
 1 

 
Development of an Automatic Classification System for the 

Cetaceans Using their Vocalizations  

Prateek Murgai, Delhi Technological University  

Mentors:  Danelle E.Cline and John Ryan  

Summer 2015 

 

Keywords:  MFCC, Odontocetes, Mysticetes, SVM, RFC  
 

ABSTRACT  

The paper presents the development of an automatic classification system for the 

cetaceans using their vocalizations. The system aims at classifying different whale 

species based on the vocalization acoustic signals(either raw or preprocessed) input to the 

system. An acoustic dataset from the whale acoustics lab at Scripps Institute of 

Oceanography is being employed to build the classification system, to develop its proof 

of concept. Currently we have extracted five different cetacean species from the dataset, 

two of them are Mysticetes (blue whale and fin whale) and the rest are Odontocetes 

(Cuvier’s Beaked whale, Sperm whale and porpoise). Based on previous experiences 

with audio signal processing, thirty four acoustic specific features have been extracted for 

our classification task. Both time domain and frequency domain features are being 

employed as they present a complete story about the signal, also many features inspired 

from speech recognition and music classification applications are being used. Use of such 

a combination of features could provide new insights into the properties of cetacean 

vocalizations. For the classification purpose, we currently employ two classifiers 

separately, namely the Support Vector Machines and the Random Forest Classifier. The 

complete workflow of the development of the classification system is explained in the 
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paper. Results comparing both the classifiers are presented in the results section, also an 

introduction of the immediate future work on the soundscape is presented. 

 

INTRODUCTION  

Marine mammal occurrences are currently assessed using visual surveys or passive 

acoustic monitoring (PAM). Both methods are challenged by detection uncertainty: 

visual surveys are often hindered by poor sighting conditions, and missed detections due 

to short surfacing intervals, whereas the efficiency of the passive acoustic monitoring can 

be limited by variable calling rates, uncertainty in caller identity, and missed detections 

[14]. Whereas visual surveys are labor-intensive (i.e., expensive) and weather-dependent 

and are, therefore, limited to temporally sporadic sampling over short periods (days to 

weeks), acoustic recorders can sample continuously for periods ranging from hours to 

years, thus PAM systems have a distinct advantage over visual methods[13]. 

The single greatest drawback of passive acoustic monitoring is the large volume of raw 

acoustic data returned that requires analysis to generate reliable species detections [4,15]. 

Manual analysis entails visually inspecting spectrograms of acoustic data, aurally 

reviewing putative calls, and classifying and logging confirmed calls. This method is 

extremely labor-intensive, inefficient, and unrealistic for longer-duration acoustic 

recordings. Not surprisingly, the rise in the use of passive acoustic monitoring 

applications over the past decade has spurred the development of automated methods 

employing machine learning techniques to detect and classify calls. The overarching goal 

of this development effort is to significantly reduce the time required to derive detection 

information from acoustic recordings while maintaining a similar level of accuracy 

provided by a human analyst. 

The advent of automatic classification of cetacean vocalizations using supervised 

machine learning techniques has been strongly motivated by conservation needs. Reliable 

and labeled cetacean call data is still very sparse a problem faced by us while developing 

the classification system in theory. Initially being devoid of any acoustic data from 

Monterey Bay due to deployment issues at the MARS observatory, an acoustic dataset 
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provided by the whale acoustics lab at Scripps Institute of Oceanography was employed, 

which included hydrophone recordings from seven different locations in the Pacific 

Ocean near California and different seasons. As the data was raw hydrophone recordings, 

annotations had to be used to extract calls of different cetaceans and organize them into 

different species. After this organization, it was found that some calls lasted for a time 

duration not suitable for processing (some odontocete calls were longer than thirty 

minutes in duration)so we limited our data extraction to a maximum of four minutes long 

calls. Currently our extracted data has five different species (fin whales, blue whales, 

Cuvier’s Beaked whales, Porpoise and Sperm whales).  

We are currently  using thirty four features for our classification purpose, some features 

have been inspired from speech recognition and music applications, others from 

experience. There is a great overlap between the speech recognition, automatic music 

classification and cetacean vocalization classification tasks [7,8], still the use of such a 

combination of features from different applications for this specific purpose remains 

limited, thus the novelty. One of the most important features for our application are the  

MFCC’s (Mel Frequency Cepstrum Coefficients) which have been used widely in speech 

and music recognition applications, and some bioacoustics applications [7,8,9,10,12]. 

