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1. ABSTRACT  

 A geodesic sphere model was investigated to describe the geometry of 

phaeodarian colonial spheres. Geodesics of different base geometry and frequency were 

compared to the overall phaeodarian geometry to identify an icosahedron or 

dodecahedron base as most suitable. Scanning electron microscopy, optical microscopy, 

and ImageJ analysis were used to characterize specimens of 3 species of phaeodarian, and 

this data was used to fit each species with a model. Additionally, phalloidin staining and 

genetic analysis were used to investigate the silica deposition mechanism. 

2. INTRODUCTION  

Phaeodaria are deep-sea protozoa, found anywhere from 100 to 3000 meters 

depth, that feed on detritus falling from the ocean’s surface, also known as marine snow. 

They are now known to be a class of the phylum Cercozoa, but they were historically 

grouped within Radiozoa. Due to this historical classification, they are sometimes 

referred to as radiolarians and grouped with the polycistine radiolarians, which do belong 

in Radiozoa.  

Several species of phaeodaria form colonial spheres connecting several silica 

capsules that surround individual organisms. The spheres are made of an intricate silica 

network and are largely unstudied because they are too fragile to be preserved in 

sediment. The majority of specimens have exactly 8 capsules per sphere, though some 
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have 16 or 32 capsules. Figure 1 shows T. globosa, 

one of the species examined in this paper. The 

particles visible on the sphere are marine snow. 

Many organisms in the ocean utilize 

biomineralization processes to build supporting or 

protective structures, most commonly using silica 

and calcium carbonate. Both are used to produce 

ordered structures, but calcium carbonate is 

normally present in crystalline form, while silica is 

most often amorphous. Sponges, diatoms, and 

radiolarians (polycystine and phaeodarian) are 

three major types of organisms that produce silica structures. Sponges most commonly 

produce silica spicules, which are long cylindrical structures ranging from microns to 

meters in length, formed around an axial filament. Specialized silica deposition proteins, 

also called silicateins, make up 95 % of this filament and are thought to be the primary 

mechanism by which silica structures are formed in sponges. Diatoms, on the other hand, 

have vesicles called silica deposition vehicles (SDVs), whose acidic conditions promote 

gelation of silica from ambient silicic acid into nanoparticles. These nanoparticles are 

then deposited and fuse together to form a frustule. The surface of the frustule is covered 

in evenly spaced and equally sized pores. Depending on species and specimen, the pore 

diameter ranges from nano- to micrometer length[1]. While diatoms and sponges have 

received considerable attention, radiolarians are relatively unstudied, and their silica 

deposition mechanism is unknown. It is possible that they utilize the same mechanism as 

either sponges or diatoms, but they may have a mechanism of their own. 

Silica is one of the most common materials on the planet, and it has many uses. 

Silica is manufactured as a precursor to glass products such as windows, tableware, and 

optical fibers. It can also be refined into elemental silicon for use in computers and other 

electronics. Ordered nanostructures like that of the diatoms have specialized biomedical 

applications such as drug delivery and use as biosensors. Currently, widely used silica 

manufacturing processes require highly acidic conditions, high temperatures, or both. 

Understanding how marine organisms deposit silica in more moderate temperatures and 

Figure 1. An image of T. globosa is 
shown. The 8 capsules are visible, and 
a vague lattice pattern can be seen 
(photo credit to Steve Haddock). 
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pH levels could allow for improvement of 

the manufacturing process, lowered cost of 

production, and greater control over 

mesoscale structural properties[2].  

Phaeodarian colonial spheres exhibit 

complex and regular geometry. 

Characterization and modeling of such 

geometry can provide insight into how the 

structures are formed. The structure of 

phaeodarian colonial spheres is best 

observed using a scanning electron 

microscope (SEM). The spheres are 

composed of a double layer of many near-

equilateral triangles arranged in a hexagonal lattice. The two layers are connected with 

vertical rods at each vertex and diagonal supports on two of the three sides of each 

triangle. Figure 2 shows the observed repeat unit: a hexagonal prism as previously 

described. 

