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ABSTRACT  

Remotely-sensed ocean observing technologies and numerical models have generated 

years of spatiotemporal data for the purposes of visualizing, understanding, and 

forecasting marine conditions. Many products based on these data can be accessed on the 

Central and Northern California Ocean Observing System website. Users are able to view 

maps of various parameters in order to observe past, present, or near future conditions of 

the ocean. However these products are somewhat limited in their capacity for calculating 

geospatial statistics. Having the ability to perform spatial and temporal analyses of the 

ocean’s physical parameters could have broad applications for marine researchers and 

policy-makers. Therefore, the purpose of this project was to convert historical sea surface 

temperature, ocean color (proxy for chlorophyll concentration), currents, and wind 

datasets into formats that can be executable with geospatial software. Furthermore, 

several examples of analyses that can be performed with these data are presented. The 

results of this project will improve marine stakeholder’s understanding of the physical 

components in the dynamic marine environment through geospatial data analysis and 

visualization.  
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 INTRODUCTION  

There is somewhat of a data rift between two fundamental regimes of marine 

research efforts. Traditionally, studies in physical oceanography require a background in 

physics to understand fluid dynamics and energy fluxes inherent in oceanographic 

conditions. Moreover, these studies often involve time-series datasets of broad spatial 

extents, requiring computing power and programming knowledge in order to manipulate 

the data and acquire results (Schwarz et al. 2010, Kim 2009). On the other hand, studies 

of marine ecology are often temporally static or occur on annual frequencies (Anderson 

et al. 2009, MacCall and Prager 1988). Ecological studies are also heavily dependent on 

high spatial accuracy, due to the fine spatial scales required to evaluate species-

environment interaction (Young et al. 2010). The latter efforts of marine research are 

becoming more frequently used and understood by marine management and stakeholders 

(Leslie and McLeod 2007, Crowder and Norse 2008). However, an understanding of the 

physical parameters is somewhat elusive to those outside of oceanographic research. 

Bringing oceanographic observational datasets into the spatial analysis realm could help 

bridge this rift and improve marine management decisions. 

Ocean observing systems provide useful tools for visualizing the physical 

components of the dynamic marine environment across broad spatial scales. Remote-

sensing techniques, such as satellite imaging and high-frequency (HF) radar, are capable 

of producing daily to hourly distributions of oceanographic conditions (NASA 2011, Kim 

et al. 2007). This includes sea surface temperature (SST), ocean color, and current 

vectors. Furthermore, data-assimilating oceanographic and atmospheric numerical 

models allow for the nowcast, and even forecast, of oceanic and atmospheric conditions 

(Shulman et al. 2002). The results can be downloaded for use in scientific research or 

displayed on map layouts to characterize the distribution of each physical parameter.  

These products and others have enhanced marine research capabilities in 

describing the physical dynamics that drive ecosystem variability. In the California 

Current System (CSS), where marine organismal community dynamics are greatly 

influenced by coastal upwelling of deep sea nutrients, studies have incorporated ocean 

observing data to explain trends in ecological parameters. For example, Kahru et al. (in 
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press) incorporated data from historical in situ observations and satellite measurements to 

plot chlorophyll concentration time series for several regions within the CCS. The results 

indicated a trend of increasing chlorophyll concentrations off the central and southern 

coast of California, paired with decreasing concentrations near Baja California and within 

the North Pacific gyre. Kim (2010) used HF radar to observe spatial and temporal 

variability in eddies offshore of southern California. His study demonstrated the utility of 

HF radar-derived currents as a complement to satellite remote sensing observations, for 

understanding coastal dynamics.  

Traditionally, research of these time series variables have been conducted by 

groups with the computing power of technical and specialized software, such as 

MATLAB®. This software provides users with the capability of calculating statistics 

over time and space to yield results. However, these datasets are typically in binary or 

array formats, which creates difficulty for users not trained to manipulate those types of 

data. Consequently, most ecologists and marine managers, who generally lack a 

background in physics and programming, have limited access to such data resources. This 

somewhat hinders the incorporation of dynamic variables into the scope of marine 

ecology and policy.  

To reconcile this disconnect, the purpose of this project was to convert several 

oceanographic datasets (SST, chlorophyll, current, wind) into formats that can be read 

and analyzed by geospatial software; with the intent for these to be hosted by CeNCOOS. 

Furthermore, several analyses were demonstrated to understand the capabilities of these 

geospatial data. The goal of this project was to examine whether dynamic parameters 

could be displayed and analyzed with geospatial software. The results of this project 

could open up new capabilities for marine research analytics, as well as provide marine 

managers with additional information on which to base decisions.  

MATERIALS AND METHODS  

To achieve the goals of this project, multiple datasets of various temporal and 

spatial resolutions were converted into a format that could be opened and manipulated 

with geospatial software. Upon retrieval from their respective sources, each dataset was 

formatted to execute in MATLAB, which was the primary processing software of 
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CeNCOOS. The final data format desired by this project was ARC GRID raster, which 

has been the common raster format of ArcMap (ESRI 2011). Raster data are structured as 

a geographically referenced grid containing measurements. Grid cell width and length 

dictate the resolution of the data. The ARC GRID format was chosen for this project due 

to the growing use of ArcMap as a geospatial analyst and visualization tool. Therefore, 

MATLAB (v2012a, The MathWorks) and ArcMap (v10.0, ESRI) were the primary data 

conversion tools during used during this project. A general workflow of each dataset’s 

conversion is provided in Appendix A.  

