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ABSTRACT 

A closed-loop velocity-position cascade control system for a profiling float is 

investigated, simulated, and tested. In the dynamic model, drag experienced by the plant 

is linearized to facilitate Laplace Transform, and transfer function is computed. A 

discrete-time PID controller with low-pass signal filter is integrated into the model in the 

Laplace domain, and resulting Root Locus computed. For a tested set of control gains the 

Root Locus predicts an over damped response to step input. Simulink simulation of the 

non-linear plant, and subsequent testing in the MBARI Test Tank showed the plant 

exhibited slight oscillation when given a step input. The cascaded strategy was successful 

in depth control within +/- 0.2 dbar, but is energetically expensive. For long term float 

deployments, a more efficient strategy of achieving neutral buoyancy is needed. 
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NOMENCLATURE 

FB Buoyant Force [N] CD Drag Coefficient 

FG Gravitational Force [N] A Float Frontal Area [m2] 

FD Drag Force [N] g Gravitational Acceleration, -9.81 m/s2 
V Instantaneous Float Volume [m3] clin Velocity linearization parameter 

V0 Static Float Volume [m3] a, b Transfer Function Coefficients 

 Buoyancy Engine Flow Rate [m3/s] u Control Signal 

m Float Mass [kg] VSP Velocity Set Point [m/s] 

ż Velocity [m/s] IB, OB Velocity Control Bands [m] 

ρsw Sea Water Density [kg/m3]   

 
INTRODUCTION 

Coastal waters (defined by the continental shelf), are highly productive environments. 

While occupying only 7-10% of total ocean area, it is estimated they are responsible for 

40-50% of net primary productivity in the ocean (Bauer et al. 2013, Ducklow & 

McCallister 2004). In a study of oceanic and terrestrial systems, Geider et al (2001) 

estimate that globally, coastal waters are responsible for approximately 10% of the 

Earth’s net primary productivity. 

While undoubtedly important, a lack of appropriate temporally and spatially scaled data 

has left our understanding of these systems with a high degree of uncertainty (Bauer et al. 

2013). High cost has prevented historical biogeochemical studies (research cruises) from 

being scaled to capture the heterogeneous nature of these waters. In the last ten years 

however, low-power biogeochemical sensors (pH, Oxygen, Nitrate, pCO2 and others), 

have been developed and are being proven to be suitable for long-term observation 

systems (Johnson et al 2009). With the advent of these sensors, the primary technical 

challenge of implementing a coastal observing network lies in cost effective long-term 

deployment of these sensors. 

Perhaps the single tenable option for a scalable coastal biogeochemical observing 

network is through the use of profiling floats. The Argo Array, launched in 1999 

currently sports over 3,600 Apex Profiling Floats which profile the top 2,000 m of the 

world’s oceans (on average) every 10 days.  The profilers have a battery life of 4-5 years, 

and telemeter collected data via satellite during surface intervals. The life-cycle cost, 
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including Iridium/Argo satellite fees, of a single Apex float is approximately $30,000 

(Argo FAQ).  

While the underlying technology of profiling floats has been successfully scaled to a 

global deployment, several challenges of working in shallow coastal waters preclude the 

use of commercially available profilers in coastal environments. Figures 1 (a) and (b) 

show the trajectory and maximum depth of an Apex float operating in the Pacific Ocean. 

Excessive drift and coarse depth control make operating these floats in small and shallow 

(< 500 m) measurement volumes difficult. 

 

 
 
 
 
 
 
 
 
 
 
 
 

(a) 

 

(b) 

Figure 1: Apex (Argo) profiling floats often exhibit large drift and coarse depth control, making them 
unsuitable for operation in coastal waters (which are small and shallow by nature). The 1,016 day trajectory 
of a single float can be followed with the white line in (a). The start pressure of each profile is shown in (b) 
and shows the coarse nature of the float’s depth control. 