Spectral entropy is another important feature we have employed that is derived from 

information theory[11] .For the purpose of feature extraction we use a sliding window 

technique with a window size of 50ms and an overlap of 50% (25ms). Windowing helps 

to preserve the information stored in small time windows whereas overlapping helps to 

maintain continuity between different audio windows. In the past many different 

classification and recognition techniques have been used for cetacean vocalization 

classification such as artificial neural networks [2,4,6] and spectrogram correlation[1,4] . 

For our application we have used the SVM and the random forest classifier for the 

classification purpose, not together but separately. A comparison of their performance is 

presented in the results section. Having doubts of over-fitting (due to a sparse data-set) 

we created new data artificially by superimposing random noise from the hydrophone 

recordings (technique inspired from Baidu Research Group [3]) from different locations 

onto the cetacean calls. We will see in the results section how that actually improves the 

performance of the classifiers. 
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COMPLETE SYSTEM OVERVIEW  

 

 

 

Fig.1Displays a complete three step classification system 

The acoustic classification system comprises of broadly three steps: 

 Data Extraction – To reduce a large data-set into a smaller data-set containing 

training data in a format that can be used by the classifier. Vocalizations for each 

of the five cetacean species are extracted from the hydrophone recordings using 

annotated files and saved separately for the classifier to access. 

 Feature Extraction- A process of extracting specific acoustic features from the 

extracted data based on which the classification takes place. The system currently 

employs 34 features (both time and frequency domain) . This is probably one of 

the most important steps of a classification process. 

DATA-EXTRACTION 
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 Classifier- The extracted feature vector is fed into what we call as a classifier. It 

is a black box that executes mathematical models on the vocalization feature 

vectors to separate one class of species vocalization from another, Currently we 

are using two classifiers: Support Vector Machines (non-probabilistic) and 

Random Forest Classifier. 

  

DATA-SET  

The current data-set includes five whale species, they are divided into the following two 

broad groups 

1. Odontocetes  

Our current extracted data-set includes calls from three different odontocetes: Cuvier’s 

beaked whale, porpoise and sperm whale. Odontocetes ( also called as toothed whales) 

are a sub group of cetaceans which employ short click sounds for the purpose of 

echolocation. Most of their vocalizations are narrow-band high frequency ( can go as 

high as 160 kHz), except sperm whales( use frequencies as low as 50Hz). A spectrogram 

of a Cuvier’s beaked whale vocalization from the data-set is shown in Fig.2 

 

 

 

 
Fig.2. Spectrogram of  an echo-locating  Cuvier’s beaked whale. The whale vocalizes at a peak frequency 

of around 10 kHz 

 

Our observation from the extracted data-set is that many of the odontocete calls are of 

long duration (even going up to 1-2 hours long). This presented a serious drawback as 

vocalizations that long cannot be processed for the classification system due to 

computational limitations. Due to this we were limited by the amount of data we could 
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practically use for our classification purpose. We currently have 400-500 odontocete 

calls in total, their time duration varying from 3 seconds to 4 minutes. 

 

2. Mysticetes  

Mysticetes( also called as baleen whales) are a sub-group of cetaceans that use 

low-frequency vocalizations( as low as 30-50Hz) to communicate over large 

distances. Our current data-set includes calls from two mysticetes: blue whale 

and fin whale. Both of these baleen whales vocalize at frequencies less than 100 

Hz. A spectrogram of a blue whale vocalization from the data-set is shown in 

Fig.3 

 

 
Fig.3. Spectrogram of a low frequency(40-50 Hz) vocalization of a blue whale 

 

Observations from the hydrophone recordings show us that their vocalizations are of 

shorter duration as compared to odontocetes  (as short as 1 sec) and thus easier to 

process. This was fortuitous for building our system as we could extract large number of 

mysticete calls and thus have a larger data-set to train our classifier. Currently we have 

4500-5000 mysticete calls in total with a time duration of 1-4 seconds .  

 

DATA EXTRACTION AND PROCESSING   

Data is usually collected in forms and formats which are not suitable to be fed directly 

into a working architecture. Each system works on different data formats, thus it is 

important to organize them into a suitable form so that they can be employed with an 

existing system. 



 7 

A similar problem was faced by us while designing this system. In fact the first few 

weeks of the internship were spent on extracting the correct data and organizing it into a 

format which is acceptable by the classifiers we wanted to use.  

