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1. INTRODUCTION  

1.1 BENTHIC ROVER 

The Benthic Rover is a bottom-crawling Autonomous Underwater vehicle utilized 

and designed by the Dr. Ken Smith’s team at the Monterey Bay Aquarium 

Research Institute.  It is designed to enable long term monitoring of benthic 

communities with deployments of up to a year to depths up to 6000 m. It has 

recorded multiple deployments at station M at a depth of ~4000 m.  
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Figure 1 A side view of the Benthic Rover shows: (a) the treads that are part of the propulsion 
system, (b) one of the two propulsion motors housed in oil, (c) syntactic foam used for floatation, 
(d) the current meter used to ensure the Rover is driving up current, (e) the instrument rack, which 
lowers and inserts the respirometer chambers, (f) the respirometer chambers, which measure 
sediment community oxygen consumption, (g) the high-resolution digital camera aimed at the sea 
floor, (h) a 200-W-s strobe to illuminate the still images, (i) the acoustic modem that can release a 
drop weight, and (j) one of two titanium pressure housings used to carry batteries and electronics. 
Taken from Sherman and Smith (2009). 

 
The vehicle propulsion system is comprised of two 46-cm-wide lugged tracks 

driven independently by two brushless motors mounted in pressure-compensated 

oil-filled housings. The Rover is also equipped with a cylindrical ballast weight 

suspended between the treads and is made detachable by means of a burn-wire (to 

which a current is applied upon receiving an acoustic signal, causing it to corrode 

and release) and two lever arms.  The vehicle when deployed has an air weight of 

1136 kg and an in water weight of 68 kg and upon release of ballast has a positive 

buoyancy of 45 kg. The Rover is deployed with a two-dimensional current meter, 

which is mounted on top of the Rover, two respirometer chambers mounted on 

instrument racks move up and down on a carriage and are depressed into the 
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sediments in between transits. The respirometer chambers house stirrers to 

homogenize the chamber, and optodes that measure oxygen. The Rover also is 

equipped with a reference optode outside of the chambers to compare ambient 

seawater to the chambers. Two video cameras capture the area enclosed by the 

chambers, and a high-resolution camera is mounted on the front of the vehicle and 

captures images of the sea floor during transits with the assistance of a strobe. The 

transit camera is coupled with a flouremetric imaging system in order to measure 

the size of detrital aggregates as well as provide estimates of the detrital quality.  

 

1.2 THE MISSION 

The Benthic Rover is deployed via free fall from a surface ship. Once it awakens 

from its deployment sleep mode, a typical mission consists of transits of a pre-

programmed distance of 10 m away from the drop site due East. The Rover is 

programmed to move into a “favorable current” (or one that is within a 45° 

window of the front of the vehicle) so that any sediment resuspended by the treads 

will be carried away from the new study site. The Rover will check the current 

meter every 15 minutes until a favorable current is found up to a and elapsed time 

of twelve hours, at which time it will move regardless of the direction of the 

current. Upon the completion of the transit, the Rover will enter a pause behavior 

in order for the ambient environmental conditions to stabilize. It will then lower 

the respirometer chambers into the sediments and take optode measurements for a 

period of two days.  

 

1.3 MOTIVATION 

The project grew out of the initial task of developing a log grinder for rapid 

vehicle performance assessments between deployments. The Rover’s syslogs 

consist of a time stamped record of every behavior it executes, which is 

tremendously useful in evaluating the Rover’s operation. The downside is that as 

deployments increase in duration these syslogs can be millions of lines long 

making it very difficult for the engineering team to see performance trends. As 

such it was extremely useful to have a program that would sift through the logs 
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and pull out lines of specific interest. One of the first behaviors that we decided to 

look at was when the Rover was moving. This would tell us right away how many 

moves the Rover made over the course of the deployment, and when they took 

place To do that we needed a record that marked the beginning of the move in the 

syslog. Operationally the Rover is programmed to check it’s current heading, and 

compare that to its pre-programmed, desired heading, which it reports as a degree 

difference. It then corrects for this difference, turning back to its desired heading 

by engaging one motor a certain number of rotations relative to the magnitude of 

the difference. Once we got here, it was clear that on a lot of the deployments that 

the Rover was timing out frequently. We then wanted to find out, of those times 

that the Rover timed out, which direction was the current going. The ruby code 

that was developed for this process can be found in Appendix 1. This revealed 

some interesting things about the Rover’s performance that became extremely 

valuable to the team.  

 However given the early success we had with the log grinder applications, 

we now had performance data from the Rover that in addition to rapid assessment 

could be used to develop improved control methods to address certain aspects of 

the Rovers programming. I had previously had an interest in machine learning 

algorithms and with the support of the team decided to try to write a learning 

algorithm that the Rover could use to correct errors that develop in its propulsion 

system.  

