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ABSTRACT

Traditional object detection models are designed to identify a fixed set of classes.

This causes models to face limitations when used in dynamic environments like

the deep sea, which is filled with rare and unknown organisms. In this study we

explore the viability of Open World Object Detection (OWOD) for deep-sea

exploration. Our findings indicate that OWOD shows considerable promise for

real-world applications. The models trained were able to overcome catastrophic

forgetting and incrementally learn about new and underrepresented classes. While

encouraging, further research is still needed to develop robust systems and data

pipelines for production-ready OWOD.

INTRODUCTION

The deep sea remains one of the least explored and understood regions of our

planet. It harbours a wealth of biodiversity and resources. Yet, despite of its
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immense significance, little is known about the organisms that inhabit it and the

biological processes that govern it.

Data collection is crucial for advancing our understanding of the complex

ecosystems that exist in the ocean. While a range of methodologies — including

acoustic sensing and ‘omics technologies — provide valuable insights into marine

environments, visual data serves as an indispensable tool for validation.

Due to the increase of image data being collected by underwater vehicles,

machine learning, especially Object Detection, became an essential tool to sift

through this enormous amount of data. These models are incredibly useful for

many tasks, not only to identify what organisms were captured in the images but

also how many of each were found. However, all classification models, including

object detectors, have an inherent flaw. They can only recognise a finite set of

classes that were learnt during training. This is extremely limiting for models

deployed in the real world where they will routinely encounter things they have

never seen before.

The emerging field of Open World Object Detection (OWOD) intends to address

this issue by giving models the ability to recognize a detected object as unknown.

In this project, we test this novel approach to understand if it can be successfully

applied to deep ocean data.
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METHODS

This novel computer vision problem was first proposed in Towards Open World Object

Detection [5] where the authors build on the ideas of contrastive clustering and energy to

be able to differentiate between known and unknown detections.

Open World Object Detection (OWOD) aims to give object detection models the ability

to recognise when they detected something outside of their training set. This approach

leverages the ability of Object Detectors to localise with great precision objects it's never

seen before.

Fig 1: Object detectors can recognise objects that are not in their training set. However, as they have to

predict within their pre-defined classes we end up with many misclassifications.

To bridge the gap between object detectors and real-world applications, the model not

only has to recognise unknown objects, but it also needs to incrementally learn new

classes without forgetting the ones it already knows.
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Fig 2: Unlabelled data goes into a trained model. The model then localises and classifies what it

finds. Unknowns found by the model are reviewed by an expert human annotator who annotates

those instances. The images with the new annotations will be part of the training set for the next

training round.

THE MODEL

For this project we chose to experiment with PROB [4], the current state-of-the-art in the

OWOD task.

Figure 3. Diagram of the difference between PROBand another OWOD method. Adapted from

‘PROB: Probabilistic Objectness for Open World Object Detection’ by O. Zohar, K.-C. Wang,

and S. Yeung. Dec. 02, 2022. doi: 10.48550/arXiv.2212.01424.
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PROB introduces Probabilistic Objectness, where instead of directly identifying unknown

objects, it separates the probability of “objectness” and the object class probabilities to

improve unknown detections (Fig. 3).

To mitigate catastrophic forgetting, OWOD methods keep a small set of images, or

exemplars that are used in the fine-tuning phase of each task. PROB also uses the concept

of “objectness” to select the best possible exemplars instead of picking them at random

like previous methods.

THE DATA

The data used in this project was originally packaged for the FathomNet 2023 Kaggle

challenge [1]. It was collected by MBARI using different underwater vehicles in the

Monterey Bay area between the surface and 1300 meters. The dataset includes over 25

thousand images and 70 thousand bounding box annotations of bottom-dwelling animals.

We combined the original training and evaluation sets into one, and rearranged it to create

a new dataset suitable to train and evaluate OWOD methods.

The original dataset is extremely long-tailed and contains 290 classes from different

levels in the taxonomic tree. Each class belongs to a superclass. There are a total of 20

superclasses in this dataset. To simplify the experiments and reduce the long-tail problem,

classes were remapped to the corresponding superclass.

CREATING AN OPEN WORLD DATASET

To simulate the gradual encounter of new classes by a model, we created 4 different

training sets with an increasing number of classes (Fig. 4). Task one includes the most
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common classes in the dataset, and task 4 includes the rarest. The evaluation set was the

same for each task and included all 20 classes.

The Urchin class dominated the dataset with 35% of all instances. However, when

subsampled valuable examples of underrepresented classes would be eliminated,

therefore we decided to keep all images in the original dataset as it should reflect the real

distribution of the organisms in their habitat.