 

1. INITIAL DATA 
 

The data-set from the Scripps Institute of Oceanography included raw hydrophone 

recordings from over seven locations in the Pacific Ocean from near California. The 

locations are as follows ( for details regarding locations check : www.cetus.ucsd.edu) :  

 

 CINMS-B 

 CINMS-C 

 DCPP-A 

 DCPP-B 

 DCPP-C 

 SOCAL-E 

 SOCAL-R 

 

Each location has hydrophone data  recorded over days in each of the three seasons( 

spring, summer and winter).  

 

The recordings are separated for  mysticetes and odontocetes. The mysticete recordings 

are continuous recordings of les than 40 minutes , whereas the odontocete recordings are 

continuous recordings of  longer durations , some greater than 100 hours. 

 

The data is recorded using HARP’s (High Frequency Acoustic Recording Packages) and 

ARP’s ( Acoustic recording Packages) developed at Scripps. 

 

 

 

 

http://www.cetus.ucsd.edu/


 8 

2. EXTRACTED DATA 

 

We cannot blindly feed in the hydrophone recordings to our classification system. A 

training set is imperative for the acoustic classifier to train itself for a number of classes 

of vocalizations. To build a training set we use the annotations provided with the 

hydrophone recordings  to extract species specific data. The time annotations provided 

helped us extract vocalizations for certain cetacean species. Already mentioned before, 

we were able to extract practical vocalization data( that we could use for processing and 

was good enough in quantity ) for five whale species. 

 

 

3. DATA PREPROCESSING   

The only data-preprocessing step we apply is the normalization of the feature vectors of 

the extracted vocalizations. Normalization helps to reduce the range of the values present 

in the data to a fixed range , making it suitable for a classifier to judge data on a fixed 

scale. 

 

ACOUSTIC FEATURES  

By definition, features are individual measurable properties of a phenomenon being 

observed. For our application, we employ acoustic features, which makes use of the 1-D 

signal in the time domain to extract time-domain signal such as Energy, Zero Crossing 

Rate, Entropy of Energy etc, and the 2-D spectrogram data to extract frequency domain 

features such as Spectral Spread, Spectral Entropy, Mel Frequency Cepstrum Coefficients 

(MFCC’s), Chroma Vectors etc. In total we employ thirty four features. 

A signal can reveal very a different information from its time-domain and frequency 

domain analysis, thus it is necessary to employ features encompassing properties from 

both the domains. The features chosen are inspired from different applications of speech 

recognition( MFCC’s)  and music classification.  
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The novelty in this selection is that, such a combination of speech recognition, music 

classification and other acoustic features doesn’t have a lot of literature review specially 

with marine mammal vocalization classification. Also this helps us to venture into an 

experiment which might fail, or succeed as experimentation results for such a 

combination of features is limited. 

Here we describe two features in detail,  

 

1. Mel Frequency Cepstrum Coefficient  

Mel Frequency Cepstral Coefficients (MFCCs) are a feature widely used in automatic 

speech and speaker recognition. MFCC’s collectively make up what we call as Mel 

Frequency Cepstrum(MFC). MFC’s are a representation of the short-term power 

spectrum of a sound, based on a discrete cosine transform of a log power spectrum on a 

nonlinear Mel scale of frequency. 

The following formula gives the conversion of frequency to Mel scale :  

)700/1ln(1125)( ffM   

The Mel scale relates perceived frequency, or pitch, of a pure tone to its actual measured 

frequency. Humans are much better at discerning small changes in pitch at low 

frequencies than they are at high frequencies. Incorporating this scale makes our features 

match more closely what humans hear. 

Steps to calculate MFCC’s :  

1. Frame the signal into short frames. (50 ms frames for our application with 

50% overlap) 

2. For each frame calculate the periodogram estimate of the power spectrum. 

3. Apply the Mel filterbank to the power spectra, sum the energy in each filter. 

4. Take the logarithm of all filterbank energies. 

5. Take the DCT of the log filterbank energies. 

6. Keep DCT coefficients 2-13, discard the rest. 

https://en.wikipedia.org/wiki/Power_spectrum
https://en.wikipedia.org/wiki/Power_spectrum
https://en.wikipedia.org/wiki/Cosine_transform
https://en.wikipedia.org/wiki/Power_spectrum
https://en.wikipedia.org/wiki/Nonlinear_system
https://en.wikipedia.org/wiki/Mel_scale
http://en.wikipedia.org/wiki/Periodogram
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Thus in total we have 12 MFCC’s , thus that number of features from MFCC’s itself 