 

To address these challenges, in 2012 the MBARI Chemical Sensors Laboratory began 

development of the Coastal Profiling Float (CPF). To minimize drift, the CPF is designed 

to “anchor” itself by becoming negatively buoyant and resting on the benthos between 

profiles. Closed-loop buoyancy control will ensure accurate platform velocity and depth 

control should the float park itself in the midwater. 
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MATERIALS AND METHODS 

CONTROL STRATEGY 

Because control of both velocity and position of the CPF are desired, it was decided to 

design and implement a cascaded velocity-position controller. By designing a velocity 

profile with respect to displacement from a desired position, cascaded control strategies 

allow one to control a plant’s velocity and position. Such controllers are commonly used 

in industrial CNC machine tools (Karlsson 2009 & Mandra 2014). In Figure 2, the 

general structure of the closed-loop control system for the CPF is shown. The target 

depth, velocity set point, controller, control signal, plant model, and depth are represented 

by, r, Vsp, Gc(s),u, Gp(s), and z respectively.   

 
Figure 2: To control the CPF, a cascaded velocity-position controller is 
used. Position of the float relative to its target depth, r, adjusts the 
velocity set point according to a table in VSP. To control velocity, a PID 
controller acts on discrete (and filtered) differentiation of pressure 
samples. 

 

PLANT MODEL 

To design a closed-loop controller, it is first necessary to model the dynamics of the plant 

of interest. Figure 3 shows the free body diagram of a profiling float during ascension. 
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The float has some mass, m, volume, V, velocity, v, and the seawater having some 

density, ρsw. The buoyant, drag, and gravitational forces are given by: 

 
 (1) 

 
 (2) 

  (3) 

 

where V0 and  are the float’s fixed volume, and buoyancy engine’s volumetric flow 

rate respectively. The buoyancy engine’s flow rate is chosen as the control variable 

because it is proportional to the rotational speed of the motor driving the pump and thus 

easily controlled. The velocity component of the drag term is given by   and not  so 

the sign of  is respected. The buoyancy term can be simplified and gravitational term 

eliminated by assuming the constant buoyant force is equal to the gravitational force of 

the float. The simplified equation of motion is then given by, 

 
 (4) 

 

 
Figure 3: To model system dynamics, a free body diagram is drawn 
with relevant forces that act on the system: buoyancy, gravity, and 
drag, labeled FB, FG, and FD respectively. Additionally, the body has 
some mass, m, volume, V, and velocity, v. 
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This equation of motion is used as the basis for a full dynamic simulation in MATLAB 

Simulink. As implemented, the model includes features such as: realistic sea water 

density profiles computed from MBARI ROV Ventana CTD data, added mass factor, 

pump (in)efficiency, ideal-gas law compressibility to model air trapped in the buoyancy 

engine, and the linear drag experienced by an object moving slowly (Re < 100) through a 

stratified fluid as described by D’Assaro (2003).  

For development of a controller however, the equation of motion is used without the 

above mentioned complexities, and drag term linearized to allow representation in the 

Laplace Domain. Drag is linearized such that the linear approximation, , yields an 

equal drag force at zero velocity, and some nominal velocity, vnom, 

 

 

 

 
 (5) 

 

 
Figure 4: To perform a Laplace transform on the equation of motion, 
the non-linear drag term is linearized at the zero velocity point, and 
some nominal platform velocity, vnom, shown here as 0.1 m/s. The 
quadratic drag shown here was computed with ρsw = 1027 kg/m3, CD  = 
1.5, and A = 0.1018 m2.  
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By grouping terms,  

 
 
the linearized equation of motion is transformed into the Laplace domain, and open-loop 

transfer function, Gp(s), found, 

 
 (6) 

 

 
 (7) 

 

 
 (8) 

 

 
Figure 5: The open loop transfer function given by Equation 8 has two 
poles, located at s = 0 and -b/m. 