DATA SOURCES AND CONVERSION  

Sea surface temperature and chlorophyll 

Sea surface temperature (SST) observations were made by the National Oceanic 

and Atmospheric Administration’s (NOAA) Polar-orbiting Operational Environmental 

Spacecraft (POES). Two satellites (NOAA-17 and NOAA-18) equipped with Advanced 

Very High Resolution Radiometers (AVHRR) provide multiple daily radiance images. 

Radiance is further processed into SST images using the non-linear sea surface 

temperature (NLSST) algorithm (Walton et al. 1998).  

Ocean color (proxy for chlorophyll concentration) was measured by the Moderate 

Resolution Imaging Spectroradiometer (MODIS) mounted on the National Aeronautics 

and Space Administration’s (NASA) Aqua Satellite. Chlorophyll-a concentrations are 

computed using the NASA-developed OC3M algorithm (O’Reilly et al. 2000).  

These data were downloaded from the NOAA National Marine Fisheries Service 

Environmental Research Division Data Access Program (ERDDAP). The datasets 

consists of daily 3-day composited SST and chlorophyll observations from January 2008 

through December 2011. The data were composited to reduce spatial gaps due to cloud 

cover. The spatial extent of the datasets used for this project were subsetted from a global 

extent to consist of only the entire length of California from the coastline seaward to the 

126
o
 W longitudinal line. When downloaded, the data come with an associated 

latitude/longitude reference grid. This grid has a 1.3-km resolution.  
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The data were downloaded in array format using a created MATLAB script. The 

observation files were associated with an existing coordinate grid and converted to ascii 

text format using the arcgridwrite function (http://www.mathworks.com/matlabcentral/fileexchange/16176-

arcgridwrite). In ArcMap, the ascii files were converted into ARC GRID raster layers and 

projected into North American Datum 1983, California Teale-Albers (meters). This 

projection is commonly used for displaying data across a California-wide extent. The 

layers were clipped to the California coastline to eliminate measurements made from 

lakes.  

Currents 

 Surface current vector components were collected from a network of HF radar 

shore stations along the western coast of the United States and processed by Sung Yong 

Kim (Scripps Institute of Oceanography). Processing consisted of gridding current vector 

components. The grid points missing data were filled using optimal interpolation which is 

dependent upon covariance matrices of the surrounding grid points (Kim et al. 2007 and 

Kim et al. 2008). This method optimally fills gaps within the dataset, caused by 

intermittent shutdowns of shore stations or inadequate algorithm solutions. Optimally 

interpolated gridded data creates spatially and statistically consistent datasets (Kim in 

prep).   

The complete dataset consisted of hourly observations along the whole West 

Coast of the U.S. for the years of 2008 and 2009. The data off California were averaged 

into daily 3-day composites. This was done both to match the temporal frequency of the 

satellite datasets and to average over tidal variability. The grid cells had a spatial extent 

of 5.6-km longitudinally and 6-km latitudinally. The rectangular grid cells conflicted with 

the output formatting of an ascii text file, which require square cells. Therefore, the data 

were exported from MATLAB into geotiff format using the built-in geotiffwrite function 

in the Mapping Toolbox. Geotiff files are georeferenced tagged image files, which 

supports grids with rectangular cells. The geotiffwrite function requires an associated 

geographic reference file to accurately write the raster data into the correct spatial 

domain.  
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 Once in ArcMap, the geotiff layers were copied into an ARC GRID format and 

projected to NAD 1983, California Teale-Albers (meters). The extent of the layers cover 

the length of California to approximately 150-200 km offshore.  

Wind 

The wind dataset was provided by the Naval Research Laboratory (NRL) in 

Monterey, California. The data were generated by the Coupled Ocean/Atmosphere 

Mesoscale Prediction System (COAMPS
®
) which produces 48-hour surface (~10m) wind 

forecasts every twelve hours. The dataset provided consisted of the twice daily nowcast 

and forecasts from April 2009 to May 2012. There were several instances of missing 

daily measurements within the dataset. In these cases, the forecast of the previous day 

were incorporated to fill those gaps. The nowcast observations were averaged into daily 

3-day composites similarly to the averaged SST, chlorophyll, and current datasets. The 

vector components required rotating from the model coordinate system onto a true north 

coordinate system grid. The dataset came projected in an unknown coordinate system, 

which displayed the data in non-square grid cells. This created difficulty in converting the 

data to raster grids, because the arcgridwrite function prefers equal latitude/longitude 

grid spacing and geotiffwrite requires a referenced coordinate system. Therefore, the data 

were interpolated onto a square mesh grid and ASCII files were exported from MATLAB 

using the arcgridwrite function.  