Figure 4. Shows how many instances of each class are present in the training set used for each

task. And the same for the evaluation set.
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IMAGE EMBEDDINGS

Embeddings are the basis for OWOD methods, so to explore class similarities in the

dataset and try to anticipate the performance of the OWOD models, we analysed the

embeddings that represented the organisms in the dataset.

We used a MobileNetV2 [3] model pre-trained on ImageNet [2] to create vector

representations for each instance in our dataset. These vectors were then projected into a

2-dimensional space using U-MAP [6] to allow for easier interpretation. In the projection,

the basic premise is that points that are close to each other are likely to belong to the

same class.

EVALUATION

The model was evaluated after each task, always with the same evaluation set.

Performance was compared using AP50 as it is the standard evaluation metric for Object

Detectors.

RESULTS

The results for the training of tasks 1 to 3 can be found in Table 1. The metric used for all

is the AP50. As expected, we had good results for classes with the most instances in the

training set ('Urchin') and classes that are very distinguishable ('Sea star', and 'Crab') and

struggled with classes that were underrepresented. This is true for Task 1, and subsequent

tasks.

When new classes were first introduced in Task 2 and Task 3, we can see the impact of

catastrophic forgetting and how the model recovered a lot of the previously known

information after the fine-tuning step. Despite being underrepresented in the dataset, the

model showed adaptability and learned the new classes, such as 'Shrimp' and 'Soft Coral'

introduced in Task 2 and 'Glass Sponge' and 'Feather Star' introduced in Task 3.
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The 'Unknown' category, should capture all organisms previously introduced in past

training sets, it performed poorly in Task 1 and progressively decreased as the model was

trained on new tasks.

EXPERIMENT RESULTS

Table 1. AP50 for each class after training on each task. It also shows the results before the

fine-tuning steps for tasks 2 and 3.
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Task 1 Task 2
Task 2
(fine-tuning) Task 3

Task 3
(fine-tuning)

Urchin 70.86 0.00 65.63 0.00 63.32

Fish 52.16 9.09 40.93 0.00 40.69

Sea star 73.13 0.00 61.07 9.09 62.08

Anemone 53.51 9.09 43.91 0.00 40.93

Sea cucumber 62.50 9.09 58.30 9.09 55.43

Sea pen 55.26 9.09 46.75 0.00 40.74

Sea fan 58.07 9.09 41.74 9.09 38.64

Worm 33.29 0.00 27.01 0.00 25.37

Crab 69.44 0.00 56.60 0.00 57.70

Gastropod 21.42 4.55 14.85 0.00 14.53

Shrimp 4.75 11.27 0.73 22.97

Soft coral 0.00 11.67 0.00 10.37

Glass sponge 9.48 13.34

Feather star 5.69 25.85

Eel

Squat lobster

Barnacle

Stony coral

Black coral

Sea spider

Unknown 0.86 0.20 0.35 0.03 0.30



DISCUSSION

Despite the discouraging numbers, especially for the Unknown class, we still

believe this method shows promise. When visually investigating the results we

can see that the incomplete coverage of annotations in the dataset had a big

impact on the results. In Figure 5, we can see how the model managed to find the

shrimp was an “Unknown”, and how it came up with some plausible predictions

for unknown organisms in the image that were not in the original annotations.

Figure 5.A. Original image with annotations.

Figure 5.B. Same image with model detections after Task 1. Here, the model does not

know the class “Shrimp”, but it found it as an “Unknown”.
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During the incremental training across tasks, we can see the extent of catastrophic

forgetting. Fine-tuning helped to alleviate this but did not fully recover the

original performance levels.

CONCLUSIONS/RECOMMENDATIONS

Complete annotation of training data is fundamental to improving model

performance. Apart from giving us misleading evaluation metrics, when we don’t

annotate organisms as such, we are inherently teaching the model to recognise

them as background. As this can have a great impact on model performance, a big

focus on implementing object detectors should be complete annotation. Having

less training data comprised of fully annotated images should yield better results.

It is also worth experimenting with different OWOD models to compare their

performance. As well as different dataset configurations. There is no standard of

how these benchmarking datasets should be structured, so it’s worth trying

different training schedules – training on rare organisms first to understand if this

has an impact on the final performance for underrepresented classes for example.

This work represents an active area of research, and while promising, the existing

codebases are not ready for production use. A lot of work still needs to be done to

implement pipelines for training and inference to successfully deploy OWOD

models.
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