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ABSTRACT

Profiling floats have proven invaluable in acquiring long term, synoptic and comprehensive data

sets important to understanding the health of the ocean. Moving profiling float technology into

the equally important coastal ocean requires an ability to mitigate a float drifting out of the

desired measurement volume. While a costly navigation system remains a possible solution, this

project investigates the lower limit of detection of a moderately priced inertial measurement unit

(IMU) to determine its viability for estimating ocean current velocities from acceleration

measurements. A rotary test table was designed to impose known and controllable accelerations

to the sensor. Since bias and misalignment corrections inherent in any IMU application were

beyond the project scope, signals remained uncalibrated. Though, the results still pointed to a

likely value for the lower limit of acceleration detection. Given this estimated lower limit, the

accelerations relevant to float drift mitigation were out of the selected sensor’s detectable range

without the additional work required to correct for drift and misalignment.



INTRODUCTION

Coastal marine environments refer to regions interfacing between land and the open

ocean and are typically defined as the waters over the continental shelf. Scientific observation of

coastal waters is distinctly important to studies monitoring anthropogenic climate change given

large fluxes of carbon-based compounds occurring between the land and ocean.1,8 Further

underlining the importance of their study, coastal regions are most vulnerable among marine

environments to pollutant runoff.6

Despite the unique conditions and importance of coastal phenomena, these waters have

largely been under-sampled. Shallow depths, steep temperature and density gradients, and strong

tidal currents present in coastal waters introduce significant engineering challenges for teams

aiming to design and implement profiling technologies.10

Among existing profiling technologies are devices called floats that house

biogeochemical sensors. Profiling floats feature depth control, filling and emptying external

bladders with oil to manipulate buoyancy force.5 Floats lack positional control and are expected

to drift with ocean currents, particularly when transmitting data at surface level, where winds

will drive currents. CPF displacement introduces the risk of excessive drift onshore or offshore.9

For many coastal zones, the typical surface current is generally accompanied by an

opposing current at a lower depth.7 By measuring ocean current dynamics throughout a float’s

vertical profile, a current velocity vs. depth profile can be calculated. With this data, the float

could select a depth at which to park, “navigating” back into the desired measurement volume.

Dominant methods of ocean current velocity sensing rely on a fixed Eulerian reference

frame. However, floats are designed to move with ocean currents, requiring a Lagrangian

approach.8 The MBARI Chemical Sensor Lab has tried using computational ocean current



models to predict depths with desired velocities for CPF displacement correction. This method

did not satisfy drift minimization requirements, prompting exploration of onboard ocean current

sensing options which require lower accuracy given a dependence on live measurements rather

than predictions values.

Open ocean profiling floats proved most informative when participating in a global

network, as suggested by the successes of the Argo program and GO-BGC initiative.5 CPFs are

not as widespread as open ocean floats due to additional aforementioned engineering challenges.

To eventually achieve a larger network of coastal profiling floats, design and operational costs

must remain low to support the accessibility of CPF projects. In addition, power consumption

and physical space are critical metrics for float success. These requirements drive the choice of

onboard current sensing technique towards low power, volume and cost.9

Since acceleration data can be numerically integrated to estimate velocity, a moderately

priced inertial measurement unit (IMU) was considered for an onboard current sensor.

Acceleration measurement allows for current velocity estimation while in a Lagrangian reference

frame. IMU devices feature both magnetometers and accelerometers, allowing for accelerations

to be measured with respect to the North-East-Down (NED) frame. As CPFs may experience

slight shifts in orientation, the NED frame is useful in the ocean. To use the North-East-Down

reference frame, the IMU’s magnetometer must be calibrated. Although the CPF would use the

NED frame, magnetometer calibration was out of scope for this internship.

The primary objective of this project was to determine the feasibility of implementing the

VN-100 VectorNav IMU to estimate linear velocities of ocean currents in order to mitigate CPF

drift. To ascertain whether the sensor could measure accelerations imposed on the CPF, the

sensor’s lower limit of acceleration detection required identification.



MATERIALS AND METHODS

DESIGN REQUIREMENTS

Determining whether the VN-100 IMU could adequately estimate ocean current

velocities required an understanding of typical and extreme ocean current dynamic profiles. This

established a framework around which to design a physical method for sensor testing.

While the CPF would utilize velocity vs. depth estimations in selecting a parking depth,

the IMU could not directly measure linear velocities, but instead linear accelerations. Thus, IMU

viability depended on detectable acceleration signals. To characterize possible accelerations that

a CPF may encounter, numerical differentiation methods were applied to ocean current velocity

versus depth profiles collected in 1998 by the Ocean Acquisition System for Interdisciplinary

Science.2 In cases of both typical and extreme ocean currents, the acceleration order of

magnitude relevant to CPF application was 10^-4 m/s^2. To determine IMU viability,

accelerations of this order needed to be inducible by a test bed.

