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Abstract

The Monterey Bay Aquarium Research Institute (MBARI) is currently develop-
ing an AUV that has exchangeable midbody sections. Changing the midbody may
consequently change the vehicle length.

The vehicle is actuated by an articulated ring-wing and partially ducted thruster,
which gives the vehicle nearly complete axial symmetry.

In this paper we review the non-linear equations of motion used to model the vehicle.
We then linearize them and compare predicted performance against field-test data. We
discuss control issues that arise in the design of a variable-length vehicle.

1 Introduction

The MBARI AUV must serve as a general science platform in the Monterey Bay, which
requires frequent changing of instrument packages. It must also be capable of long range,
under-ice missions in the Arctic, as part of the Atlantic Layer Tracking Experiment (AL-
TEX) [4]. These disparate requirements have given rise to a modular design of exchangeable
body segments, making the vehicle relatively easy to reconfigure. The tail section is com-
mon to all configurations. It carries the basic navigation and control electronics, and the
propulsion system. See Figure 1 for a photograph of the vehicle.

Rather than the standard cruciform fin arrangement, this vehicle has an articulated ring-
wing control surface with a ducted propeller. The purpose of the ring-wing is to physically
protect the propeller while taking partial advantage of ducted-thruster characteristics. With
the exception of the vertically mounted RF/GPS antenna, the ring-wing gives the vehicle
complete axial symmetry. Figure 2 shows the ring-wing and propeller.

The ring-wing and the thruster are mounted together in a double gimbal arrangement.
Rudder and elevator control is actuated by two linear-displacement stepper motors. The
range of travel is ±15◦.

The hull shape is derived from the Series 58 Model 4154 Gertler polynomial [7], with a
length of 84 inches, and a diameter of 21 inches. The hull is then extended by adding 21
inch diameter cylindrical midsections at the point of maximum diameter.

A 1◦ class AHRS, a DVL, a GPS, and a depth sensor provide the basic navigation. The
vehicle carries various other types of sonars, including an LBL and an altimeter. For the
ALTEX mission, the vehicle will carry a ring-laser gyro-based heading reference, and possibly
a full INS system. The DVL will point upward to track off the ice.
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Figure 1: 556 cm AUV With Two Midbodies
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Figure 2: Ring-Wing and Propeller. Here there is only one 66 inch fuelcell midbody, and a
10 inch midbody for extra flotation, making the vehicle 419 cm in length. The vertical fin is
the RF/GPS antenna.
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2 Model of System Dynamics

2.1 Coordinate Systems and Notation

This report generally follows the SNAME [16] conventions for notation. We will take the
origin of the vehicle-fixed reference frame to be at the mipoint of the vehicle. This implies
that neither the center of mass nor the center of buoyancy will be at the origin. The body-
fixed b̂1 is ahead and b̂3 is down.

The position of the vehicle will be referred to an Earth-fixed reference frame, with n̂1

pointing north, and n̂3 down. For the purposes of controls analysis, we will assume the
Earth-fixed frame is inertially fixed. This frame will be referred to as N . Also, we’ll assume
that the fluid through which the vehicle travels is at rest with respect to the inertial frame.
See [5], p. 6 for a diagram.

The symbols for translational and rotational velocities are ~v and ~ω, respectively. These
will assume subscripts and superscripts. For example, N~v B◦

B is the velocity of the origin of the
body-fixed frame, B◦, with respect to the inertial frame N , coordinatized in the body-fixed
frame, B. In the common case where the velocity is with respect to N , and is coordinatized
in B, these two will be dropped to reduce clutter. Thus:

N~v B◦

B

4
= ~v B◦

4
=





u
v
w



 (1)

~ω B 4
=





p
q
r



 (2)

The symbol for displacement is ~r. Then, ~rN◦B◦ is the vector from the origin of the inertial
frame to the origin of the body frame;

~rN◦B◦ =





x
y
z





N

(3)

In general, a capital subscript on a vector specifies the frame in which the vector is coordi-
natized, as demonstrated in Equation 3.