 A geodesic sphere, a well-studied geometric structure, is also composed of all 

equilateral triangles and has emerged as a potential model for the phaeodarian spheres. 

Geodesic domes were popularized by Buckminster Fuller as a means of building large 

domes without internal column supports, and they have the additional advantage of being 

simple to assemble because each face is identical. Because equilateral triangles distribute 

stress evenly along their three sides, geodesic spheres are able to distribute stress evenly 

throughout their entire structure. This makes them exceptionally strong for the amount of 

material they require. Thus, they would be an efficient biological structure to expend 

minimal building material and energy for maximal strength[3]. 

 Geodesic spheres are described by their base polyhedron and frequency, k. 

Frequency describes the number of subdivisions of each face of the base polyhedron. At 

k=1, each face is divided into triangles whose vertices are then projected onto the sphere 

circumscribed about the polyhedron. At k=2, each of these resultant faces is divided into 

four more triangles whose vertices are projected, and so on. Figure 3 shows an illustration 

Figure 2. An SEM image shows the repeat 
unit of the phaeodarian silica lattice: a 
hexagonal prism with additional cross-
supports on two of the three hexagonal axes 
(photo credit to Steve Haddock). 
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of frequency. Because the faces are divided and not otherwise changed, the vertices of the 

base polyhedron are always preserved in the resultant sphere. 

  Species of phaeodarian can be distinguished by the number and shape of spines 

coming off of each capsule. Two species of interest in this report are Tuscaridium 

cygneum and Tuscaretta globosa. T. cygneum has four spines extending from the base of 

the capsule and one outward from the top. The spines at the base, called oral spines, 

follow the surface of the sphere in plane with the surface of the sphere. T. globosa has 

four oral spines, and they extend downward from the base of the capsule to curve inside 

and then back out through the sphere. A third phaeodarian species of interest is 

Aulosphaera. It does not form a colonial sphere with other organisms, but instead builds 

one sphere for each organism and exists as colonial clusters of spheres. Aulosphaera was 

chosen because its spheres retain the geodesic shape, but they have only one layer, 

simplifying the hexagonal repeat unit, and the faces of the sphere are larger relative to the 

sphere diameter, simplifying the overall shape. 

 

3. MATERIALS AND METHODS  

Images of T. cygneum and T. globosa were taken using the scanning electron 

microscope (SEM) at Moss Landing Marine Labs, and images of Aulosphaera were taken 

using an optical microscope and digital camera. Image and data analysis was done using 

ImageJ and R. Models were generated using R’s mvmesh package and Wolfram 

Mathematica’s PolyhedonData package. 

  

 

 

 

 

 

 

 

Figure 3. Frequencies 1 to 3 for an icosahedron-based geodesic sphere 
are shown, highlighting the subdivision of faces as the defining factor 
of increased frequency. 
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3.1 MEASURING SPECIMENS 

To analyze the structure of phaeodarian spheres, measurements were taken from 

SEM images using ImageJ image analysis software. All of the images analyzed were 

taken using the SEM at Moss Landing Marine Labs. For three different species, T. 

globosa, T. cygneum, and Aulosphaera, measurements were taken of sphere diameter and 

triangle side lengths. Due to limited SEM access and varying sample availability, the 

number of measurements varies for the different species, but the measurements do 

provide some insight as to the side length distributions. Because the surface of the sphere 

is curved, there is potential distortion of the measurements as the sphere curves away 

from the image plane. To minimize this, only sections of the image in which the sphere 

surface appears most parallel to the image plane, usually the center of the image, were 

chosen. Additionally, for the colonial species, T. globosa and T. cygneum, each triangle is 

so small in relation to the sphere that distortion was assumed to be negligible. However, 

distortion may have a greater effect on the Aulosphaera measurements because the same 

number of measurements must span greater curvature.  

 

3.2 FITTING THE MODEL 

 Geodesic models were generated for octahedral, cubic, icosahedral, and 

dodecahedral bases from frequencies k = 1 to 8. The octahedral and cubic bases showed 

increasing distortion of faces at higher frequencies, as shown in Figure 4, thus icosahedra 

and dodecahedra were identified as the bases of interest for this model.  