 

1.4 MACHINE LEARNING 

While machine learning has received a great deal of press of late, and is notably 

associated with complex scenarios like self driving cars, and advanced robotics, it 

is at it’s core a field of computer science that was developed as a branch of 

statistics as it relates to pattern recognition. Machine learning relies on the 

constructions and development of algorithms that can learn from, and make 

predictions based on data as opposed to trying to determine causality in a data set. 

This can be applied to many complex problems, but it is as a field not inherently 

complex. This is stated because while the Rover is an extremely sophisticated 
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instrument, it is intentionally “stupid” in terms of its navigational operation. The 

reason the Rover was designed this way is that the benthic environments in which 

it has been deployed are flat, and uncomplicated and there are not obstacles it 

needs to avoid. Additionally the locations of the samples do not need to be known 

with any amount of certainty under the current mission objectives. All that 

matters is that the Rover moves, does not disturb future study sites, and is 

recoverable. Given that the primary objective of the Rover’s operating system is 

to conserve battery power, which the engineering team accomplished by limiting 

the amount of information it collects, and minimizing the amount of computing it 

has to do, it was therefore critical to similarly minimize the amount, and 

complexity of the computing necessary for the Rover to solve for its own error. 

As such, since “machine learning” is a large umbrella, covering statistical 

analyses with a range of complexities, this project elected to utilize some of the 

more simple algorithms.  

Linear regression 
 
2. MATERIALS AND METHODS  

The Vehicle and instrument control applications aboard the Rover are executed in 

the Ruby programming language. Ruby is and object-oriented scripting language 

and interpreter implemented in C, allowing it to be readily ported to embedded 

computing platforms without the need for a supporting tool-chain. Ruby is a bit 

unusual as a programming language for a vehicle of this nature, however it does 

offer a fairly user-friendly means to writing concise and readable applications, as 

well strong object-oriented support and high-level programming features. These 

attributes allow the engineers on the Rover team to Isolate failure logic and apply 

methods across the code-base in a consistent manner, improving fault detection 

(Mcgill et al 2007). As such the log-grinder applications were all developed in the 

Ruby programming language utilizing Sublime text as an interface. Matlab was 

then utilized to create visualizations with the log-grinder results. Also the linear 

regression algorithm was first written in matlab, as it is a language that I was 
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more familiar with using. The algorithm was then translated into Ruby, however, 

the internship ended before I was able to complete and test the Ruby version. 

 

3. RESULTS  

3.1 LOG GRINDER 

The log grinder functioned exactly as intended by filtering out the information of 

interest from the syslogs, and placing them in new files containing all of the 

particular behavior. From there this information could be easily scanned, but 

perhaps more importantly it was able to be utilized by matlab. One of the things 

that we were able to notice as a result of these new individual behavior logs, was 

that the Rover was timing-out a lot more frequently than previously thought. 

Which meant that the Rover was sitting idle a lot longer than expected. Over the 

course of a longer deployment means missed opportunities to collect data. For 

pulse 64, the most recent deployment, the rover timed-out on 60% of its moves. 

This means that out of the 103 moves the Rover made, 61 of them were made 

without a favorable current, and therefore at risk of having sediment kicked up 

during the move land at the next sample site (figure 2).  

 

Figure 2 is a vector plot for Pulse 64, and shows the direction that the current was heading when 
the Rover timed-out and made a move without a favorable current. The length of the arrow 
indicates the magnitude of the current, while the angle indicates the direction of the current. 
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3.2 LINEAR REGRESSION  

The linear regression worked surprisingly well for Pulse 62 and 64, hitting the 

global minimum for each deployment presented to the algorithm. The thetas 

found for Pulse 62 was -0.307 for the slope, and 5.192 for the intercept (figure 3 

and 4). As this was a short deployment, I projected what the heading difference 

would have been after 50 moves, and found that the Rover would have been off of 

its desired heading by -10.1718°.  

 

 

 

Figure (3) shows a contour plot of the theta values found by gradient descent for Pulse 62 
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Figure (4) shows the model fit for Pulse 62 

4. DISCUSSION  

4.1 LOG GRINDER 
Discussion of heading change. 
 

4.2 LINEAR REGRESSION 
 

If the heading difference is 6 in either direction, which was the average for Pulse 

64, then the Rover is deviating from its course by a meter. If this difference was in 

one direction for the entirety of the deployment then the rover would have 

deviated from its course by 100 meters. Given the topography of station M, which 

is relatively flat, this is not a huge problem. Also given the nature of the current 

scientific mission, it is not critical that the rover stay on its course. However with 

this simple heading correcting algorithm, would allow the Rover to follow it’s 

course more reliably, which would help the engineering team and recovery crew 

have a better idea of where the Rover will end up, particularly over the course of 

longer deployments. Secondly, the Rover was built with the intent to be  
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5. CONCLUSIONS/RECOMMENDATIONS  