Stability derivatives are denoted by the usual (X,Y, Z,K,M,N) with subscripts indi-
cating the variables of differentiation. See [6] for a complete list of symbols. All stability
derivatives are in dimensional form here.
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2.2 Force Model for the Ring Control Surface

For the purposes of analysis, we will assume that the ring lift and drag vectors act at the
ring center, which lies along the vehicle centerline. These vectors lie in the plane defined by
the velocity of the water at the ring center, and the ring axis. Let ~v R◦ be the velocity of
the ring center, R◦, with respect to an inertial frame (the water), N , coordinatized in the
body-fixed frame, B. We can then define a Lift-Drag frame, LD, whose origin is fixed at
the ring center, and whose x axis lies along ~v R◦ . The perpendicular y axis lies in the plane
defined by the ring axis and ~v R◦ . See Figure 3 for a diagram of the ring frame.

Neglecting transient flow effects, the lift and drag of the ring are given by [13]:

L =
1

2
ρAU 2CL(α) (4)

D =
1

2
ρAU 2CD(α) (5)

where

CL(α) = CLαα + CDcα|α| (6)

CD(α) = CDo +
CL(α)

2

πARe
(7)

AR is the aspect ratio, and A is the area of the ring defined as diameter × chord. The force
applied to the body by the ring, coordinatized in the LD frame, is

~FLD =





−D
L
0





LD

(8)

Now, consider a reference frame fixed in the ring, R, that is coincident with the vehicle
body frame, B, when the rudder and elevator angles, δR and δE are zero. The direction
cosine matrix that transforms a vector from B to R is

TR/B =





cos δR cos δE sin δR − cos δR sin δE
− sin δR cos δE cos δR sin δR sin δE

sin δE 0 cos δE



 (9)

The velocity of the ring center, R◦, in the ring frame is

~v R◦

R = TR/B ~v
R◦ (10)

The direction cosine matrix that transforms a vector from LD to R can be determined by
first setting

~t1 = ~v R◦

R (11)
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~t3 =





1
0
0



× ~v R◦

R (12)

~t2 = ~t3 × ~t1 (13)

Then,

TR/LD =
[

t̂1 t̂2 t̂3
]

(14)

where

t̂i =
~ti

|~ti|
(15)

Figure 3 shows that the angle of attack is given by the following.

α = arcsin
|~v R◦

R × ~r1|
|~v R◦

R |
(16)

Finally, we can compute

~FB = TB/R TR/LD ~FLD (17)

The numeric realization of Eqn. 15 must be done carefully to avoid a division by zero since
|~t2| and |~t3| approach zero for steady straight and level flight.

The velocity ~v R◦ is obtained from the vehicle states by the kinematic relation for a point
fixed on a moving rigid body:

~v R◦ = ~v B◦ + ~ω B × ~r B◦R◦ (18)

Our estimate for dCl/dα = CLα for the ring wing shaped control surface is based on results
from [14] (refering to work by [15]) and [3]. From Milewski’s thesis [14]: dCl/dα = 3.4855
for AR = 1.25, and the DSRV report [3] we have dCl/dα = 5.1566 for AR = 4.3716. (dCl/dα
is slope of lift coefficient based on chord x diameter (α in radians), and AR is aspect ratio,
diameter/chord). Between these two points we would like to interpolate with a function of
the form seen in van Dykes equation N.31 [18]:

dCl

dα
=

2π

1 + 2
AR

+ 16
πA2

R

log(1 + πe−9/8AR)

This is an empirical expression for lift coefficient slope for elliptical wings of different aspect
ratios, defined as planform area over maximum chord squared. We adopt this function to fit
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Figure 3: Coordinate Frame Definitions for the Ring

the ring wing results by allowing multiplicative parameters, r and s, in the definition of lift
coefficient and aspect ratio:

dCl

dα
=

2πr

1 + 2
sAR

+ 16
π(sAR)2

log(1 + πe−9/8sAR)
(19)

Solving this nonlinear system results in

2πr = 5.9273

s = 4.305

Figure 4 shows Equation 19 passing through the two data points. Also shown is slope for
lift coefficient based on duct frontal area, which is convenient for determining chord length
for a fixed diameter. In our case then the ring aspect ratio is 3, which yields dCl/dα = 4.8.