 
Figure 4. From left to right, icosahedron-, dodecahedron-, octahedron-, and cube-based spheres of 
frequency k=4 are shown. Distortion is visible on the octahedron- and cube-based spheres, with smaller 
faces near the original vertices and square symmetry still visible, while the icosahedron- and dodecahedron-
based spheres show uniform face size. 
 

The number of faces for icosahedron- and dodecahedron-based spheres from k=1 

to 6 were calculated. Then, each species was matched to the model with the nearest 
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number of faces to its estimated number of faces from measurement. The difference 

between the calculation and the model was expected to be relatively large because of the 

irregularity of the specimen spheres compared to the models and because of error and 

variability in measurement and calculation. 

 

3.3 ADDITIONAL LINES OF INQUIRY 

 In addition to the geodesic model fit, two additional lines of inquiry were pursued 

to lesser depth in an attempt to better understand the silica structure and deposition 

mechanism. These were transcriptome analysis and phalloidin staining. 

 

3.3.1 Genetic Analysis 

 Because the silica deposition mechanism of sponges has been studied to a greater 

extent than that of radiolarians, the amino acid sequences of sponge silica deposition 

proteins, or silicateins, are known for many species. Transcriptome analysis was 

conducted by searching the NCBI online database for silicatein and cathepsin-L protein 

sequences, and comparing them to MBARI’s own radiolarian transcriptome library using 

the Geneious software. The MBARI data was first translated from nucleotide sequences 

into amino acid sequences and then compared to the NCBI sequences. FigTree software 

was used to create a genetic tree showing the relative similarity of sequences and groups 

of sequences.  

 

3.3.2 Phalloidin Staining 

 Phalloidin 488 is a green fluorescent stain that attaches to actin in the 

cytoskeleton of cells. Because it is possible that contact with the radiolarian 

cells/cytoplasm is necessary for silica deposition, phalloidin was used to investigate 

where the cells extended to outside of the capsules. Phalloidin staining was conducted on 

board the Western Flyer on specimens of T. globosa, T. campanella, T. luciae, and 

Aulosphaera. A solution was prepared of 4% formalin and 1% Triton X 100. The 

phalloidin was reconstituted in 500 µL methanol. For each sample, a solution was 

prepared consisting of 25 µL phalloidin, 20 mL formalin and Triton solution, and 30 mL 

seawater. The specimen was immersed in this solution and then incubated in dark 
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conditions for intervals varying from 1 to 24 hours and observed periodically for 

fluorescence under the microscope. Additionally, two stained samples were observed 

under a higher quality microscope back at MBARI. 

 

4. RESULTS  

4.1 Geodesic Model Fit 

Figure 5 shows histograms of the measured triangle side lengths for the three 

species. The individual length measurements for each species are given in Appendix A. 

Table 1 shows the average side length and diameter measured for each species, as well as 

the number of faces estimated to be on the sphere. The estimation was calculated by 

dividing the surface area of the sphere by the area of the average triangle. The surface 

area of the whole sphere can be calculated from the diameter (surface area = 4πr2), and 

assuming the triangles are equilateral, the area of one triangle equals !
!
∗ 𝑠𝑖𝑑𝑒  𝑙𝑒𝑛𝑔𝑡ℎ !. 

Though the assumption that each triangle is perfectly equilateral and the limited 

measurements of sphere diameter introduce uncertainty, the estimate still gives an idea of 

the magnitude of the number of faces for each species. Table 2 shows the number of 

faces on icosahedron and dodecahedron based geodesic spheres from frequency k=1 to 5. 

Despite the fact that they can all be modeled using a geodesic sphere, side length and 

sphere size vary considerably by species, resulting in huge differences in the number of 

faces expected.   

