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ABSTRACT  

Documenting the behavior of siphonophores presents a considerable challenge without 

any clear methodology. Observations rely primarily on in situ ROV video data since 

siphonophores have proved difficult to work with in an ex situ environment. The 

Monterey Bay Aquarium Research Institute (MBARI) has over 30 years of ROV footage 

that can be used to make these observations. However, the process for using this footage 

to make behavioral observations is extremely time and labor intensive. The 

anno2trackstart pipeline was created to reduce this time constraint and streamline the 

process. This pipeline utilizes a machine learning model to accurately predict the initial 

sighting of a siphonophore within a video clip. This paper describes the pipeline process 

as well as the accuracy of a machine learning model in detecting and classifying 

siphonophores. Findings suggest that machine learning models and the anno2trackstart 

pipeline can be a successful alternative way of documenting siphonophore behavior.  

 

INTRODUCTION  

Siphonophores are gelatinous, colonial animals under the phylum Cnidaria that live in the 

midwater region of the ocean (Mapstone 2014). Despite being a central predator in the 
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midwater food web (Choy et al. 2017), very little is known about their behavior and 

functionality. Their soft-bodied composition results in extreme fragility and presents 

significant challenges to collection for ex situ use. Additionally, after collection they do 

poorly in captivity and exhibit modified behavior due to stressful conditions. For these 

reasons, the majority of siphonophore research relies on in situ observations.  

 

MBARI has over 30 years of labeled in situ ROV and AUV transect video data stored in 

MBARI’s Video Annotation and Reference System (VARS). Each organism that appears 

in a video is manually logged in VARS with identifying and contextual information from 

the ROV such as depth, location, temperature, etc. (Robison et al. 2017). Each annotation 

also contains a timestamp with the date and time of the sighting. While these annotation 

timestamps are key in making behavioral observations, there exists one caveat: the 

timestamps do not occur at the initial sighting of the organism.  

 

When making behavioral observations based on transect video data, the observation 

should be made based on the initial sighting of the siphonophore. As the ROV moves 

closer to the organism, there is a greater chance that vehicle disturbance will disrupt its 

natural behavior. Some siphonophores have shown to be sensitive to light (Sutherland et 

al. 2019) and changes in current. Therefore, to ensure the most accurate representation of 

natural siphonophore behavior, the observation should be made at its initial sighting to 

avoid potential disruption.  

 

Another challenge in making these observations lies in the tedious and convoluted 

process of using an annotation in VARS to find the specific observation period. This 

paper will discuss a simplified approach to making these observations using machine 

learning. 

 

MATERIALS AND METHODS  

MACHINE LEARNING MODEL 

To identify the initial sighting of a siphonophore from a video clip, a YOLOv5 machine 

learning model pre-trained on MBARI’s 315K dataset (a dataset comprised of 315K 

images of animals in the ocean) was used. This allowed the model to identify and classify 



 3 

a large variety of different organisms, including siphonophores. This pre-trained model 

was used to create object tracks for siphonophores. These object tracks (Figure 1) contain 

information about the siphonophore from the first object detection on screen up until the 

last. Using the outputted object tracks, the first detection of the organism (otherwise 

known as the t0) can be used to make the behavioral observation. 

 

Figure 1.  Annotation and t0 timestamp for an object track generated by a model for a video clip.  

A video clip serves as the input for the model, and the output includes (1) the same video 

clip with bounding boxes and (2) a tracking text file. The text file lists the object detections 

and their classifications for each frame in the video. This file is used to find the t0 based on 

the first detection of a siphonophore. 

 

PIPELINE 

To expedite and streamline the process of making these behavioral observations, the 

Python anno2trackstart pipeline (source code for anno2trackstart is available at 

https://github.com/bioinspirlab/anno2trackstart ) was written. A simplified process 

diagram for this pipeline can be seen in Figure 2. Before running anno2trackstart, a 

dataset is formed by querying the VARS database for annotations of unique 

siphonophores. These annotations are collected and stored as a csv file. The first half of 

the anno2trackstart pipeline takes the csv file as its argument and iterates through the 

annotations in the csv file. For each annotation, the path of the original video containing 



 4 

the annotation is parsed and added as a new variable to the csv file. The path and 

annotation timestamp are then used to trim the original full-length video (typically around 

15 minutes long) to include 10 seconds before the annotation timestamp and 10 seconds 

after the annotation timestamp, for a total clip of 20 seconds. This new, shortened video 

decreases the processing time it takes for the model to create an object track and limits 

the number of additional organisms within the video. The trimmed clip is saved in an 

“Untracked” folder in the working directory and then run through the model with a 

confidence threshold of 0.25. The confidence threshold takes on a value between 0-1 and 

indicates how confident the model must be to detect and classify an object. Therefore, the 

model will only track objects when it has 25% or more confident in its detection. The 

model outputs a video with bounding boxes and a tracking text file that are saved in a 

“Tracked” folder. Once all the annotations have been found, trimmed, and tracked, the 

second half of the pipeline is run. 

 

The second half of the anno2trackstart pipeline takes the path to the “Tracked” folder 

(containing the object tracks for each annotation) as an argument. For each annotation, it 

searches through the tracking text file and finds the first classification of 

‘Siphonophorae.’ The video frame associated with this detection is the t0. The t0 frame 

number is turned into a timestamp and saved in the csv file as a new variable. A direct 

link to this timestamp in the original video file is created and saved in the csv file for easy 

access. Once the pipeline finishes running, observations may be manually recorded using 

the direct links available in the csv file.  
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Figure 2. Simplified process diagram for recording behavioral observations with the anno2trackstart 

pipeline. 