 

 

 

Fig.4. All the features employed for the classification, here only 8 are shown but in total we have 34 

features as MFCC’s and Chroma Vector each has several components 

 

 

 

2. Chroma Vector  

Chroma features are an interesting and powerful representation for audio in which 

the entire spectrum is projected onto 12 bins representing the 12 distinct 

semitones (or chroma) of the musical octave. Since, in music, notes exactly one 
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octave apart are perceived as particularly similar, knowing the distribution of 

chroma even without the absolute frequency (i.e. the original octave) can give 

useful information about the audio and may even reveal perceived musical 

similarity that is not apparent in the original spectra. 

We investigate  using chroma features, designed to reflect melodic and harmonic 

content and be invariant to type of audio/music. Chroma features contain 

information that is almost entirely independent of the spectral features. 

            Like MFCC’s , Chroma vectors also have 12 components , thus make up 12 

features. 

            

FEATURE EXTRACTION   

Once we know which features to extract for our application, we need to find a way to 

extract these features from the signal itself. As each of these features on a basic level are 

simple mathematical formula’s and each signal is a vector of numbers (1-D in time 

domain , 2-D in frequency domain), there can be two ways to extract these features : 

Let the number of samples in a signal be N . 

1) Apply the feature formula on the complete length of the signal  N , this would 

yield a single value , indicating the value of that specific feature over the length of 

the signal.  

2) Define a buffer of size M  where usually ( M << N ) , buffer the signal for that 

buffer length and calculate the feature over that buffered signal. Perform this 

method of buffering and feature measurement for each buffer over the whole 

signal length with a fixed percentage of overlap with the previous buffered signal. 

This method yields a 1-D feature vector with number of elements greater than 
M

N

. We extract features using the second method for two reasons : 

1) It assumes the signal is statistically static within that small duration, reflecting 

the changes that occur in the features of the signal during each buffered 
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interval, thus yielding more information as compared to the first method. The 

overlap with a previous buffer helps maintain continuity over the feature 

vector.  

2) Such buffering helps simulate a real time system. In a real time system 

continuous data is not present, rather it is buffered. Thus if such a system is 

ever made real-time, it is easier for us to make sense of this application in 

real-time. 

The first method, clearly doesn’t have these advantages. Less information 

about the features are generated if we employ the first method, which is not 

favorable for a audio classification application. 

 

Fig.5. Displays the buffering of a spectrogram signal, each box is 50ms in duration. Bottom of the 

image shows the feature values for each buffer. Observe the overlap of each buffer with the 

previous one.  

For our application ms
Fs

M
50 , with an overlap of 50% ( 25ms ).  

Fs is the sampling rate of the recorded signal.  

 

Feature Dimensionality Reduction.  

From the previous section , we know that a single feature vector is 1-D. 
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0.51 0.18 0.14 0.001 0.004 0.63 0.22 0.23 0.45 0.33 

Table 1. Displaying an example of a 1-D vector, in this case an example of energy vector 

But when the 34 features over a time duration are calculated and are combined to get a 

complete feature vector we end up with 2-D vector . 

 

Feature/Window 0-50ms 25-75 ms 50-100 ms 75-125 ms 100-150 ms 125-175 ms 150-200ms 

Energy 0.51 0.18 0.001 0.004 0.63 0.22 0.23 

Zero Crossing Rate 0.11 0.43 0.78 0.91 0.6 0.5 0.20 

Spectral Centroid 0.001 0.002 0.1 0.5 0.003 0.45 0.67 

Spectral Entropy 0.66 0.343 0.65 0.90 0.77 0.18 0.54 

Table 2. A complete feature vector (2-D) which is a combination of all the features over a time duration. 

Now as the classifiers take a 1-D feature vector as input, the above 2-D feature vector is 

inappropriate for feeding into the system. Thus we need to find a way to reduce this 2-D 

vector into a 1-D feature vector.  

For our current system, two techniques are tried and either one of them is used as both 

reveal similar results upon classification. The two techniques are  

1. Simple Averaging over the time duration, revealing a 1-D feature vector , with 

34 rows( number of features) and 1 column . 