Models were fitted to each species using the number of faces estimated for each 

species and the number of faces calculated for each frequency of the geodesic model. For 

example, using Aulosphaera’s estimated number of faces, 1342, it can be matched to an 

icosahedron-base geodesic sphere of frequency 3, which has 1280 faces. Figure 6 shows 

a visual comparison of a microscope image of Aulosphaera to the model. T. globosa best 

fits an icosahedron-based sphere of frequency 5, and T. cygneum best fits a 

dodecahedron-based sphere of frequency 6.  
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The discrepancy between the specimen’s calculated number of faces and the 

model’s number of faces increases dramatically as the size of the sphere increases. This 

was expected because larger spheres have more areas of irregularity, and more 

measurements are required to accurately estimate the number of faces on a larger sphere. 

Additionally, the model’s number of faces increases exponentially with frequency as 4k, 

leaving larger and larger gaps between one frequency and the next. 
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Figure 5. These three histograms show the 
side length distributions measured for the 
species T. globosa (top left), T. cygneum (top 
right), and Aulosphaera (bottom left). 

Figure 6. A microscope image of 
one Aulosphaera sphere (left) is 
shown alongside its icosahedron-
based, k=3 geodesic model (right). 
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Species Average Side 
Length 

Average Sphere 
Diameter 

Calculated 
Number of Faces 

Aulosphaera 0.125 mm 1.65 mm 1342 

T. globosa 0.270 mm 7.97 mm 6495 

T. cygneum 0.369 mm 14.41 mm 11386 

Table 1. The average side length, average sphere diameter, and calculated number of faces are 
given for the three species listed. Though the side length increases for each species, the sphere 
size also increases dramatically, such that the number of faces on a T. cygneum sphere is greatest. 

 

Base k = 1 2 3 4 5 6 

Icosahedron 20 80 320 1280 5120 20480 

Dodecahedron 12 60 240 960 3840 15360 

Table 2. The number of faces for icosahedron and dodecahedron based geodesic spheres from frequency 1 
to 6. 
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Figure 7. A phylogenetic tree comparing silicatein (green), cathepsin-L (blue), and phaeodarian 
transcriptome (red) sequences.  
 

4.2 Additional Lines of Inquiry 

 All phalloidin stained specimens, when observed, showed dim fluorescence inside 

the capsules. No fluorescence was observed anywhere outside of the capsules for any 

species, and the fluorescence that was observed was too dim to be visible in microscope 

images. Upon reexamination at MBARI, the fluorescence was still too dim to capture in 

images. Figure 7 shows the phylogenetic tree generated from comparison of silicatein, 

cathepsin-L, and phaeodarian sequences. 
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5. DISCUSSION 

Because phaeodarian spheres so commonly have 8 capsules attached, one might 

expect the base polyhedron for their sphere to be a cube or octahedron, which have 8 

vertices and 8 faces, respectively. However, this do not appear to be correlated, as 

spheres generated using a cube or octahedron base show high variation in triangle size, 

many isosceles triangles instead of equilateral, and square traces visible even in high 

frequency spheres. This is inconsistent with the measured side length distributions, which 

are unimodal, indicating that faces are roughly equilateral. Figure 4 shows spheres of 

frequency k = 3 generated using different base polyhedra. 

Spheres generated using an icosahedron or dodecahedron base demonstrate much 

more uniformity in triangle size and length over the surface of the sphere. Because 

icosahedra and dodecahedra are similar structures (12 faces and 20 vertices versus 20 

faces and 12 vertices), their resultant spheres at higher frequencies are nearly identical. 

Another important component in the geometry of geodesic spheres is Euler’s 

Law, which states that the number of vertices minus the number of edges plus the number 

of faces must equal 2 for all convex polyhedra: 

𝑉 − 𝐸 + 𝐹 = 2 

Though the faces of geodesic spheres are triangles, they can be grouped and interpreted 

as pentagonal and hexagonal faces covering the surface of the sphere. In this case, a rule 

derivative of Euler’s Law becomes important: 