 In ArcMap the layers were converted to ARC GRID format, clipped to the 

California coast, and reprojected to NAD 1983, California Teale-Albers (meters). The 

raster layers are 3.06-km resolution and cover the length of California from the coastline 

seaward to the 126
o
 W longitude line.  

Bathymetry and MPA boundaries 

 The time-series datasets were spatially analyzed based on the boundaries of 

existing marine protected areas (MPA) along the central and north central coast of 

California (figure 1). A polygon shapefile representing these MPAs was downloaded 

from the California Department of Fish and Game Marine GIS Unit’s webpage (CDFG 

2012).  Thirteen MPAs were selected based on their size (>20km
2
) and adjacency to the 
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coastline. These selected MPAs were subsequently used to demonstrate several spatial 

analyses throughout the remainder of this report.  

 Sonar-derived bathymetry layers were used as a visual reference in the final 

figures (figures 1, 3, 4). These layers were downloaded from the websites of NOAA and 

CDFG (http://www.ngdc.noaa.gov/mgg/bathymetry/multibeam.html; http://www.dfg.ca.gov/marine/gis/bathymetry.asp).  

ANALYSIS 

The following analyses were conducted in an effort to demonstrate the utility of 

time-series spatial data. Monthly averages, used in several analyses, were calculated 

using every third day within each month, since the time-series used already consisted of 

3-day composites or averages. Due to time constraints, wind and chlorophyll analyses 

were not incorporated during this project.  

Cross/Along Shore Currents  

To assess the cross-shore and along-shore water movement within MPAs, 3-4 of 

the current raster’s grid cells nearest to each MPA or MPA pairing (State Marine Reserve 

and State Marine Conservation Area) within the central and north-central California coast 

were subsampled by selecting the chosen grid cells by their respective Field ID attribute. 

A blank raster layer (MPA key) was created from these subsampled grid cells as a spatial 

extent reference for further analysis outputs. The MPA key was converted into a point 

shapefile (Raster to Point) and copied (Copy Feature) several times for using later on in 

the analysis (blank_mpa shapefile). In order to express the velocity vector in terms of 

cross-shore and along-shore orthogonal components, reference lines were drawn in 

ArcMap to represent the coastline orientation along large segments of the coast (figure 1). 

Using an open-source tool, Easy Calculate 10, the azimuth (degrees clockwise from 

north) of each line was computed (Tchoukanski 2012). The azimuth was subsequently 

recalculated to equal the number of degrees counterclockwise from north. These values 

were appended onto the nearest MPA feature in the blank_mpa shapefile. This shapefile 

was then converted back into a raster grid (angle_key) with the same cell size and extent 

as the original current vector component rasters. The resulting values within the 

angle_key raster represented the angles used to rotate the current vector components.  

http://www.ngdc.noaa.gov/mgg/bathymetry/multibeam.html
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Figure 1: Overview of central and north central coast MPAs (purple). Labeled MPAs were used in spatial 

analyses. Coastal orientation lines (orange) were drawn to represent overall orientation of the coastline for 

the cross/along shore current analysis. Bathymetry provided by California Department of Fish and Game 

(CDFG); terrestrial basemap provided by ESRI.  
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 The vector (u and v) components were recomputed using the Raster Calculator 

according to the following calculations: 
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) where 

angle_key is in degrees. 

This computation effectively projects the velocity vector onto a coordinate system 

wherein vrot is parallel to the reference coastline and positive towards the northwest, and 

urot is perpendicular to the coastline and positive towards shore. The components were 

averaged spatially (Zonal Statistics) and temporally (Cell Statistics) and plotted to 

identify trends. 

SST 

Monthly SST averages were computed using the Cell Statistics tool. From those 

temporal averages, spatial averages were calculated within each MPA (Zonal Statistics). 

An MPA shapefile was converted into a raster layer (MPA_raster) using the Polygon to 

Raster tool in the Conversion toolbox. The output raster’s extent and cell size were set to 

be the same as a SST raster. Skipping this step would require the Zonal Statistics tool to 

do this operation for each iteration, increasing the computing time.  

The results from the zonal statistics analysis of each monthly mean were 

appended onto the attribute table (Extract Multivalue to Point) of a blank_mpa point 

shapefile which was subsequently used to plot the time series of the monthly averages. A 

shapefile’s database file can be opened in Microsoft Excel to create line graphs.  

Find Fronts 

 Temperature fronts were identified using an open-source ArcGIS Toolbox called 

Marine Geospatial Ecology Tools (MGET) developed at Duke University (Roberts et al. 

2010). A front can be defined as the thin region of separation between two bodies of 

constant temperature (Cayula and Cornillon 1992). MGET features a tool (Cayula-

Cornillon Fronts in ArcGIS Raster) based on Cayula and Cornillon (1994) that identifies 

the boundaries between different water masses. The tool’s algorithm searches for bimodal 
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frequency histograms within a moving window and flags the center cell when input 

arguments are met. This tool accepts a suite of input arguments: 

 Temperature difference 

 Window size 

 Smoothing resolution 

 Window stride 

 Proportion of pixels with data 

 Population size proportions 

 Minimum criterion function (Cayula and Cornillon ) 

 Cohesion parameters 

For the tool to run properly the input SST raster values must be integers. In order to 

conserve SST resolution to 0.1ºC, the input raster was multiplied by 100 and then 

rounded to nearest integer. A number of different combinations of input argument values 

were tried in order to understand how each input argument affects the output image.  