2. Dimensionality reduction using Principal Component Analysis. Using the first 

principal component of the vector obtained  after performing a singular value 

decomposition. This also reveals a 34x1 feature vector. 

 

Both the methods give a similar performance, thus in most cases we employ the simple 

averaging method as it is computationally inexpensive. 
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CLASSIFIERS  

With an overwhelming number of classifiers already at our disposal, it can be difficult 

sometimes to chose a specific classifier for the application. The choice of the classifier 

can depend on many different parameters such as training data size(usually matters 

when data size is small), computational efficiency, classifier complexity, 

computational power at hand. Even after having the knowledge of these parameters, it 

can be difficult to pick out a single classifier. Due to these choice issues, two very 

different classifiers were chosen for the acoustic classification purpose ,  

A) SVM( Support Vector Machines ) 
 

Support Vector Machines is a non-probabilistic classifier, which is inherently a linear 

classifier (employs a hyperplane to separate training data into different categories) but 

can be used for non-linear classification by employing kernel trick. 

A SVM constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional 

space, which can be used for classification or other tasks. Intuitively, a good separation is 

achieved by the hyperplane that has the largest distance to the nearest training-data point 

of any class (so-called functional margin), since in general the larger the margin the 

lower the generalization error of the classifier. 

 

Fig.6 Displays the hyperplane (green), separating two classes (blue and red). The co-ordinate system 

represents a 2-D feature space 

https://en.wikipedia.org/wiki/Hyperplane
https://en.wikipedia.org/wiki/High-dimensional_space
https://en.wikipedia.org/wiki/Generalization_error
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Advantages of using a SVM are follows : -  

1) It is effective in high dimensional spaces. 

2) Uses a subset of training points in the decision function (called support vectors), 

so it is also memory efficient. 

3) Executes much faster than most of the classifiers during both training and testing 

periods. 

4) It is versatile, as you can employ application specific kernel functions. Kernels 

can be specified with the decision function. 

Disadvantages of SVM are :-  

1) Works really well with separated classes, but problems arise when a specific 

kernel function cannot be specified due the classification complexity.  

2) As the number of classes go up, you could expect a significant drop in 

performance (we will see that in the results section). 

 

A) Random Forest Classifier  
 

Random forests are an ensemble learning method for classification, regression and other 

tasks, that operate by constructing a multitude of decision trees at training time and 

outputting the class that is the mode of the classes (classification) or mean prediction 

(regression) of the individual trees. Random forests correct for decision trees' habit of 

over-fitting to their training set. 

The training algorithm for random forests applies the general technique of bootstrap 

aggregating, or bagging, to tree learners. 

A random forest is a meta estimator that fits a number of decision tree classifiers on 

various sub-samples of the dataset and use averaging to improve the predictive accuracy 

and control over-fitting. The sub-sample size is always the same as the original input 

sample size but the samples are drawn with replacement if bootstrap=True. ( In python ) 

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Bootstrap_aggregating
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Fig. 7 An illustration of the decision trees employed by random forest classifiers. 

 

 

Fig.8 A basic algorithm flow of Random Forest Classifiers 
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Advantages for using RFC are :  

1) It is one of the most accurate learning algorithms available. For many data sets, it 

produces a highly accurate classifier. 

2) It runs efficiently on large databases. 

3) It can handle thousands of input variables without variable deletion. 

4) It gives estimates of what variables are important in the classification. 

 

Disadvantages :  

1)  Random forests have been observed to over-fit for some datasets with noisy 

classification/regression tasks 

2) Takes longer time to execute training and testing steps as compared to SVM’s. 

 

CLASSIFIER TESTING   

This is the most important section, once we have our classifier architecture  in place. 

The two most important steps during classification testing and evaluation are  

1) Cross Validation  - To divide a data-set into a training and a testing set, when a 

separate testing set is not available.  

 

2)  Evaluation Parameters- One should know what evaluation parameters are being 

calculated to measure the performance of the classifier. For our application we 

measure :  

 

a) ROC Curve and Area under the curve 

b) Accuracy  

c) Learning Curves to study the variance and the bias  

 The following flowchart explaining the workflow of the classification system is given 

below : 
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Cross Validation  
 

As the classifier requires a training set to build a hypothesis and then a testing data-set to 

predict the performance of the classifier, the given data ( complete feature space ) , needs 

to be divided into a training set and a test set when a separate test set is not available. 

Cross validation is a way to do so .  