6− 𝑛 𝐹! = 12 

This formula applies to convex polyhedra with trihedral corners (where three edges meet 

at one vertex). n is the number of sides on a face and Fn is the number of faces with n 

sides. The consequence of the (6-n) term is that hexagonal faces essentially do not 

contribute to the total, so for the geodesic models, polyhedra composed of only 

hexagonal and pentagonal faces must have exactly 12 pentagonal faces[4]. This applies to 

the observed sphere because it means that the hexagonal repeat unit identified from SEM 

cannot be the sole component of the lattice. Figure 8 shows an SEM image of a pentagon 

observed on the sphere of T. globosa. This supports the geodesic sphere as a model for 

the phaeodarian sphere. 
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 Having characterized and modeled 

the sphere, the question remains as to how 

they are actually constructed by the 

organism. Unfortunately, possible growth 

mechanisms are difficult to rule out due to 

the fact that silica is an extremely versatile 

material. O. Roger Anderson discusses 

silica deposition in radiolarians in his book, 

Radiolaria. He maintains that cytoplasm must be present at the silica surface for 

deposition to occur and calls this cytoplasm sheath the “cytokalymma”, as shown in 

figure 9-A. He also observes that radiolarians can grow silica rods in a straight line across 

a gap, as shown in figure 9-B, though no cytokalymma is apparent in that image. To 

further complicate matters, when Anderson made these observations, there was no 

distinction made between polycistine radiolarians and phaeodaria, two groups now 

understood to be genetically distinct, so it is possible that the mechanisms he observed 

apply to polycistine radiolaria and not phaeodaria[5].  

 Another mechanism for building complex silica 

structures is “bio-sintering”, as described by Müller, et al 

(2009). In this method, silica spicules of roughly uniform 

size are produced by a sponge and then later fuse together 

by bio-sintering into a network of spicules[6]. Because of 

the many ways that an organism can manipulate silica in 

an aqueous environment, even improbable 

sounding explanations of the phaeodarian 

sphere must be considered.  

 One possibility is that the lattice 

nodes are formed by dispersing silica 

particles on a spherical interface and then 

connecting the particles with rods to form 

the lattice nodes. Bausch et al (2003) 

Figure 8. A pentagon was observed in the 
lattice of a T. globosa specimen, as is consistent 
with Euler’s Law of Convex Polyhedra. 

Figure 9. Images from Radiolaria, by O.R. Anderson 
showing the behavior of silica in radiolaria: (A) the 
“cytokalymma” (Cy) surrounding the skeleton (Sk), 
and (B) examples of silica rods joining straight lines 
across gaps. 

A 

B 
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observed that particles of uniform size 

allowed to move freely in a spherical 

interface repel and space themselves 

approximately evenly. When lines were 

drawn between the particle locations, they 

formed a two dimensional hexagonal 

crystal similar to a phaeodarian sphere, as 

shown in Figure 10[7]. Some species of 

phaeodaria that do not form silica spheres 

do form bubbles of cytoplasm that hold 

multiple organisms together and take on 

the same general shape of the silica 

spheres. Thus, it is possible that sphere-

forming species could use a similar 

bubble as a template for the silica lattice.  

Because of Euler’s Law, the lattice cannot be perfect hexagons, so Bausch et al 

went on to characterize the defect structures that appeared in their experiment. They 

found that in systems with few particles relative to sphere size, only the requisite 12 

isolated pentagonal defects formed. However, as the size of the system and particle 

packing on the sphere increased, heptagonal defects appeared, and the pentagonal and 

heptagonal defects formed “scars”, or defect chains, of alternating 5-7 nodes. It appears 

that the defects form together so that tension around a node with one too few connections 

is mitigated by compression around a node with one too many. The length of these defect 

chains increases proportionally to the ratio of sphere radius to mean particle spacing 

(R/a), and defect chains are expected to appear for all R/a > 5[7]. 

Using measurements from T. globosa, which give R/a = 13.8, and the model 

proposed by Bausch et al, about 5 defects (in addition to one pentagons) are expected in 

each defect chain. Similarly, for T. luciae, about 7 additional defects are expected. No 

heptagonal defects or defect chains were observed on any of the phaeodarian samples. 