 

TESTING FOR ACCURACY 

To ensure the model’s ability to detect siphonophores and correctly identify the t0, a 

series of accuracy tests were conducted. A collection of 42 distinct annotations, split 

evenly among three siphonophores—Praya dubia, Erenna, and Apolemia—were queried 

from the VARS database (Figure 3). 

 Figure 3.  Praya dubia (left), Apolemia (middle), and Erenna (right.)  

For each annotation, the model’s t0 was compared to the true t0. The true t0 was obtained 

by manually finding the first frame at which the human eye could identify and classify 

the object onscreen as a siphonophore. The difference in the model and true t0 were 

analyzed and compared between the three siphonophore groups using R. Additionally, 

two different confidence thresholds (0.25 and 0.55) were compared using the same 

process with 14 annotations of Praya dubia. 
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RESULTS  

A comparison between the model’s ability to predict t0 at a 0.25 and a 0.55 confidence 

threshold is shown in Table 1.  

Confidence Threshold ∆t0 Standard Deviation 

0.55 39.36 frames or 

1.31 seconds 

24.20 frames or 

0.81 seconds 

0.25 13.36 frames or 

0.45 seconds 

21.32 frames or 

0.71 seconds 

Table 1.  The average difference and standard deviation between the model’s t0 and the true t0 for 14 Praya 

dubia annotations run through with 0.25 and 0.55 confidence thresholds.  

The difference is statistically significant (t(25.59) = -3.02, p = 0.0057) and appears 

visually different when observed. Figure 4 displays a side-by-side comparison of a model 

t0 for the same annotation run through both confidence thresholds. It’s visually apparent 

that the model run at a 0.25 confidence threshold can detect the object as a siphonophore 

much sooner and also recognize more of the organism. This supports the conclusion that 

the 0.25 confidence threshold should be used over 0.55. 

Figure 4.  The video frame at t0 for a video clip run with 0.25 confidence threshold (left) and 0.55 confidence 

threshold (right).  
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When looking at the model’s ability (run at 0.25 confidence) to predict an accurate t0, 

success varied amongst siphonophore species as shown in Table 2. The model performed 

much better against Praya dubia and Apolemia annotations than Erenna annotations. 

Siphonophore ∆t0 Standard Deviation 

Praya dubia 13.36 frames or 

0.45 seconds 

21.32 frames or 

0.71 seconds 

Apolemia 21.15 frames or 

0.71 seconds 

42.70 frames or 

1.42 seconds 

Erenna 119.5 frames or 

3.99 seconds 

133.94 frames or 

4.47 seconds 

Table 2.  The average difference and standard deviation between the model’s t0 and the true t0 for 14 Praya 

dubia, Apolemia, and Erenna annotations.  

 

DISCUSSION  

When looking at the differences in model accuracy between the siphonophore groups, 

there are several factors that could be attributed. Within the annotations chosen for the 

test analysis, the majority of Erenna samples were taken from older videos with reduced 

video quality. This is due to limited availability of Erenna annotations within the VARS 

database (Figure 5).  

 

Figure 5.  The number of unique annotations for each siphonophore group in VARS.  
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Many of the Erenna annotations available in the database are linked to the same organism 

as ROV’s tend to linger and spend a longer time obtaining footage of Erenna due to its 

rarity. This further reduces the number of annotations available for use of unique 

individuals. This restricted Erenna dataset suggests that within the 315K dataset (the 

training set of images used to train the YOLOv5 model) there are fewer Erenna images. 

This presents a challenge for the model (trained with insufficient Erenna data) to identify 

these organisms. Additionally, the poorer quality in videos used for this sample set may 

contribute to and decreased and biased accuracy.  

 

Despite these differences in accuracy, there does not seem to be a significant difference 

between the model’s t0 and the true t0. Additionally, the model’s t0 occurs at a point in the 

video where the organism is far enough away from the ROV to still avoid vehicle 

disturbance. The accuracy variability does not indicate that the model approach should 

only be used with species at which it performs perfectly, but rather that additional 

features might be put in place when working with different siphonophores. For example, 

when working with annotations from Erenna, adding an extra 3 seconds to the model’s t0 

can ensure the initial sighting is captured. This ‘time buffer’ can be altered within the 

pipeline to better suit a variety of species. 

 

It is worth mentioning that the three siphonophores used in this experiment share 

morphological similarities. Both Erenna and Apolemia belong to the siphonophore 

suborder Physonectae, and Praya dubia to the Calycophorae suborder. The accuracy of 

the model and its success in the anno2trackstart pipeline therefore may vary with 

morphologically different species.  

 

CONCLUSIONS/RECOMMENDATIONS  

The pipeline used in this project is a viable alternative to the manual process of recording 

behavioral observations for siphonophores. It greatly reduces the amount of labor 

required, but whether it shortens the time remains to be seen. A time comparison should 

be run by completing the manual steps to record behavioral observations for a set of 

annotations, and then running that same set of annotations through the anno2trackstart 
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pipeline. Once a comparison is made, a more concrete suggestion can be made for 

whether this automated process should be used as a replacement. Regardless, the machine 

learning model is sufficient in locating the initial sighting of a siphonophore in a video 

and can be used as a means of finding the t0. To improve the accuracy of this prediction, a 

model can be trained on an image set with a greater number of siphonophore images, 

including a wider diversity of species.  
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