 110: D07302.

ACKNOWLEDGEMENTS

APPENDICES