RESULTS  

CONVERSION 

In total, 1461 chlorophyll layers, 1461 SST layers, 721 u and v paired current vector 

layers, and 1126 u and v paired wind vector layers were created in ARC GRID raster 

format. Each layer is a 3-day composite of the target date and the complete days before 

and after. The raster layers are all projected to NAD 1983 California Teale-Albers 

(meters) and appear in their correct orientation when opened in ArcMap.   

ANALYSIS 

Cross/Along shore current 

Temporal variability in cross-shore and along-shore currents within MPAs were 

consistent with existing knowledge of the coastal upwelling within the CCS. The 

monthly-averaged cross-shore and along-shore speeds near Point Sur ranged from 0 to 15 

cm/s and 0 to 20 cm/s, respectively (figure 2). During the spring and summer months of 

2008 and 2009, current ran in a relatively swift offshore and equatorward direction which 
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is consistent with coastal upwelling. For example, the monthly mean from March 2008 

(figure 3) exhibited offshore and equatorward movement in 100% of the eleven 3-day 

composites, which comprised the monthly average. This can be associated with strong 

equatorward directed winds, favorable to coastal upwelling.  

In the fall and winter, the current was weaker with some months exhibiting 

onshore and poleward flow. 55% and 22% of the 3-day averages in February 2009 (figure 

4) exhibited offshore and equatorward movement, respectively. During the winter, winds 

are variable and often from the south, which contributes to this reversal in current 

direction. Variability within the month was observed to be greater in the along-shore 

current (standard deviation 5-15 cm/s) than in the cross-shore current (5-10 cm/s).  

Figure 2: Monthly-averaged cross-shore (above) and along-shore (below) current spatially averaged over 

the area near the Point Sur MPA pairing (SMR and SMCA) are shown by the black solid lines. Standard 

deviations of the 3-day averaged currents within each month are shown by the grey dashed lines. The 

extreme months of March 2008 and February 2009 are highlighted in figures 3 and 4, respectively.  
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Figure 3: Mean current direction and magnitude for March 2008. MPAs depicted in purple.  

 

Figure 4: Mean current direction and magnitude for February 2009. MPAs depicted in purple.  
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 Plotting the monthly averages of multiple MPA regions can provide 

understanding of larger spatial variations. Figure 5 represents the cross-shore and along-

shore movement of water within 13 selected MPAs between Point Conception and Point 

Arena. Through 2008 and 2009, surface waters flowed predominantly offshore. 

Maximum annual offshore flow occurred in April for both years, whereas the minimum 

offshore flow was exhibited in February 2009. Temporal variation of along-shore flow 

resembles the variation for the Point Sur region depicted in figure 2. Equatorward 

maxima occurred in March 2008 and 2009 before gradually shifting poleward in the 

winter months.  

 

Figure 5: Monthly-averaged cross-shore (above) and along-shore (below) current spatially averaged over 

each of 13 MPA regions from Point Conception to Point Arena are shown by the grey lines. The average 

flow over all those MPA regions is represented by the red line.  

SST  

 The results of this analysis were focused on selected MPAs. Figure 6 displays the 

spatially averaged monthly mean SST within the Point Lobos MPAs. Figure 7 displays 

the monthly mean SST of MPAs along a latitudinal gradient. This was done to 

demonstrate the method for both individual and multiple MPAs. Spatially averaged SST 

plots for MPAs along the entire California coast can be created with these data.   
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 SST within the Point Lobos MPAs was observed to have annual fluctuations 

between approximately 11 and 15 degrees Celsius from 2008 through 2011. Annual lows 

were observed in April/May which is consistent with when coastal upwelling is generally 

strongest. The annual SST highs occurred in late summer, corresponding to the period of 

light winds and strong heat flux from the atmosphere. 

 

Figure 6: Monthly and spatially averaged SST (degrees Celsius) within the Point Lobos MPA pair (SMR 

and SMCA) from 2008 through 2011. 

 Figure 7 displays SST for selected MPAs along the central and north-central 

California coast. The Cambria MPA was excluded from this analysis due to its small size 

and lack of associated SST datapoints. Therefore, only 12 MPAs were examined in this 

analysis. As expected the lower latitude MPAs were observed to have warmer 

temperatures than their higher latitude counterparts. The general pattern of annual 

fluctuations of sea surface temperature between the late-summer maxima and early-

spring minima is observed in all the MPA areas. The calculated latitudinal temperature 

difference of the MPAs ranges between 1.3 and 4.9
o
C throughout the 4-year period.  
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Figure 7: Monthly mean SST for selected MPAs along the central and north-central California coast. The 

Cambria MPA was excluded due to its relatively small size. Latitude in decimal degrees North are 

associated with each MPA region.  