2.3 Propulsion Model

The propulsion is modeled simply as a gimbaled thrust that acts at R◦, where Tp denotes
thrust, not torque.

(

~Fp

)

B
= TB/R





Tp
0
0



 (20)
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Figure 4: Lift coefficient slope for different aspect ratio ducts, based on two data points
(diamonds). Between these, a function of the same form seen for elliptical planar wings
has been assumed. The other graph shows the same result, but with lift coefficient defined
on frontal area. The right hand ordinate axis shows indicates the slopes based on degrees,
instead of radians.

= Tp





cos δE cos δR
sin δR

− cos δR sin δE



 (21)

Equation 9 has been substituted into 20 to get 21.
The ring center is on the vehicle centerline at distance xR from the origin of the body-fixed

axes,

~r B◦R◦ =





xR
0
0





B

(22)

For this vehicle xR < 0.
Reaction torque from the propeller is neglected in this analysis because the ring stators

have been designed with a twist or “pre-swirl” such that they generate a roll torque that
opposes and balances the reaction torque at all speeds.
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2.4 Equations of Motion

The Equations of Motion (EOM) for this vehicle are based on the general case reported by
Gertler and Hagen in [6]. They have also been derived in [11].

Force or torque terms that are negligible or do not apply have been dropped. These
include terms related to a sail and a bowplane. The control and propulsion force and torque
terms in [6] have been replaced with those derived above for this specific case. Thus, forces
from the ring-wing control surface are not subsumed in the stability derivatives but are added
explicitly.

The Deep Submergence Rescue Vehicle has a similar shape and is actuated by a ring-wing.
See [3] for a thorough discussion of the EOMs.

All stability derivatives are in dimensional form here.
The effect of the RF/GPS antenna is neglected in the equations below.
Tp is the propulsion thrust along the ring centerline. (Fx, Fy, Fz) are the cartesian com-

ponents of the lift and drag force generated by the ring, FB, as derived in Section 2.2.
The EOM’s are given as follows:

Surge Force

m
[

u̇− vr + wq − xG(q2 + r2) + yG(pq − ṙ) + zG(pr + q̇)
]

= Xu̇u̇

+Xqqq
2 +Xrrr

2 +Xuuu
2 +Xvvv

2 +Xwww
2 +Xvrvr +Xwqwq

−(W −B) sin θ + Tp cos δR cos δE + Fx (23)

Sway Force

m
[

v̇ − wp+ ur − yG(p2 + r2) + zG(pr − ṗ) + xG(qp+ ṙ)
]

= Yṙṙ + Yṗṗ+ Yv̇v̇

+Ywpwp+ YrurYvuv

+Yv|r|v|r|+ Yv|v|v|v|+ Yr|r|r|r|+
(W −B) cos θ sinφ+ Tp sin δR + Fy (24)

The original equations had a dependence on w in the Yv|r| v|r| and Yv|v| v|v| terms, which
has been dropped. Yr|r| r|r| has been added.
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Heave Force

m
[

ẇ − uq + vp− zG(p2 + q2) + xG(pr − q̇) + yG(rq + ṗ)
]

= Zq̇ q̇ + Zẇẇ

+Zvpvp+ Zquq + Zwuw

+Zw|w|w|w|+ Zq|q|q|q|
+(W −B) cos θ cosφ− Tp cos δR sin δE + Fz (25)

The original equations had a dependence on v in the Zw|w|w|w| term, which has been
dropped. Zq|q|q|q| has been added.

Roll Moment

Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy
+m [yG(ẇ − uq + vp)− zG(v̇ − wp+ ur)]

= Kṗṗ+Kv̇v̇

+Kp|p|p|p|
+(yGW − yBB) cos θ cosφ− (zGW − zBB) cos θ sinφ (26)

The forces from the thruster and the ring lift and drag are considered to be bound at the
ring center, which lies on the vehicle centerline. Thus neither can exert a roll moment, and
the roll equation above is unforced.