Figure I (above): Example of typical ocean current profile acceleration distribution. Leftmost bin was excluded

from histogram, as values were assumed zero.



To adequately characterize the VN-100 IMU, known and controllable accelerations must

be achievable. A test bed was also required to maintain, as needed, a specified acceleration for

prolonged periods.

Additive white Gaussian noise demands relatively simple signal processing methods to

be eliminated from the signal. Mechanical vibrations do not follow Gaussian distributions and

thus require more complex filtering. With the intent of measuring accelerations of such small

orders of magnitude, vibration elimination proved a crucial design consideration.

These test bed criteria were summarized into the following design requirements:

1) Accelerations on the order of 10^-4 m/s^2 must be achievable to impose on the IMU.

2) The test bed must be able to apply known, controllable accelerations to the sensor over a

prolonged period of time. This includes the ability to impose a constant acceleration.

3) The design must feature vibration elimination strategies, considering static and dynamic

imbalances, backlash, and vibration sources external to the test bed system.

DESIGN CONCEPTS & PRELIMINARY DESIGN

Figure II (left): Illustrated concepts for

controlled acceleration mechanism.



Initially, the preceding concepts were devised as methods of imposing a known and

controllable acceleration on the sensor.

The single-axis rotary table with vibration mounts was selected. Concepts that applied

translational motion required excessively long linear paths if aiming to apply a constant

acceleration over a significant period of time. Although rotational motion did not replicate

motion experienced by CPFs, it could apply a constant centripetal acceleration for unlimited

time. For the purposes of determining the lower limit of acceleration detection, designing a test

bed to apply centripetal rather than translational accelerations was acceptable. Furthermore,

motor control achieves more precise control than linear hydraulic, pneumatic, or spring

actuators. Finding the lower limit of detection did not necessitate testing about more than one

axis, eliminating the multi-axis rotary table concept.

After developing designs for a low-vibration rotary table, two designs stood out as

promising options. The primary distinction between these concepts was motor placement:

whether to mount the motor along the same shaft driving the rotating table or to decouple the

motor with a belt or gear power transmission.

Figure III: Developed concepts.



Despite the relative simplicity of directly driving the rotating table with a flexible shaft

coupling, its limited capacity for adjusting transmission ratio was deemed a significant design

risk. Transmission ratio adjustments in this design required either a custom gear train or new

equipment, introducing risks of additional backlash and cost, respectively. As such, the

decoupled motor mount concept was selected with modifications to simplify manufacturing and

reduce vibrations.

Motors inevitably produce mechanical noise, particularly with multi-stage gearheads

installed.4 Separation of the motor module isolated motor-induced mechanical noise from the

rotating table. A fixed distance of separation between the motor and rotating table shafts was

required to preserve the adjustable belt tension feature. To achieve both motor isolation and a

fixed distance of separation, a base plate was introduced. The base plate replaced the original

idea to clamp onto an external surface, which would have introduced noise from surrounding

activity.

Additional strategies were implemented to reduce vibrations, as listed below.

1. A counterweight mounted symmetrically to the sensor and of equivalent mass adequately

addressed the risk of static imbalance of the rotating table.

2. Using a timing belt drive instead of a gear train for power transmission avoided backlash

associated with rigid gear teeth. Timing belts mostly evade issues with pulley slip. A

properly tensioned timing belt will also absorb some amount of vibrations as a result of

their rubber material composition.

3. The number of unsupported spans present in each part of the assembly was minimized

when deciding where to place standoff supports.



4. Rubber vibration mounts were implemented between any mounting interface that could

otherwise transmit vibrations between modules.

5. Flexible rubber-insert shaft couplings replaced rigid shaft couplings. As an added

advantage, the flexible rubber-insert shaft couplings compensated for any potential

sources of misalignment overconstraint applied to the shafts.

Figure IV (above): High-resolution rendered CAD model of preliminary design

Figure V (below): Annotated CAD assembly drawing

A 5647:1 gearhead on the 1724T024SRIEH2-4096+16/7 Faulhaber motor and 3:1 (60:20) pulley

ratio were selected to achieve the desired acceleration order of magnitude.



FINAL DESIGN

Accelerations at the desired order of magnitude were in range of the original motor and

gearhead chosen, but the installed encoder exhibited no detectable signal during motor operation.

Initial wiring mistakes likely induced an electrical short on the encoder. At that time, it was

unrealistic to delay data collection by the time required to exchange the device. Thus, an

alternate motor owned by the laboratory, 2224U012SRIE2-16+23/1 1526:1+MG13 by Faulhaber,

was interchanged with the original.