Fronts 

 The resulting outputs from the front-finding analysis depended heavily on the 

parameters input to the tool. The input raster image used for the analysis was the monthly 

average for April 2009 (cell size 1.3-km). This period corresponds to the annual low for 

2009 and assumes peak upwelling (figure 7, above). This analysis observed the results 

from adjusting the following algorithm parameter inputs: front detection threshold 

(Temp), histogram window size, histogram window stride, and filter window size (table 

1). Single and global population cohesion were recalculated as a function of window size 

(Roberts et al. 2010): 

                                  (
 

          
)       

                             (
 

          
)       
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Single and global population cohesion respectively check for homogeneity within 

individual water masses and heterogeneity between water masses within the histogram 

window. Lower cohesion values permit ‘fuzzier’ boundary regions to be returned in the 

output as fronts.  corresponds to the probability of falsely identifying a front. For this 

analysis  = 0.05.  

Table 1: Input parameters for identifying sea surface temperature fronts using the Cayula and Cornillon 

Find Fronts Tool in Marine Geospatial Ecology Toolbox.  

 

Other algorithm input parameters (proportion of pixels with data (0.65), 

proportion of smaller population (0.25), criterion function value (0.76)) were kept as 

default for this analysis. The tool does not recommend altering the population proportion 

or criterion function value. The proportion of pixels parameter is the minimum proportion 

of cells within the histogram window to contain data in order for the algorithm to 

execute. This parameter would have an effect on the edges of the image, such as along 

the shoreline.  

The first trial kept default inputs for all parameters and identified the minimum 

temperature gradient threshold as 0.5
o
C (left) and 1.0

o
C (right) (figure 8). This iteration 

identified fronts between two water masses, which differ by either 0.5
o
C or 1.0

o
C, within 

a 32 x 32 cell (41.5 x 41.5-km) window. As expected, the lower threshold identified more 

fronts in the SST raster. Increasing the threshold constrains the results to larger gradients, 

however if those gradients do not exist in nature or within the input window, then the 

results will be limited. 

Trial

 Temp 

(
o
C)

Window 

Size 

(#cells)

Window 

Stride 

(#cells)

Filter size 

(#cells)

Local 

Cohesion

Global 

Cohesion

1 0.5/1.0 32 16 3 0.9 0.92

2 0.5/1.0 100 50 3 0.87 0.89

3 0.5/1.0 100 20 3 0.87 0.89

4 0.5/1.0 100 20 15 0.87 0.89



 

 17 

   

Figure 8: Front analysis with differing gradient thresholds. Left pane computed with a 0.5
o
C gradient, right 

pane computed with a 1.0
o
C gradient. All other input parameters are equal and kept as the tool’s default 

values. SST measurements are April 2009 average (1 cell = 1.3km).   

The second trial kept the same gradient thresholds of 0.5
o
C (left) and 1.0

o
C (right) 

and increased the histogram window to 100 x 100 cells (130 x 130 km). The single and 

global population cohesion’s were recalculated to reflect this change. Window stride, the 

number of cells the window jumps between algorithm runs, was increased to 50 cells. 

Increasing the window stride to one-half the window size mimicked the convention 

Robertson et al. (2010) portrayed in the tool’s default settings. This method instructs the 

window to construct a histogram with 50% new data with each jump. Higher values 

reduce the number of redundant front observations, however they can also cause fronts to 
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be missed. This trial identified several 0.5
o
C gradients and no 1.0

o
C gradients (figure 9). 

Although the window had a broader extent than the previous trial, this trial’s output 

produced fewer fronts. In addition to the increased stride, this result could be explained 

by the population proportion parameter. This parameter evaluates the relative size of the 

distinct water masses and only identifies a front when the smaller water mass (within the 

window) exceeds the indicated value. By default, an individual water mass must be 

encompassed by a minimum of 25% of the cells in the histogram window in order to be 

recognized by the algorithm. Therefore, with a larger window making longer strides, 

homogenous water masses must be spatially large in order to be recognized by the tool. 

As a result, the cold water mass near Mendocino Point and Point Arena may have been 

missed. 

   

Figure 9: Front analysis identifying differing temperature gradients within a 100 x 100 cell window on a 50 

cell stride. Left pane identified 0.5
o
C gradients, right pane identified 1.0

o
C gradients. All other input 

parameters are equal. SST measurements are April 2009 average (1 cell = 1.3km).   
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 The third trial kept the same parameters as the previous trial, but reduced the 

stride to 20 cells (26-km). As expected, the shorter stride identified more fronts 

throughout the image (figure 10). In both cases (0.5 and 1.0
 o

C thresholds) a front is 

delineated between the cold upwelled coastal water along the north central coast and the 

warmer offshore water. The lower gradient threshold of 0.5
o
C (figure 8, left) also 

identified several fronts further offshore.  

   

Figure 10: Front analysis with a 20 cell histogram window stride. Left pane computed with a 0.5
o
C or more 

temperature difference, right pane computed with a 1.0
o
C or more temperature difference. All other input 

parameters are equal. SST measurements are April 2009 average (1 cell = 1.3km).   