This project has shown that with low computing cost a simple machine learning 

algorithm could be utilized by the Rover to improve the predictability of the path 

the Benthic AUV negotiates across the sea floor. While this is not a necessity of 

the Rover’s current scientific mission, a better idea of where specific samples 

come from spatial could lead to a more clear picture of the spatial flux of carbon 

into the deep ocean, and the ecology of the benthic organisms utilizing it. While 

this is a small step forward in the development of a more complex navigation 

programming for the rover, similar techniques could be utilized by the 

engineering team to address other types of errors and impeded performance 

during deployments. Fault detection algorithms are currently being used with the 

pelagic AUVs at MBARI, and there are avenues for their successful 

implementation aboard the Rover.  
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Appendix A Log Grinder 
 
=begin 
 ****************************************************************************** 
 * Copyright 1990-2015 MBARI 
 * MBARI Proprietary Information. All rights reserved. 
 ****************************************************************************** 
 * Summary  : What is contained within the file 
 * Filename :  
 * Author   :  
 * Project  : Benthic Rover 
 * Version  :  
 * Created  :  
 * Modified :  
 ****************************************************************************** 
=end 
 
class LogGrinder 
 
  # Constants 
  # 
  TRANSIT_FILENAME   = "transits.csv" 
  FAVORABLE_FILENAME = "favorables.csv" 
  START_OF_TRANSIT   = " propulsion motors on" 
  ACTUAL_TRANSIT     = " resuming from hibernating" 
  START_OF_FAVORABLE = " FavorableCurrent behavior " 
  HEADING_FILENAME   = "heading.csv" 
  START_OF_HEADING   = " difference between current and desired heading" 
 
  def initialize(syslog) 
    @src_file = File.open(syslog) 
    @src_line = nil 
    @line_num = 0 
 
    @move_file = nil 
    @fc_file = nil 
    @course_file = nil 
    @start_time = nil 
  end 
 
  ## 
  # Read each line of the syslog. 
  # When a line contains the start of a section, pass control to a handler 
  # 
  def grind 
 
    # Find the mission start time by looping over the first 
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    # lines in the log file until one with a timestamp is 
    # found (probably the first one) 
    # 
    while (!@start_time) 
      @start_time = timestamp(next_line()) 
    end 
 
    if (@start_time) 
      puts("Start time value is #{@start_time}") 
    else 
      puts("Hmm. You sure this is a barbo syslog?") 
      return   # If no timestamps are found, we're done 
    end 
 
    while(next_line()) 
 
      if (@src_line.index(START_OF_TRANSIT)) 
 
        handle_transit() 
 
      elsif (@src_line.index(START_OF_FAVORABLE)) 
 
        handle_favorable_current() 
 
      elsif (@src_line.index(START_OF_HEADING)) 
 
        handle_heading() 
 
      end 
    end 
  end 
 
  def next_line() 
    if (@src_line = @src_file.gets()) 
      @line_num += 1 
    end 
    @src_line 
  end 
 
  def handle_transit() 
    puts("Got a move, lets get the time it started...") 
 
    unless (@move_file) 
      @move_file = File.new(TRANSIT_FILENAME, "w") 
    end 
 
    t_time = timestamp(@src_line) - @start_time 
    @move_file.puts("#{t_time}: #{@src_line}") 
 
  end 
 
  def handle_favorable_current() 
    @src_line = @src_file.gets() 
    if (@src_line.index(ACTUAL_TRANSIT)) 
      puts("Nope, nothing to see here...") 
      return 
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    else 
      puts("Yup, we got a live one here...") 
    end 
 
    unless (@fc_file) 
      @fc_file = File.new(FAVORABLE_FILENAME, "w") 
    end 
 
    f_time = timestamp(@src_line) - @start_time 
    @fc_file.puts("#{f_time}: #{@src_line}") 
 
  end 
   
 
  def handle_heading() 
    puts("found course correction") 
    unless (@course_file) 
      @course_file = File.new(HEADING_FILENAME, "w") 
    end 
 
    h_time = timestamp(@src_line) - @start_time 
    @course_file.puts("#{h_time}: #{@src_line}") 
  end 
 
 
  # Given a line from a syslog, return a Float epoch seconds value 
  # calculated from the ISO time stamp. 
  # Returns 0.0 if no ISO timestamp is found in the line 
  # 
  def timestamp(line) 
    value = 0.0 
 