If the angular speed range achievable by the motor, gearhead, and pulley configurations

fell below the range of detectable accelerations, it would be necessary to verify the lower limit of

detection by imposing higher speeds. Consequently, 18-tooth and 72-tooth pulleys of 2.3mm

pitch were acquired. After testing multiple configurations of the 18, 20, 60, and 72 toothed

pulleys, a 18:72 pulley tooth overdrive ratio was selected for the final design, as live signals

observed in this configuration seemed most promising. The resulting overall speed reduction

between the motor and table was 763:2.

The planned mounting of the 3D printed table to the output shaft involved bolting one

side of a rubber-insert shaft coupling to the table and clamping the remaining side to the shaft.

However, the shaft coupling was deformed when milling and tapping threaded attachment holes.

The resulting angled mount created a dynamic imbalance causing significant vibration.

Consequently, a rigid shaft collar with threaded attachment holes replaced the original

rubber-insert shaft coupling method.



Figure VI: Topmost images display electrical schematic and implementation. Bottom image includes rotary test

table assembly with Elmo Composer and VectorNav Control Center displayed on monitors.

SERVO DRIVER CONTROL LOOP TUNING

The Elmo Solo Whistle 5/60 was used as a servo driver to the selected motor. During

initial functionality testing of the motor, the Elmo Composer software continued to display an



“over speed” error, regardless of commands applied to the device. Elmo Composer required use

of a proportional-integral (PI) controller for velocity control. To reveal gains that may allow the

plant-controller closed loop transfer function to stabilize, a mathematical model of the rotary

table was developed. The model neglected to consider armature resistance, damping, and motor

shaft stiffness, as their effects were assumed to be negligible.𝑉 − 𝑘𝑡ω =  𝐿𝑎 𝑑𝑖𝑑𝑡𝐽1 𝑑ω𝑑𝑡  =  𝑘𝑡𝑖Ω = 𝑛 * ω

Figure VII (above) : Plant root locus plot.

Plant transfer function:
Ω𝑉  =  𝑛*𝑘𝑡𝐿𝑎(𝐽1+𝐽2)*𝑠2+𝑘𝑡2  =  1118.2𝑠2+1527

Figure VI revealed that a PI controller would not stabilize the system regardless of gain.

After reviewing the controller options available in Elmo Composer, a lead compensator was

added to the required PI controller, successfully stabilizing velocity control of the system.3



Controller transfer function:
𝐾𝑝(𝑠+𝐾𝑖)(𝑠+𝑧1)𝑠 (𝑠+𝑝1) = 41.169 (𝑠+49.86)(𝑠+35)𝑠 (𝑠+200.6)

Figure VIII (right): Plant and controller root locus plot.

Figure IX (below, left): Modeled unit step response of

closed-loop plant and controller.

Figure X (below, right): Measured motor speed vs. time

when commanded to 3000 rpm.

TEST PLAN

The following sequence of operations was performed with motor angular speed commands set to

3000, 2500, 2000, 1750, 1500, 1000, and 500 rpm.

1. The desired motor angular speed value (rpm) was set in the Elmo Composer application

in “Velocity Mode”. Once the encoder reported reasonably stable values around the

desired angular speed, the VectorNav Command Center data logger was started,



recording values in binary outputs1. The data logger was manually stopped after no less

than three full periods.

2. With the logged data, a MATLAB script plotted both:

a. Unfiltered, uncompensated linear acceleration in the x-direction vs. time

b. The frequency-normalized Welch power spectral density of the unfiltered,

uncompensated linear acceleration signal in the x-direction

3. An FIR filter of order 200 using a Chebyshev window with cutoff frequency 0.02

(frequencies normalized to 1) and sidelobe attenuation of 50 was applied to the unfiltered

acceleration data.

4. Two more plots were generated:

a. Filtered, uncompensated linear acceleration in the x-direction, , vs. time. This𝑎𝑥
plot also displayed a line along the mean acceleration value of the signal, .𝑎𝑥,𝑚𝑒𝑎𝑛

b. The frequency-normalized Welch power spectral density of the filtered,

uncompensated linear acceleration signal in the x-direction.

5. An angular speed vs. time graph was generated, displaying:

a. Estimated from acceleration average: a line along the theoretical motor speedω
associated with by the relation [Equation I.]𝑎𝑥,𝑚𝑒𝑎𝑛 𝑎 = Ω2𝑟 = (𝑛ω)2𝑟

b. Estimated of each acceleration point: a plot of the theoretical motor speedω
command associated with each point in the signal via Eqn. I.𝑎𝑥

c. Mean of estimated ’s: a line along the mean value of (b) estimatedω
’s of each acceleration point.ω

1 The VectorNav Command Center offers two output types: ASCII and binary. This study demanded uncompensated
acceleration values in order to avoid extraneous frequencies from the built-in Kalman filter. ASCII outputs are solely
compensated, so binary outputs were chosen.



d. Actual : gyroscope measurements with respect to the z-axis, scaled to accountω
for the gear reduction between the motor and rotating table.