 The final trial focused on adjusting the filter window size. Prior to running the 

algorithm, a moving filter window smooths out the data in the raster image. The size of 
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the window determines how coarsely the image is filtered. The default filter window is 3 

x 3 cells, which is the size used in the first three trials. For this trial the window size was 

increased to 15 x 15 cells. As expected, lines designating the fronts were smoothed when 

compared to the previous trial (figure 11). This gives the fronts a cleaner, more 

streamlined appearance; which is more aesthetically pleasing for visualizations.  

Smoothing the data also resulted in identifying several additional gradients throughout 

the image.  

 

Figure 11: Front analysis with a 15 x 15 cell filter window. Left pane computed with a 0.5
o
C or more 

temperature difference, right pane computed with a 1.0
o
C or more temperature difference. All other input 

parameters are equal. SST measurements are April 2009 average (1 cell = 1.3km). 
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DISCUSSION  

This project demonstrates that some dynamic properties of the marine 

environment can be analyzed and visualized with geospatial software. Time series of 

spatially averaged sea surface temperature (SST), as well as along-shore and cross-shore 

current, were plotted for selected marine protected areas (MPAs) along the central and 

north-central California coast. Furthermore, an open-source tool was used to identify 

temperature fronts and delineate upwelling regions. Raster data layers accessible through 

geographic information systems (GIS) software enabled these types of analyses. Creating 

oceanographic datasets, such as SST, chlorophyll, currents, and wind, executable in GIS 

software could potentially expand their incorporation into California marine management 

decisions.  

California’s MPA network was designed to conserve ecosystem integrity within 

the state’s subtidal region (MLPA 2004). Monitoring efforts are underway to evaluate the 

changing conditions of state marine ecosystems (MPA Monitoring Enterprise 2011). One 

concern is the impact climate change will have on temperate marine ecosystems (Score et 

al. 2011). Rising sea temperatures and changes in atmospheric conditions could have 

profound influences on marine biological communities (Doney et al. 2012, Hayward 

1997). Changing sea temperatures may induce shifts in species distributions or enhance 

conditions for non-native species recruitment (Doney et al. 2012). Similarly, a warming 

planet can drive changes in wind patterns causing unknown variability in ocean surface 

currents (Schwing et al. 2010). This variability could impact seasonal upwelling and 

larval transport (Song et al. 2011, Kimura et al. 2010). Maintaining up-to-date time series 

of oceanographic parameters, such as those detailed in this project, with respect to MPA 

boundaries could capture gradual changes in ocean conditions. This could assist marine 

managers in making informed decisions on how to protect and conserve marine 

ecosystems.  

Offering oceanographic datasets in GIS formats will broaden marine research 

capabilities. ArcGIS software has already proven to be a powerful geostatistical tool for 

many marine researchers. ArcGIS has been used in pollution impact monitoring, species 

habitat modeling, and marine spatial planning (Baguley (seminar), Young et al. 2010, 
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UCSB 2012). Furthermore, ESRI, the creator of ArcGIS, has been expanding its marine 

GIS processing and visualization capabilities to enhance marine research and 

management (Wright 2012). The most commonly used datasets for marine research and 

management purposes are multibeam bathymetry, and a wide range of data types to 

represent political boundaries, sampling locations, or static environmental features 

(e.g.rocky habitat). While these data are very important in marine research and 

management, they are not the whole picture. More temporally variable oceanographic 

parameters have largely been absent from these geospatial ecological and marine spatial 

planning analyses and depictions. Incorporating dynamic oceanographic datasets into 

ArcGIS formats would allow for more comprehensive marine research at local to global 

scales, for improving our understanding of marine processes, interactions, and impacts. 

As oceanographic and atmospheric numerical model output and remotely-sensed, 

and especially in-situ, observations continue to achieve finer spatial resolution, the 

opportunities for integrated analyses and depictions of oceanographic, ecological, and 

political boundary datasets will increase. Our ability to manipulate these oceanographic 

product datasets must also increase. Geospatial software, such as ArcMap, is one data 

processing tool that is widely used by marine researchers and managers. Therefore, 

providing oceanographic datasets in formats that are executable with ArcGIS software 

could expand research and visualization capabilities.  
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APPENDIX A  

File Parameter Conversion Workflow 

SST and Chlorophyll 

 

This workflow details the steps taken to download SST and Chlorophyll observations 

from the NOAA CoastWatch ERDDAP 

(http://coastwatch.pfeg.noaa.gov/erddap/griddap/index.html?page=1&itemsPerPage=100

0) and convert it to ARC GRID raster format (Figure 1).  

 

1. Get the raw data from CoastWatch: This originally started with a MATLAB 

script created to pull 3-day composited SST data from the CoastWatch GRIDDAP 

based on a defined time period. The script asks the user to specify a year and 

quarter of data to download. The grid extents were defined as 32.5 to 42 degrees 

Latitude and 234 to 243 degrees Longitude. This script creates a 3-dimensional 

array with X/Y corresponding to the data at each Lon/Lat and Z representing each 

3-day composite. Separate Lat (lat1), Lon (lon1), and time (time) arrays are 

created to reference the data. This code was also modified to download 3-day 

composited chlorophyll data.  