    # Match the ISO time stamp 2012-05-13T08:30:12 
    # 
    if (line.match(/[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}.[0-9]{2}/)) 
      dt = line.split("T")       # split the date segment from time segment 
      dates = dt[0].split("-")   # split the date segment 
      yr  = dates[0].to_i 
      mon = dates[1].to_i 
      day = dates[2].to_i 
      times = dt[1].split(":")   # split the time segment 
      hr  = times[0].to_i 
      min = times[1].to_i 
      sec = times[2].to_f 
      t = Time.new(yr, mon, day, hr, min, sec) 
      value = t.to_f              # + sec 
#      puts(t) 
#      puts(value) 
    end 
    value 
  end 
 
end 
 
# THE ACTUAL START OF THE SCRIPT 
# 
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# Default to using the syslog.csv in the local folder. 
# Otherwise, use the first argument to the script 
# E.g., 
#  Uses  local  syslog.csv ===> $ ruby log_grinder.rb  
#  Uses another syslog.csv ===> $ ruby log_grinder.rb /rover/pulse_x/syslog.csv 
# 
syslog_file = "syslog.csv" 
syslog_file = ARGV[0] if (ARGV[0]) 
puts("Preparing to grind #{syslog_file}...") 
lg = LogGrinder.new(syslog_file) 
lg.grind 
 
Appendix B. Machine Learning 
 
%% ROVER MACHINE LEARNING 
r= -50 + (50+50)*rand(100,1); 
E=ones(20,1)*5; 
y = Magnitude(4:end); 
m = length(y);% number of training examples 
d=(1:1:m); 
D=d'; 
X = [ones(m,1), D(:,1)]; 
 % Add a column of ones to x 
  
theta = zeros(2, 1); % initialize fitting parameters 
% Some gradient descent settings 
iterations = 15000; 
alpha = 0.001; 
  
% compute and display initial cost 
computeCost(X, y, theta) 
  
theta = gradientDescent(X, y, theta, alpha, iterations); 
  
  
% print theta to screen 
fprintf('Theta found by gradient descent: '); 
fprintf('%f %f \n', theta(1), theta(2)); 
  
predict1 = [1, 50] *theta; 
fprintf('predicted heading difference after 50 moves %f\n',predict1); 
% Plot the linear fit 
scatter(D,y) 
hold on; % keep previous plot visible 
plot(X(:,2), X*theta, '-') 
legend('Training data', 'Linear regression') 
hold off % don't overlay any more plots on this figure 
  
  
% Grid over which we will calculate J 
theta0_vals = linspace(-10, 10, 100); 
theta1_vals = linspace(-1, 4, 100); 
  
% initialize J_vals to a matrix of 0's 
J_vals = zeros(length(theta0_vals), length(theta1_vals)); 
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% Fill out J_vals 
for i = 1:length(theta0_vals) 
    for j = 1:length(theta1_vals) 
      t = [theta0_vals(i); theta1_vals(j)];     
      J_vals(i,j) = computeCost(X, y, t); 
    end 
end 
  
  
% Because of the way meshgrids work in the surf command, we need to  
% transpose J_vals before calling surf, or else the axes will be 
flipped 
J_vals = J_vals'; 
% Surface plot 
figure; 
surf(theta0_vals, theta1_vals, J_vals) 
xlabel('\theta_0'); ylabel('\theta_1'); 
  
% Contour plot 
figure; 
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 
100 
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20)) 
xlabel('\theta_0'); ylabel('\theta_1'); 
hold on; 
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2); 
  
figure; 
plot(J_vals) 
 
Appendix C.  Cost Function 
 
function J = computeCost(X, y, theta) 
%COMPUTECOST Compute cost for linear regression 
%   J = COMPUTECOST(X, y, theta) computes the cost of using theta as 
the 
%   parameter for linear regression to fit the data points in X and y 
  
% Initialize some useful values 
m = length(y); % number of training examples 
J =0; 
h = X * theta; 
squaredErrors = (h - y) .^ 2; 
J = (1 / (2 * m)) * sum(squaredErrors); 
  
end 
 
Appendix D. Gradient Descent 
 
function [theta, J_history] = gradientDescent(X, y, theta, alpha, 
num_iters) 
%GRADIENTDESCENT Performs gradient descent to learn theta 
%   theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta 
by  
%   taking num_iters gradient steps with learning rate alpha 
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% Initialize some useful values 
m = length(y); % number of training examples 
J_history = zeros(num_iters, 1); 
  
for iter = 1:num_iters 
  
temp0 = theta(1) - alpha / m * sum(theta(1) + theta(2) * X(:, 2) - y);  
temp1 = theta(2) - alpha / m * sum((theta(1) + theta(2) * X(:, 2) - y) 
.* X(:, 2)); 
theta(1) = temp0; 
theta(2) = temp1; 
  
  
    % ============================================================ 
  
    % Save the cost J in every iteration     
    J_history(iter) = computeCost(X, y, theta); 
  
end 
  
end 
 