However, with few expected defects compared to thousands or tens of thousands of faces 

Figure 10. (A) and (C) show particles self-arranged 
on a spherical interface. (B) and (D) show a lattice 
drawn between the particles that closely resembles 
the phaeodarian lattice. On the lattice, red dots mark 
nodes where only 5 faces meet, and yellow dots 
mark those where 7 faces meet. 
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on each sphere, this mechanism of particles dispersing on 

an interface has not been ruled out as a possibility.  

Another possibility for sphere formation is that 

rods and triangles are produced at one or more point 

sources and later fuse together to create the lattice. Many 

nodes are asymmetrical in a way that indicates fusion of 

two or more prior nodes. For example, Figure 11 shows a 

node in which every other angle between rods appears to 

be wider. This asymmetry could be the result of three pre-formed triangle nodes fusing 

together to form the new node. A second example in Figure 12-A shows an apparently 

freestanding triangle just above a highly asymmetric node. The end of the freestanding 

triangle nearest to the node is rounded and does not appear to have broken off of any 

other node. Figure 12-B shows a close-up of the two nodes.  On a larger scale than 

individual nodes, a lattice with multiple points of 

origin would have noticeable interfaces where two 

regions meet. These are analogous to grain 

boundaries in that they are disordered interfaces 

where two regions of the same crystal with 

different crystallographic orientations meet. 

Figure 13 shows one such boundary. The left half 

of the image and bottom right of the image show 

two regular lattices with different orientations. 

The bottom right lattice is rotated 90° in relation 

to the left side lattice, such that they cannot merge 

to form a unified lattice. Instead, a disordered 

region forms between them, as seen in the center 

right of the image.  

A drawback of this theory is that the 

location of the points of origin is unknown. No 

correlation was found between the locations of 

capsules on the sphere and the appearance of 

Figure 11. A typical node shows 
angular asymmetry where pairs 
of rods meet. 

Figure 12. This triangle point does not 
appear to have broken off of the adjacent 
node, indicating that individual triangles 
may be the first level of lattice 
formation. 

A 

B 
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grain boundaries, and regions of irregularity are 

frequently larger than a small interface and cannot be 

explained by grain boundaries alone. Additionally, 

all of the same objections regarding the 

“cytokalymma” and other theories as to the silica 

deposition mechanism required for growth and 

fusion continue to apply in this case.  

The phalloidin staining and genetic analysis 

were inconclusive in eliminating any potential silica 

deposition mechanisms. The phalloidin staining was 

completely inconclusive. Despite the fact that 

fluorescence was observed only in the capsules, it is already known that radiolaria can 

and do extend outside of their capsules but can retract in times of stress. The specimens 

tested here were not stained fast enough to capture a pre-retracted state and provide any 

insight into where and how the radiolarians extend when they do. 

Though the phylogenetic tree indicates some similarity between radiolarian 

proteins and sponge silicateins, this could also represent similarity to cathepsin-L, a 

silicatein-like protein that has nothing to do with silica deposition and is instead a 

lysosomal enzyme. Additionally, the absence of an axial filament in phaeodarian silica 

rods indicates that even if silicateins are present, they are not forming silica spicules in 

the same way that they do in sponges.  

 

6. CONCLUSIONS  

While a perfect geodesic sphere does appear to be an applicable model to 

phaeodarian spheres, it is limited to integer frequencies and cannot account for irregular 

regions. Additionally, the way that geodesics are formed (or calculated) is by splitting a 

similar polyhedron and projecting onto the circumscribed sphere. This is a highly 

mathematical method, and a better model for sphere growth ought to have some physical 

or biological basis. However, further investigation into the silica deposition 

mechanism(s) of phaeodaria must be conducted before such a model can be created. 

 

Figure 13. An SEM image shows two 
regions of regularity (left half and 
bottom right corner) with an interface 
of irregularity where the two regions 
may have grown together. 
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7. FUTURE WORK 

 Future work would include an elaboration upon the two additional lines of inquiry 

presented in the methods section: genetic analysis and staining of specimens to 

investigate the silica deposition mechanism. An additional stain of interest is PDMPO, 

which was put forth by Ogane et al. (2009) as a silica tracker in live specimens. It could 

potentially be used to identify growing areas of the lattice and track growth in real time.  