Pitch Moment

Iyq̇ + (Ix − Iz)rp− (q̇ + qr)Ixy + (p2 − r2)Izx + (qp− ṙ)Iyz
+m [zG(u̇− vr + wq)− xG(ẇ − uq + vp)]

=Mq̇ q̇ +Mẇẇ

+Mquq +Mwuw +Mrprp

+Mq|q|q|q|+Mw|w|w|w|
−(xGW − xBB) cos θ cosφ− (zGW − zBB) sin θ

−xR(Fz + Tp cos δR sin δE) (27)
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Yaw Moment

Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Izx
+m [xG(v̇ − wp+ ur)− yG(u̇− vr + wq)]

= Nṙṙ +Nv̇v̇

+Nrur +Nvuv +Npqpq

+Nr|r|r|r|+Nv|v|v|v|
−(xGW − xBB) cos θ sinφ+ (yGW − yBB) sin θ

+xR(Fy + Tp sin δR) (28)

The kinematic equations are the standard 3-2-1 Euler sequence, and the associated deriva-
tives. See [5], Eqn. 2.11, 2.14 and 2.15, for example.

Numerical values for the stability derivatives, mass properties, and other parameters
above are included in Appendix A for the 556 cm vehicle. These have been analytically
derived for this Gertler shape as functions of midbody length. See [17].

2.5 Determination of Center of Buoyancy and Center of Mass

The Center of Buoyancy (CB) and Center of Gravity (CG) locations discussed below include
the water entrained in the hull.

We will assume that the drain and fastener holes in the hull are small enough to prevent
significant a flow-through of water during nominal flight. Archimedes first principle then
guarantees that the center of buoyancy will be at the volumetric center of the hull. Since
our hull has axial symmetry, the center of buoyancy must lie along b̂1, which is the center
line. Thus

yB = zB = 0 (29)

We will additionally make the idealizing assumption that the entrained water remains
motionless with respect to the body-fixed axes during flight.

It is impractical to analytically determine the location of the center-of-mass including
the entrained water, so we have developed an experimental procedure to measure it. This
involves hanging small weights from the vehicle, when its in the water, and using the AHRS
to measure various steady-state roll angles.
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2.6 Linearized Equations of Motion

Equations 23 through 28 have been linearized previously [10]. In this report we will linearize
about the solution for steady straight-and-level flight at a constant speed U . In this section,
the state u is considered to be a small perturbation about U . Likewise, the Euler angles
(φ, θ, ψ) are considered to be small perturbations about equilibrium values, which are denoted
by an overbar. The assumptions for linearity are then:

u, v, w ¿ U (30)

p ¿ U/D (31)

q, r ¿ U/L (32)

φ, θ ¿ 1 radian (33)

Ṫp, U̇ = 0 (34)

L and D are the length and diameter, respectively, of the vehicle.
The linearized equations are of order 12. The following additional assumptions will cause

the linearized equations decouple into a 4th order sway/yaw set, a 4th order heave/pitch set,
and two decoupled 2nd order equations for axial translation, and roll.

φ̄ = 0 (35)

xG ≈ xB (36)

yG ≈ yB (37)

W ≈ B (38)

This decoupling is advantageous for controller design since the problem is reduced to two
independent 4th order systems. However, the design should be checked for robustness against
the full order linear model (excluding uncontrollable states) to evaluate the effect of coupling
when Eqn. 35-38 aren’t satisfied. Of primary concern is φ̄, which is the equilibrium roll
angle. It sometimes has a nonnegligible value due to uncertainties inherent in the placement
of ballast.