 

To speed up this process I created a simple looping script that automatically 

inputs the date ranges into the above script. With this script I was able to 

download the full dataset with one run of the script.  

 

Outputs: the raw outputs of this step are quarterly MAT files containing 

measurement arrays (Tarr/Chlarr), Latitude array (lat1), Longitude array (lon1), 

and a time array (time).  

 

2. Convert to ASCII file: The function (arcgridwrite.m) from the MATLAB File 

Exchange converted the observation arrays into ASCII text files. This function 

takes 4 inputs: output file name, Longitude (X), Latitude (Y), observation (Z). The 

function examines the grid cell spacing in the X and Y variables and throws an 

error if dX ≠ dY. If you pass without errors the function will write an ASCII file 

for each day within the Tarr/Chlarr array.  

 

To speed up this process I created a simple looping script that will open and 

convert each of the quarterly MAT files (created from the previous step) for a 

year.  

 

Output: daily 3-day composited ASCII text files.  

 

3. Convert to ARC GRID Rasters: The final step was performed in ArcMap. I 

created a tool (ASCII converter) that converts an ASCII file into a georeferenced 

http://coastwatch.pfeg.noaa.gov/erddap/griddap/index.html?page=1&itemsPerPage=1000
http://coastwatch.pfeg.noaa.gov/erddap/griddap/index.html?page=1&itemsPerPage=1000
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ARC GRID Raster layer. The tool essentially iterates through a list of ASCII files 

in a folder and goes through the process of converting it into a raster (ASCII to 

Raster tool), clipping that raster at the shoreline (to eliminate measurement of 

lakes), defines the coordinate system as WGS 1984, and projects the raster to 

NAD 1983 California Teale-Albers. A raster must be projected in order for spatial 

statistics to be successful. I selected NAD83 CA Teale-Albers because the 

SST/Chlorophyll measurements cover the whole length of CA.  

 

Output: Daily 3-day composited ARC GRID rasters projected into NAD83 CA 

Teale-Albers.  
 

 
Figure 1: Simple workflow diagram of steps to convert SST and Chlorophyll from source to ARC 

GRID format. 
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HF Radar 

This section provides the workflow I used to create the HF radar u and v raster data 

(Figure 2). The HF Radar files were provided by Dr. Sung Yong Kim from the Scripps 

Institution of Oceanography Coastal Observing Research and Development Center. The 

original HF radar MAT files I received were to too large to open both the PC and Linux 

machines. Therefore, I had to add a couple extra steps of processing to get the job done. It 

was good experience for me, but surely there is a more elegant way of computing.  

 

1. Separate annual files into quarterly files: the original data files provided were 

the truncated-to-California hourly HF data for each full year of 2008 and 2009. 

The data consisted of grid arrays (LatU/LonU), a grid/data reference array 

(mylist), u and v 3D data arrays (u2008 and v2008), and a time array (t2008). 

Attempts to open the MAT files on both the PC and Linux shell incurred the ‘Out 

of Memory’ error. After consulting with other MATLAB users, decided to break 

up the annual data and save them into quarterly MAT files.  

 

Output: Quarterly MAT files containing only lat/lon grid, reference list, and 

hourly u, v, and time arrays.  

 

2. A. Average hourly measurements into 3-day composites: To stay consistent 

with the SST/Chlorophyll data, I chose to average the HF radar data to the same 

3-day composites; wherein a particular day is averaged with the full day before 

and full day after. To achieve this I found a function on the MATLAB File 

Exchange that runs a moving average on the data (movavgFilt.m). This function 

takes 3 inputs: the input dataset to be averaged (In), the length of the averaging 

window (Len), and a string to indicate the averaging method (Left, Right, or 

Center). The input datasets were 3-dimensional with the hourly observations 

along the z-axis. The data were averaged along the z-axis. I created a simple code 

that runs this moving average and generates outputs (u_mean and v_mean). I used 

a 73-hour window around the ‘Center’ observation. A 73-hour window was used 

because an even number was not allowed for the ‘Center’ option.  

 

Because this function averages every single hour in the data, I needed to pull out 

the data points that I wanted to keep. So I pulled out every 24
th

 hour of the data, 

beginning with the 13
th

 hour (12noon on the first day) and saved them as ucomp 

and vcomp. The same was done for the time component (tcomp).  

 

2. B. Calculate 3-day composites for beginning and end dates of each quarter: 

Because the data were broken up into quarters prior to averaging, the first and last 

days of each quarter would not have been averaged correctly using the 73-hour 

window. So I created a script that extracts date ranges from the original, annual 

data and calculates new 73-hour means from those ranges. For example in Q1 and 

Q2, March 31
st
 and April 1

st
 were in separate files and thus were not averaged 
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together. The script extracts the hourly observations from March 30
th

 through 

April 2
nd

 from the original data and computes new 73-hour averages for March 

31
st
 and April 1

st
. The new averages for the beginning and end of each quarter 

replaced the respective previous daily averages computed in step 2a. January 1
st
, 

2008 and December 31
st
, 2009 are averages of the target date and respectively the 

day after and day before.  