We employ a K-fold cross validation in python , the following image depicts the process :  

 

The estimation samples consist of the training data , whereas the validation sample forms 

the test data. The parameter K is the number of iterations of different test data selections 

out of the complete data-set. The size of the test data is given as a fixed percentage of the 

total data. This method helps to validate the performance of  a classifier using a single 

data-set itself ( In case a separate test data-set is not available). 

For our applications , the iterations were varied between 10-50 , and percentage of test 

data between 20-40 %. This variation was just to test how the classifier performs at 

different parameters.  
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Once the data has been divided into a training data and a test data, the training data is fed 

into the classifier, the following parameters were used for testing purposes in python .  

For SVM , we employ SVC python function within sci-kit learn , gamma is set at 

auto(optimal performance was at 0.000599) and the penalty factor C is set at 100 . A 

radial basis function (RBF) kernel was used for the application. 

For Random Forest Classifier, only the number of estimators was set equal to 120. 

Everything else was kept as default. For 120 estimators , the classifier gave an optimal 

performance. This was set by trial and error method 

Average precision scores and predicted probabilities were used as decision function 

for the classification task, while evaluating the performance of the classifiers. 

 

DATA AUGMENTATION – Artificial Data Creation 
 

 

Fig.9 Displays the number of cetacean calls (y-axis ) vs each cetacean species being classified 

Inspired by a deep speech technique employed by the Baidu Research group  , a step of 

data augmentation by creating artificial data from the existing data was employed to 

prevent the issue of over-fitting. As our data-set is small in size, there was a possibility 

that classifiers over-fit the data and yielded acceptable results. In addition, we were 

interested to see, if the artificial data would remove the high variance expected in case of 
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small training data-sets. The artificial data was created by superimposing random noise 

from hydrophone recordings from the seven different locations. This process was 

programmed to be completely random. By this process we created a noisy copy of the 

data-set, thus doubling our data-set. We will see in the results section how this data-

augmentation step affects the system. 

RESULTS  

Our classification system is built to classify four cetacean species calls : blue whale and 

fin whale (low-frequency) , Cuvier’s beaked whale and porpoise ( high-frequency calls). 

Sperm whale classification is not inculcated into the system right now.  

A more challenging problem is to classify species calls which lie within the same 

frequency range, i.e. it is much more difficult to classify two different low frequency 

calls or two different high frequency calls as compared to a high and a low frequency 

call. 

 Thus our initial tests are conducted by building a binary classifier to classify blue and fin 

whale vocalizations. Our results for both random forest and SVM are as follows :  

 

Fig. 10 Blue and fin whale classification results 
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The binary classification results reveal the following results : 

1) High true positive rate for a low false positive rate  

2) High accuracy ( ~95% ) 

3) High area under the ROC curve 

All the properties observed above reveal that the classifier has performed really well in its 

task. The performance of both the classifiers is similar and this is expected as it’s a fairly 

simple classification in terms of number of classes. The problem is complex in the sense 

that, the two calls overlap in the frequency domain but it seems that the features extracted 

have played really well in such a scenario. 

On receiving good results for the binary classification, the system is tested for the four 

cetacean species calls, the results are as below  

 

Fig 11. Classification results for four cetacean species calls. 

From the above results, we observe that random forest classifier outperforms SVM to 

some extent, the difference is seen in the area under the curve values. But still the 

classifiers have performed really well.  
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Another experimentation was done by removing some features which were thought be be 

redundant, leaving us with 15 significant features. The results after removing those 

features are as follows :  

 

 

Fig.12 Classification results when thought-to-be redundant features are removed 

There is a sudden drop in the performance of the SVM as seen in Fig.12, whereas the 

random forest classifier still performs really well and quite similar to when 34 features 

are employed. This shows to some degree that random forest classifier proves to be a 

better classifier than SVM in some specific situations like these. Using 34 features is not 

very efficient , thus in case of computational limitation where we cannot use too many 

features , random forest classifier might be a clear choice.  
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Finally we present the learning curves for both the original data and after data 

augmentation.  

 

Fig.13 Learning curves before and after data augmentation  

 

  The above learning curves clearly show that , the variance in the data-set has reduced 

and accuracy increases as the number of data-samples are doubled , which is favorable 

for the system. Thus the process of creating artificial data might help with the overall 

performance of the classification system 

 

CONCLUSION AND FUTURE WORK  

In this paper , an automatic acoustic classification system is presented, which can classify 

four specific cetacean species calls. The different components of the classification system 

namely, data-set, data extraction, feature extraction, data augmentation, classification and 

evaluation are described giving the exact specifications used for each component. Finally 

the performance of two different classifiers are compared in different classification 
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scenarios, also the effects of data-augmentation on the classification performance is 

presented. 