In certain cases, such as a transect between two waypoints, we will additionally assume
ψ̄ = 0. The interpretation here is that the inertial frame N is displaced ψ̄ from North, and
then the body frame B remains within small angles of N . The state x is then considered to
be down-range distance, and y is cross-track error.
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Sway/Yaw









m− Yv̇ mxG − Yṙ 0 0
mxG −Nv̇ Izz −Nṙ 0 0

0 0 1 0
0 0 0 1

















v̇
ṙ
ẏ

ψ̇









=









(Yv − YRF − YA)U (Yr −m− xRYRF − xAYA)U 0 0
(Nv − xRYRF − xAYA)U (Nr −mxG − x2

RYRF − x2
AYA)U 0 0

0 1 0 U
0 0 0 1

















v
r
y
ψ









+









YRU
2 + TP

(YRU
2 + TP )xR
0
0









δR (39)

YRF is the sway force coefficient due to the rudder fixed in the neutral position,

YRF =
1

2
ρA(CLα + CDo) +

1

2
ρAS(CSLα + CSDo) (40)

A is the area of the ring, defined as chord × diameter. AS is the equivalent strut area,
defined to be AS = 2(1 +

√
2)× (span)× (chord).

YA is the sway force due to the RF/GPS antenna fin;

YA =
1

2
ρAF (CFLα + CFDo) (41)

AF is the area of the RF/GPS antenna. YR is the sway force coefficient due to a deflected
rudder;

YR =
1

2
ρACLα (42)
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Heave/Pitch








m− Zẇ −mxG − Zq̇ 0 0
−mxG −Mẇ Iyy −Mq̇ 0 0

0 0 1 0
0 0 0 1

















ẇ
q̇
ż

θ̇









=









(Zw − ZRF )U (Zq +m+ xRZRF )U 0 0
(Mw + xRZRF )U (Mq −mxG − x2

RZRF )U 0 W (zB − zG)
1 0 0 −U
0 1 0 0

















w
q
z
θ









+









−(ZRU
2 + TP )

(ZRU
2 + TP )xR
0
0









δE (43)

Due to symmetry we have

Zw = Yv (44)

Zq = −Yr (45)

Mw = −Nv (46)

Nr = Mq (47)

ZR = YR (48)

ZRF = YRF (49)

3 Control System

The analysis in this section is based on the linearized Equations 39-43. We will consider three
vehicle lengths below: L = (246, 389, 556) cm, corresponding to none, one or two midbodies,
respectively.

3.1 Control Surface Design Considerations

An interesting property of a long and slender hull with a pointed tail is that, without any
control surface area aft of the CG, it is longitudinally unstable. The Sway/Yaw Equation 39
shows this when YR and YA are set to zero. A design issue is then to decide how much lift
is required from the ring to obtain open loop stability for 246 < L < 556 cm.

Figure 5 shows the two non-zero open-loop time constants of Eqn. 39 as a function of
control surface area. The values used in this equation are furnished in Appendix A. For
L = 556 cm, the control surface must be greater than 0.030 meters2 for open-loop stability.
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The ring area was chosen to be A = 0.048 meters2. However, the stators also provide
considerable lift. The time constants including the stators are the right-hand endpoints of
the curves.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0
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16

Control Surface Area, Meters2

S
ec

on
ds

Open Loop Sway/Yaw Time Constants: DORADO556, rsm, 24−Jul−2001 15:29:25

Figure 5: Stability Versus Ring Area for L = 556 cm

Another question that presents itself is “How is the stability affected by varying the
length when the control surface area remains constant?” We can answer this since the mass
properties and stability derivatives can be analytically parameterized by length, as shown
in [17]. We will assume a representative value of zG = 6.5 mm for all lengths. Figure 6 shows
the open-loop Heave/Pitch time constants as a function of L. The vehicle response speeds
up for shorter lengths. The Sway/Yaw EOM’s show a similar trend.

3.2 Controllability

The roll dynamics have no control input and are consequently uncontrollable. Assuming that
the thrust Tp and the speed U are constant, the longitudinal states [ u x ]T are likewise
uncontrollable when evaluated against the full 12th order linearized model.