 
  
TEST TANK PROTOTYPE 

A Test Tank Prototype (TTP) of the CPF was built in early 2012 as a proof of concept, 

and served as the test platform for the development of the controller. Figures 6 (a) shows 

the prototype, with relevant system components listed in 6 (b).  
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(a) 

 
 

 
(b) 

Element Value/Description 
m 38 kg 

Adjustable 
Buoyancy 3 L 

Power Qty 6: Tenergy Li-Ion 25.9V 
2600mAh Batteries 

Micro 
Controller 

EMX System on Module (.NET 
Micro Framework w/C#) 

Motor Maxon RE65 w/Quadrature 
Encoder 

Motor 
Controller Elmo Solo Whistle 

Pump Oildyne 692 
Pressure 

Transducer Honeywell 20psi 4-20mA 

Pressure 
Transmitter 

Omega DGH D1000 Series 4-
20mA A/D 

Figure 6: The Test Tank Prototype used during testing of the control 
system was built in 2012 and is shown in (a). Relevant power, control, 
and platform parameters are listed in the table shown in (b). 

  
CONTROLLER  

A discrete PID controller with second-order low-pass filter had been previously 

implemented in on the CPF’s microcontroller by Gene Massion. The controller and filter 

is based on a discrete-time controller found in Åström and Hägglund (2006). In its 

continuous form, the controller is modeled by, 

 
 (9) 

 

The filtered input signal, yf is produced by a second-order low-pass filter (LPF), which is 

also implemented in the algorithm. The transfer function of this filter is, 

 
 (10) 

 

where Tf is the time constant of the filter. This filter has a damping coefficient of 0.707, 

corresponding to ~4.3% overshoot. A low-pass filter of sufficiently low cut off frequency 
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has the ability to filter not only the electrical noise that may be present on the pressure 

transducer line, but also sinusoidal pressure signals resulting from wave action when the 

float is near the surface. It is desirable to filter out these low-frequency wave signals as 

acting upon them would be a poor use of the float’s limited energy budget. Figure 7 

shows a spectrogram of wave height for different wind speeds in fully develop seas. 

Based on this graph, it was decided that a 3 dB cut off frequency of 0.1 Hz (Tf = 1.59) 

would minimize influence to the system by smaller waves, without introducing excessive 

error signal delay into the system. Here, excessive time delay is defined as a rise time 

approximately equal to, or larger than, the open-loop response of the system to a step 

input. The settling time, Ts, for the 0.1 Hz LPF filter is approximately 9.6 seconds. 

 
Figure 7: Wave frequency varies with amplitude, which is influenced 
by wind speed. Plotted here is the wave spectrogram for different wind 
speeds in fully developed seas. A 3 dB low-pass frequency of 0.1Hz 
was chosen and implemented in the filter. Figure from Moskowitz 
(1964). 

 

The overall transfer function of the PID controller and second order filter, Gc(s), is given 

by, 

 
 (11) 
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For Root Locus analysis & modeling, the plant transfer function was imported into the 

MATLAB sisotool. Complex poles representing the filter were added, an integration 

pole, and the two zeros were added. 

As a starting point, existing hand-tuned gain values (K = 70, TD = 10, TI = 50,000) were 

used in the velocity controller. Previous modeling indicated the controller was stable 

(likely over damped), and achieved a settling time of ~90 s – relatively slow in the 

context of many dynamic mechanical systems, but acceptable for a profiling float in the 

ocean.  

The velocity set point table is broken into three bands: mission velocity, approach 

velocity, and zero velocity. Mission velocity is the primary velocity at which the float 

ascends or descends between waypoints. Approach velocity is a small velocity to help 

“guide” the float to the appropriate depth, (and return it to that depth should it leave the 

park area unexpectedly), and, as expected, zero velocity is a set point of 0 m/s.   

 

Figure 8: The velocity set point controller for the CPF is discrete 
instead of continuous. When the float is far away (> OB m) from its 
depth set point, the mission-defined velocity is the velocity set point. 
Once the float is inside the yellow band, bounded by IB and OB, the set 
point velocity is adjusted to the approach velocity, 0.01 m/s. Finally, 
once the float enters the park depth, DSP+/- IB, velocity is set to zero. 
This approach allows for some settling and provides a dead band to 
prevent oscillation when in the park zone. Should the float drift out of 
the park zone however, it will be commanded back with a slow velocity 
“nudge” to put it back inside. 
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RESULTS 

SIMULATION 

The simulation was run with the added mass factor (25%) and CD= 1.5 found by Sohn 