 

Output: quarterly MAT files of 3-day composites of HF u and v data. ucomp and 

vcomp are the actual 3-day composites.  

 

3. Convert to Geotiff: several attempts of writing the u and v data into ASCII using 

the arcgridwrite.m function consistently returned errors regarding the lat/lon grid 

cell spacing, indicating the grid cells were not square. To reconcile this problem I 

wrote the data to a geotiff file format using the geotiffwrite function in the 

MATLAB Mapping Toolbox. Geotiffwrite takes 3 inputs: output file name, input 

data, and a worldfile (R). The worldfile is a structure file that contains 

georeferencing information. The user can define lat/lon extents and grid cell 

spacing. See spatialref.GeoRasterReference in MATLAB help. 

 

Output: I created a script to convert each 3-day composite for each quarter into 

geotiff raster images.  

 

4. Convert to ARC GRID: Geotiff u and v rasters were acting rather problematic 

and clunky in ArcMap, so they were converted to ARC GRID format. I created a 

model (Geotiff Converter) to do this operation. The model iterates through each 

geotiff in a folder, calculates statistics, copies it into ARC GRID format, defines a 

coordinate system, and projects it to NAD 83 CA Teale-Albers.  

 

Output: 3-day composites of u and v raster images in ARC GRID format.  
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Figure 2: Simple workflow diagram of steps to convert HF Radar data from source to ARC GRID 

format. 
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COAMPS Wind 

This section provides the workflow I used to create the COAMPS wind u and v raster 

images (Figure 3). The data were provided to me in a series of Tarr archive files by the 

Naval Research Laboratory in Monterey. The data can also be accessed from the US 

Global Ocean Data Assimilation Experiment server (http://www.usgodae.org/cgi-

bin/datalist.pl?generate=summary).   

 

1. Extract data from Tarr files:  I modified a pre-existing code provided that 

unpacks Tarr files and save them as MAT files. There is a different Tarr file for 

every 12 hours from April 14
th

, 2009 at 12pm to May 31
st
, 2012 at 12pm. Each 

Tarr file contains a nowcast, plus 48 hourly forecasts. For each Tarr file, the code 

opens the archive, extracts the nowcast and first 12 hourly forecasts, averages 

those measurements together, and saves those averages (uwind and vwind) into a 

new MAT file. If a Tarr file for a particular time did not exist, which happened 

several times throughout the dataset, the code jumped back 24 hours to a prior 

Tarr file and averaged the 24
th

 through 35
th

 forecasted hours.  

 

Output: MAT files of wind vector components averaged over 12 hours, occurring 

on a frequency of 12 hours. 

 

2. Compile wind measurements for averaging: To stay consistent with the other 

datasets, the wind dataset was also averaged to a 3-day composite. To achieve this 

I created a code that opens each 12pm MAT file, as well as the 3 MAT files prior 

and 2 after, and compiles the measurements into the 12pm MAT file. Essentially, 

the code is grabbing the 36 hours prior (obs12, obs24, obs36) to the 12pm 

measurement (obs), which is the average from 12pm to midnight, and finally the 

24 hours of the next day (obs_12, obs_24). If one of those averages did not exist, 

an array of NaNs was created as a place holder.  

 

Output: MAT files of wind vector components ready for averaging to 3-day 

composites, occurring on a frequency of 12 hours.  

 

3. Average components to 3-day composites: With a new script, each file was 

opened and the observations within them were concatenated into a 3D array. The 

3D array was averaged with the nanmean.m function, which ignores any NaNs in 

the data.  

 

Output: 3-day composites of wind vector data (uwind, vwind), saved as 

YYYYMMDDHH_windmean.mat. 

 

 

4. Rotate averaged components to true coordinate system: this step computes 

new vector components (utru,vtru) based on a grid that is slightly rotated 

http://www.usgodae.org/cgi-bin/datalist.pl?generate=summary
http://www.usgodae.org/cgi-bin/datalist.pl?generate=summary
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(gridrot). Gridrot is an array of vector rotation multipliers created to project the 

wind vector components from a standard longitude to true longitude.  

 

Output: new vector components (utru,vtru) saved in the existing MAT file.  

 

5. Interpolate measurements onto mesh-grid: first attempts to write the vector 

component measurements to and ASCII or geotiff resulted in the final raster layer 

not properly aligning with the CA coastline. This was due to the variably grid cell 

sizing of the lat/lon grid. Therefore the measurements were interpolated onto a 

new grid with square cells and matched with a new mesh grid coordinate system.  

 

Output: new_u and new_v saved in the existing MAT file.  

 

6. Export to ASCII file: similar to step 2 in SST/chlorophyll flowchart 

 

7. Convert to ARC GRID: similar to step 3 in SST/chlorophyll flowchart. A 

different model was created for this process (ASCII Wind Converter).  

 

 
Figure 3: Simple workflow diagram of steps to convert COAMPS wind data from source to ARC 

GRID format. 