3.3 Sampling Rate Selection

The open-loop time constants (seconds) for the three lengths are:
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Figure 6: Stability Versus Length for Fixed Ring Area
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246 cm 389 cm 556 cm

1.1787 2.0332 2.9586

0.1884 0.4812 0.8770

0.1933 0.5091 0.9475

1.3036 2.2575 3.3298

40.5611 49.0399 58.6956

This excludes poles at s = 0. The first two rows are the sway/yaw modes, and the others
are heave/pitch.

We desire to control heading, cross-track error, pitch and depth (φ, y, θ, z). These all
correspond to eigenvalues at zero, except depth which is the last row above. The other
eigenvalues must remain stable and well damped in the closed-loop system. A sampling
period of 0.2 seconds was selected.

3.4 Actuator Dynamics and Model

The rudder and elevator are actuated by two linear-displacement stepper motors that move
a double gimbal. The outer gimbal is the elevator.

The stepper motors are rate-limited such that either gimbal can move no faster than 15
Degrees/second, or 0.042 Hz. Additionally, serial transmission delays of up to one second
(5Ts) occur routinely between the main vehicle computer and the motor control electronics.

Experience with the vehicle shows that the pitch control response is dominated by the
stepper motor rate limit. We have consequently chosen to model this by a linear, second-
order, critically-damped system with bandwidth 0.042 Hz.

3.5 Sway/Yaw and Heave/Pitch PID Control Loops

The control loop architecture currently in use is carried over from the Sea Grant Odyssey
program. Figure 7 shows the Heave/Pitch control loop.

The outer loop is a Proportional-Integral control on depth error. Until recently, a direct
measurement of depth rate has not been available, hence there is no rate term. The output
of this controller is a commanded pitch angle, which serves as the setpoint for the pitch
control. The pitch control is a PID. The gain values are selected such that the pitch loop
has a bandwidth approximately ten times that of the outer depth loop.

An advantage of this arrangement is that the control can be easily switched into a pitch
control mode, where the operators can explicitly specify a commanded pitch angle. This is
accomplished by simply shutting off the outer depth loop.

Figure 8 shows the Sway/Yaw control loop, which is frequently operated in a heading-
control mode where ψR is the commanded heading deviation, and Kwp is zero. Typically
states v and y are not sensed or fed back.
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The loop may also be operated in a waypoint mode, where ψR is now interpreted as a
commanded bearing deviation. The state y is estimated.

In the case of waypoints it is useful to consider vehicle motion relative to a rotated inertial
frame where the n̂1 axis points in the direction of travel, as mentioned in Section 2.6. Thus
ψR is always zero for nominal operation.

The interpretation of what the integrator now does is interesting. The integrator causes
the following relation to be satisfied in the steady-state, where the ss subscript signifies
steady-state.

ψRss = ψss +Kwpyss = 0 (50)

The ψss term denotes crab angle. The crab angle is typically due to a cross-current. Equa-
tion 50 then implies that the steady-state cross-track error is proportional to the crab angle.
A typical value of Kwp is 0.05 meters−1. Thus, if the crab angle is, say, 30◦, the cross-track
error will be 10.5 meters, assuming a steady cross-current. This may not be acceptable for
certain applications such as sea-floor mapping.

Figure 9 shows an alternative control where the integrator is guaranteed to drive the
cross-track error to zero. This is not yet implemented. The disadvantage of this is that
for setpoint operation the integrator would have to be switched back as in Figure 8, which
would lead to complications involving initializing the integrator state whenever the mode is
switched. Also, this implementation is not effective until the navigation error is less than yss
(ten meters).
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3.6 Design Evaluation

We will concentrate on the Heave/Pitch dynamics of the 556 vehicle, as it is the most difficult
to control.

Initial gain values have been chosen by trial and error for the PID architecture shown in
Figures 7 and 8. See A.1 for the values for the 556 cm vehicle. Until recently, significant
errors between the model and measured performance prevented an analytic design. Future
work will include an analytic determination of gains based on the model, as well as more
advanced control strategies.