(2013). Simulation results show the controller should be capable of achieving zero 

velocity, meaning the float should be capable of non-oscillatory depth holding. Placing 

zeros at the locations corresponding to the PID gains mentioned above and plotting the 

Root Locus, via sisotool, one can examine the predicted model response over a range 

of gains, 

 
Figure 9: The MATLAB sisotool produced Root Locus and Bode responses for the closed loop velocity 
controller. Dominant (slow, or close to the imaginary axis) poles have no complex component, so no 
oscillation is expected when the system is given a step input. For a controller gain of ~700, the poles are 
shown in pink. Gain and Phase margins of 24 and 93 dB respectively indicate the controller is stable given 
the physical parameters of the plant, and that there is room for some amount of gain increase, plant model 
uncertainty, and/or even higher drive frequency.  
 
Platform response to velocity input signal was good, though difficult to measure. Sample 

time for the controller and pressure transducer was set to 1s, and the 4-20 mA to RS-232 

converter provided approximately 0.065 dbar (~6.5 cm) resolution. Discrete pressure 

samples were put through a differentiator filter, which in turn estimated velocity. Figure 

10 shows the command and response of the system to the velocity set point over the 

course of a dive. 
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Figure 10: Blue lines show commanded velocity over the course of a dive profile, while red shows the 
differentiator filter estimation of velocity. Because pressure samples were taken at 1Hz, and the pressure 
sensors & A/D combination had a resolution of 0.065 m, sequential pressure measurements could only 
provide coarse velocity measurements. It is worthy to note that when commanded to maintain zero velocity, 
the platform appears to show slight oscillatory behavior about 0 m/s.  
   

 
Figure 11: The depth profile of a dive to 7 and 4 m, with two 300 s holds is shown. The commanded 
descent and ascent velocity was 0.05 m/s, with IB = 0.2 m and OB = 1 m. Both the simulation and test 
showed slight oscillatory motion when trying to hold zero velocity. Once settled, the float does not leave 
the +/- 0.2 m band. While depth deviations are small, their presence is easily detected examining the 
velocity measurements of the float (Figure 10). The superimposed yellow and green bars depict the 
approximate velocity set point thresholds as shown in Figure 8. 
 

DISCUSSION 

The Root Locus plot predicts an over-damped, and thus non-oscillating response to a step 

input of 0.05 m/s to the velocity controller. It should be remembered that this response is 

based on a linear approximation of the decidedly non-linear plant. Considering this fact, 

-0.1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

0.1

0 200 400 600 800 1000

Ve
lo

ci
ty

 [m
/s

]

Time [s]

Command

Platform Velocity Filtered
Estimate

0

1

2

3

4

5

6

7

8
0 200 400 600 800 1000

De
pt

h 
[m

]

Time [s]

7-25-14 Test
Simulation



 13

the presence of slight oscillations while trying to hold zero velocity is not surprising. 

Intuitively, this makes sense as the slope of the drag curve in the linearized model is 

constant, whereas it approaches zero in for the quadratic drag regime, meaning that for a 

given change in velocity near 0 m/s, the expected change in drag is quite different 

between the linear and non-linear systems. 

The cascaded position strategy is effective at holding depth, as can be seen in Figure 11. 

This process is active however, as the motor is constantly making adjustments, and based 

on the velocity profile in Figure 10, oscillating. While successful at holding position, this 

is energetically expensive, and is thus not suitable for a long term deployment. 

CONCLUSIONS 

A cascaded velocity-position controller was analyzed, implemented, and tested on a 

prototype of the MBARI Coastal Profiling Float. The approach uses a discrete PID 

implementation with second-order low-pass filter described by Åström and Hägglund 

(2006). A velocity set point table uses depth error to adjust the velocity set to achieve 

desired depth. 

The cascaded strategy is shown to be successful in controlling velocity and position. 

Slight oscillatory motion is observed when the float is near zero velocity, possibly due to 

the difference between the linearized float model, and the non-linear drag experienced by 

the float. 

A neutral buoyancy routine should be investigated and implemented in order to make the 

float energetically efficient during mid-water park periods. 
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