To validate previous results, two tests with the following motor commands were individually

performed:

1. The data logger was started while the motor was stationary, at 0 rpm. The acceleration

rate was set to 100 counts per second-squared. A command was sent to the Elmo Solo

Whistle servo driver via Elmo Composer to accelerate to 3000 rpm. When compared with

gyroscope readings, this test would theoretically validate the speed (and associated

centripetal acceleration) at which the acceleration signal leaves the noise floor.

2. The data logger was started while the motor was at 3000 rpm. The acceleration and

deceleration rates were set to 10000 counts per second-squared to achieve near-instant

speed change. After running for a few full table rotations, the motor was accelerated to

-3000 rpm. The lowest magnitude point where the signal surpassed the extrema of the

noise floor would verify the lower limit of detection.

RESULTS



Figure X (above): Unfiltered and filtered uncompensated x-direction acceleration signals with motor command

speed of 3000 rpm.

Figure XII (right): Angular

speed vs. time, as described in

step 6 of the test plan.

Figure XIII (left): Estimated

points refer to acceleration

mean values, ,𝑎𝑥,𝑚𝑒𝑎𝑛
calculated from measured

accelerations given motor

command speeds. Expected

values are calculated with

Eqn. I.



Figure XIV (left): Filtered acceleration signal vs. time of

the 3000 to -3000 rpm motor speed command test.

Figure XV (right): Filtered acceleration signal vs.

time of the 0 to 3000 rpm motor speed command test.

DISCUSSION

The results of tests conducted with the rotary table suggested that the lower limit of

acceleration detection of the VN100 IMU sensor was likely about 0.01 , though further𝑚/𝑠2
testing is required due to discrepancies between measurements and expected system dynamics.

The sensor was mounted to align its theoretical origin with the center of rotation. An ideal model

would exhibit a centripetal acceleration signal of constant amplitude in the x-direction. Figure X

demonstrated that the acceleration signal in the x-direction was periodic, revealing the presence

of misalignment errors. Possible sources of misalignment included the true sensor x-axis failing

to intersect the center of rotation and the degree to which the sensor was level.

Sensor bias and misalignment introduced significant error. As seen in Figure VIII, the

estimated from the acceleration mean and the mean of estimated ’s both differed from theω ω
actual by roughly a factor of two. Furthermore, the mean value of unfiltered, uncompensatedω
acceleration data at a motor speed command of zero was inconsistent, suggesting a complexity in



bias compensation that exceeded the scope of the internship. This realization rendered Figures

XIV and XV inconsequential; without proper sensor calibration, the acceleration magnitudes at

which the signal left the noise floor did not represent the actual lower limit of detection.

The significant offset in Figure XIII between measurement-based estimations and

expected centripetal accelerations associated with motor speeds via Eqn. I further suggested that

a lower limit of detection value could not be interpreted directly. The curve representing

expected centripetal accelerations did demonstrate that the accelerations imposed by motor

command speeds of 1500 rpm versus 500 rpm should have been significantly different, revealing

an inconsistency with observed results. The sensor did not distinguish between motor speed

commands from 500 to 1500 rpm. The first distinguishable estimated acceleration occurred at

1750 rpm to the motor, indicating that the lower limit of detection occurred near this angular

speed. Although the estimated acceleration value was based on uncalibrated measurements, Eqn.

I allowed the true lower limit of detection to be estimated at 0.01 . Since the acceleration𝑚/𝑠2
order of magnitude relevant to CPF application was , a lower limit of detection10−4 𝑚/𝑠2
estimation of 0.01 suggested that the VN100 IMU will not adequately detect ocean current𝑚/𝑠2
accelerations for velocity estimation.

CONCLUSION

This project aimed to determine the viability of the VN100 IMU sensor in estimating

ocean current velocities using acceleration measurements as a means of mitigating CPF drift. To

inform viability, the lower limit of acceleration detection required investigation, prompting the

design of a rotary table able to impose known and controllable accelerations on the IMU.

Comparing expected accelerations versus measurement-based estimates revealed the point at



which the sensor did not report significantly different accelerations for motor speeds that should

have been distinguishable if trends from higher speeds had continued. This point, observed at

about 1750 rpm, suggested that the lower limit of detection was likely about 0.01 .𝑚/𝑠2
Although bias compensation and misalignment corrections are required to perform tests

validating this result, the estimated lower limit indicated that the VN100 is not suitable for CPF

drift mitigation.
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