 

Fig.14 Depicting the idea of the soundscape  

As a part of the future work we would like to work towards building a soundscape for the 

Monterey Bay. Our knowledge about the creatures which communicate using 

vocalizations is still limited, making it imperative to study these acoustic communication 

networks. Thus using the hydrophone deployed at MARS we would like to study 

different vocalizations (primarily cetaceans calls) over seasons and maybe integrate the 

classifier with the incoming data, once we know how we want to preprocess and store the 

data so that it is compatible with the classifier itself. 

 

 

 

 



 26 

References 

 

[1]  D.K Mellinger and C.W Clark (2000) . Recognizing transient low-frequency whale sounds by 

spectrogram correlation. Acoustical Society of America [S0001-4966(00)01706-9] 

 

[2] J.R. Potter , D.K Mellinger and C.W Clark (1994) . Marine mammal call discrimination using artificial 

neural networks. Acoustical Society of America, VOl 93 No.6  

 

[3] A Hannun, C Case, J. Casper, B. Catanzaro, G Diamos, E Elsen, R Prenger, S Satheesh, S Sengupta, A 

Coates,  A.Y Ng (2014) . Deep Speech: Scaling up end-to-end speech recognition Baidu Research. 

 

[4] D.K Mellinger (2004). A comparison of methods for detecting right whale calls. Canadian Acoustics, 

55- Vol.32 No.2 

 

[5] D.K Mellinger, K.M Stafford, S.E Moore, R.P Dziak and H Matsumoto (2007). An overview of fixed 

passive acoustic observation methods for cetaceans. Oceanography, Vol.20, No.4  

 

 

[6] D.K Mellinger (2008). A neural network for classifying clicks of Bainville’s Beaked whales. Canadian 

Acoustics, 55- Vol.36 No.1 

 

[7]  F Pace , F Bernard , H Glotin, O Adam, and  P White (2010). Subunit definition and analysis for 

humpback whale classification. Elsevier Journal of Applied Acoustics 1107-1112  

 

[8]  Cazau, D. , Xue, C. , Doh, Y , Glotin, H, and Adam, O (2013). Scattering representation for humpback 

whale vocalizations: applications to their detection, characterization and classification. 6th International 

Workshop on Detection, Classification, Localization and Density Estimation of Marine Mammals using 

Passive Acoustics.  

 

[9] G Lara , R. Miralles and A Carrión (2013). Right Whale activity detector and sound classificator using 

Mel-frequency Cepstral Coefficients. 6th International Workshop on Detection, Classification, Localization 

and Density Estimation of Marine Mammals using Passive Acoustics.  

 

[10] M.A. Roch,  A Širović and  S B Pickering(2013). Detection, Classification, and Localization of 

Cetaceans by groups at the Scripps Institution of Oceanography and San Diego State University. 

[Detection, Classification, Localization, and Density Estimation Workshop 2013. 

 

[11] C Erbe and A.R King (2008). Automatic detection of marine mammals using information entropy. J. 

Acoust. Soc. Am. 124, 2833 

 

[12] M Bittle and A Duncan (2013). A review of current marine mammal detection and classification 

algorithms for use in automated passive acoustic monitoring. Australian Acoustical Society Proceedings of 

Acoustics 2013 – Victor Harbor. 

 

[13] Moore, S. E., Stafford, K. M., Mellinger, D. K., and Hildebrand, J. A. (2006). “Listening for large 

whales in the offshore waters of Alaska,” BioScience 56, 49–55. 

 

[14] M.F Baumgartner and S.E Mussoline (2011). A generalized baleen whale call detection and 

classification system, J. Acoust. Soc. Am. 129 (5) , Pages: 2889–2902 

 

[15] Van Parijs, S. M., Clark, C. W., Sousa-Lima, R. S., Parks, S. E., Rankin, S., Risch, D., and Van 

Opzeeland, I. C. (2009). “Management and research applications of real-time and archival passive acoustic 

sensors over varying temporal and spatial scales,” Mar. Ecol. Prog. Ser. 395, 21–36 

 