Another area for future work is investigation into computer vision methods of 

constructing a 3-D digital model of a specimen. Many different computer vision software 

packages exist, but most are used for animation or other applications. It would be 

interesting and useful to apply computer vision to SEM images to stitch together a digital 

model of a real specimen. This would allow more detailed study of irregular areas, 

measurements, and analysis in the context of the whole sphere instead of being limited to 

one region. Such data would be invaluable in the development of a more complex model. 
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Appendix A: Side length measurements in mm 

T. cygneum T. globosa Aulosphaera 

0.365 0.335 0.288 0.306 

0.287 0.356 0.295 0.312 

0.271 0.301 0.302 0.372 

0.356 0.371 0.392 0.363 

0.378 0.378 0.373 0.357 

0.355 0.400 0.323 0.367 

0.362 0.364 0.397 0.350 

0.383 0.376 0.374 0.379 

0.383 0.389 0.345 0.374 

0.381 0.395 0.442 0.419 

0.368 0.387 0.376 0.374 

0.306 0.298 0.292 0.275 

0.293 0.284 0.278 0.302 

0.291 0.303 0.297 0.288 

0.280 0.282 0.301 0.272 

0.279 0.298 0.302 0.305 

0.271 0.277 0.285 0.290 

0.276 0.274 0.312 0.288 

0.281 0.272 0.251 0.275 

0.276 0.261 0.297 0.288 

0.301 0.270 0.272 0.301 

0.249 0.283 0.289 0.306 

0.129 0.132 0.134 0.127 

0.125 0.107 0.130 0.113 

0.127 0.122 0.137 0.116 

0.159 0.152 0.128 0.116 

0.137 0.146 0.140 0.093 

0.129 0.116 0.099 0.120 

0.116 0.102 0.154 0.167 

0.130 0.122 0.165 0.114 

0.147 0.129 0.123 0.115 

0.128 0.126 0.101 0.090 

0.139 0.116 0.125 0.139 
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0.362 0.361 0.359 0.374 

0.390 0.414 0.422 0.375 

0.396 0.378 0.404 0.373 

0.386 0.395 0.363 0.398 

0.391 0.401 0.402 0.408 

0.353 0.366 0.379 0.372 

0.378   0.395   0.347   0.396 

0.271 0.230 0.273 0.268 

0.277 0.286 0.243 0.218 

0.271 0.265 0.290 0.260 

0.291 0.265 0.279 0.314 

0.253 0.278 0.291 0.299 

0.292 0.283 0.265 0.263 

0.258 0.278 0.262 0.279 

0.274 0.262 0.281 0.293 

0.268 0.277 0.296 0.211 

0.298 0.239 0.279 0.230 

0.291 0.270 0.298 0.246 

0.291 0.263 0.236 0.284 

0.283 0.253 0.240 0.238 

0.205 0.217 0.262 0.220 

0.254 0.261 0.218 0.282 

0.229 0.294 0.253 0.236 

0.257 0.218 0.251 0.230 

0.218 0.254 0.258 0.217 

0.280 0.226 0.260 0.292 

0.231 

0.132 0.108 0.127 0.101 

0.077 0.135 0.118 0.101 

0.111 0.115 0.136 0.110 

0.115 0.136 0.143 0.105 

0.139 0.109 0.102 0.152 

0.142 0.123 0.151 0.131 

0.121 0.113 0.121 0.132 

0.123 0.127 0.135 0.133 

0.113 0.119 0.109 0.127 

0.107 0.121 0.149 0.150 

0.139 0.151 0.136 0.139 

0.138 0.139 0.118 0.127 

0.109 0.103 0.115 0.133 

0.125 0.127 0.140 0.161 

0.122 0.124 0.104 0.140 

0.149 0.129 0.104 0.115 

0.122 0.124 0.110 0.116 

0.142 0.113 0.092 0.136 

0.124 0.106 0.097 0.089 

0.102 0.132 0.129 0.132 

0.143   0.137   0.122 

 


