Learning by OSMOSIS: The seasonal cycle of submesoscale motions

Andy Thompson

California Institute of Technology

Wednesday, April 20, 2016
Pacific Forum—11:00 a.m.

The importance of submesoscale instabilities, particularly mixed layer baroclinic instability and symmetric instability, on upper-ocean mixing and energetics is well documented in regions of strong, persistent fronts such as the Kuroshio and the Gulf Stream. Less attention has been devoted to studying submesoscale flows in the open ocean, far from long-term, mean geostrophic fronts, characteristic of a large proportion of the global ocean. This study presents a year-long, submesoscale-resolving time series of near-surface buoyancy gradients, potential vorticity, and instability characteristics, collected by ocean gliders, that provides insight into open-ocean submesoscale dynamics over a full annual cycle. The gliders continuously sampled a 225 square km region in the subtropical northeast Atlantic, measuring temperature, salinity, and pressure along 292 short (~20 km) hydrographic sections. The importance of mixed layer instabilities on the re-stratification of the mixed layer, as compared with surface heating and cooling, shows that submesoscale processes can reverse the sign of an equivalent heat flux up to 25% of the time during winter. These results demonstrate that the open-ocean mixed layer hosts various forced and unforced instabilities, which become more prevalent during winter and emphasize that accurate parameteriza- tions of submesoscale processes are needed throughout the ocean.

Print version (PDF)

NextApril 27, Yogi Girdhar


Data repository
Data policy
What is happening in Monterey Bay today?
Central and Northern California Ocean Observing System
Chemical data
Ocean float data
Slough data
Mooring ISUS measurements
Southern Ocean Data
Mooring data
M1 Mooring Summary Data
M1 Asimet
M1 Download Info
M1 EMeter
M1 Fluorometer (CeNCOOS)
Molecular and genomics data
ESP Web Portal
Seafloor mapping
Upper ocean data
Spatial Temporal Oceanographic Query System (STOQS) Data
Image gallery
Video library
Previous seminars
David Packard Distinguished Lecturers
Research software
Video Annotation and Reference System
System Overview
Annotation Interface
Video Tape User Guide
Video File User Guide
Annotation Glossary
Query Interface
Basic User Guide
Advanced User Guide
Query Glossary
VARS Publications
Oceanographic Decision Support System
MB-System seafloor mapping software
How to Download and Install MB-System
MB-System Documentation
MB-System Announcements
MB-System Announcements (Archive)
MB-System FAQ
MB-System Discussion Lists
MB-System YouTube Tutorials
Matlab scripts: Linear regressions
Introduction to Model I and Model II linear regressions
A brief history of Model II regression analysis
Index of downloadable files
Summary of modifications
Regression rules of thumb
Results for Model I and Model II regressions
Graphs of the Model I and Model II regressions
Which regression: Model I or Model II?
Matlab scripts: Oceanographic calculations
Matlab scripts: Sound velocity
Visual Basic for Excel: Oceanographic calculations
Educational resources
MBARI Summer Internship Program
2017 Summer Interns Blog
Education and Research: Testing Hypotheses (EARTH)
EARTH workshops
2016—New Brunswick, NJ
2015—Newport, Oregon
2016 Satellite workshop—Pensacola, FL
2016 Satellite workshop—Beaufort, NC
EARTH resources
EARTH lesson plans
Lesson plans—published
Lesson plans—development
Lesson drafts—2015
Lesson drafts—2016 Pensacola
Adopt-A-Float Program
Center for Microbial Oceanography: Research and Education (C-MORE) Science Kits
Sample archive