The eigenvalues of the pitch control loop, excluding the depth loop, are:

Damping ratio, natural frequency (hz), time constant, 3*t.c.:

2.5265e-01 5.2756e-02 1.1941e+01 3.5822e+01

2.5265e-01 5.2756e-02 1.1941e+01 3.5822e+01

Time constant, 3 time constants (seconds):

0 0

8.4191e-01 2.5257e+00

7.3640e+01 2.2092e+02

3.1354e+00 9.4062e+00

2.0999e+00 6.2996e+00

A step response shows that the actuator poles at 0.053 Hz dominate, which agrees with
observation. The slow pole at 73.6 seconds is nearly canceled by a zero and does not appre-
ciably affect the step response. The pitch control bandwidth is 0.07 Hz.

Closing the outer depth loop gives the following eigenvalues:

Damping ratio, natural frequency (hz), time constant, 3*t.c.:

2.6585e-01 5.1628e-02 1.1596e+01 3.4787e+01

2.6585e-01 5.1628e-02 1.1596e+01 3.4787e+01

2.2982e-01 4.6371e-03 1.4934e+02 4.4803e+02

2.2982e-01 4.6371e-03 1.4934e+02 4.4803e+02

Time constant, 3 time constants (seconds):

8.4102e-01 2.5231e+00

2.1050e+00 6.3151e+00

3.3258e+00 9.9775e+00

7.4755e+01 2.2426e+02
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The pitch control eigenvalues have not changed much, but the response will now be
dominated by much slower and lightly damped depth poles at 0.0046 Hz. The depth control
closed loop bandwidth is 0.008 Hz, much slower than the inner pitch control loop.

Figure 10 shows the depth step response of the linear model. The second smoother curve
is depth response without actuator dynamics. Since the depth loop is so much slower than
pitch, the 0.042 Hz actuator mode in the pitch dynamics have little effect on the depth
response.

Figure 11 shows the pitch angle, the elevator angle, and various other quantities. The
0.042 Hz actuator mode is apparent.
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Closed Loop Depth Step Response: DORADO556, rsm, 24−Jul−2001 15:29:25

Figure 10: Depth Step Response of the Linearized Closed-Loop System

Since the actuator dynamics significantly degrade the pitch control, it seems prudent to
check the robustness of the control loop at the actuator input. Figure 12 shows a root locus
of the depth loop on actuator gain, where the loop is opened at the actuator input. The
entire locus isn’t shown.

Figure 12 is interesting in that it shows the depth poles (the inner locus) moving to the
left, but the actuator poles moving to the right, as gain increases. This suggests that the
system has an upper and lower gain margin. The margins are +22/− 17 dB, and the phase
margin is 105 Degrees.

Another area of concern is robustness with respect to CG shift. This is particularly
important for the Altex mission because the fuel cell will both lose weight in expelled gas,
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Step

and will shift it’s CG lower as the aluminum anode plates oxidize and turn into precipitates.
Figure 13 shows a root locus of the closed loop system on the center of mass, zG. The

actuator poles move to the right, but the depth poles become unstable as zG → 200mm. We
do not expect the CG to exceed 20mm during the course of the Altex mission, which is not
enough to destabilize the loop. This will be verified in future tests.
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3.7 Model Validation and Identification: Comparison to Data

This section contains plots from a rudder step-response test for the 556 cm vehicle. The
underdamped modes in depth and pitch described in the preceding sections are evident.

The test was a ±10◦ rudder deflection at a depth of 15 meters. Figure 14 shows the
ground track of the vehicle. The fixed rudder causes the two opposing loops. The bottom
strip of Figure 15 shows the commanded rudder angle. In between steps, the rudder was
fixed at −2◦, which is near neutral.

The effect on the depth control is visible in Figure 16. The upper strip shows depth,
and the middle strip shows commanded and measured pitch. The vehicle displays a damped
oscillation in depth. The measured depth descends past the commanded at 108 seconds, and
again at 322, giving a period of 214. This compares well with the inverse of the damped
natural frequency computed in Section 3.6, which is 221 seconds.

At 376 seconds the rudder steps to −10◦ which excites the actuator mode, which is
modeled to have a period of 20.1 seconds. The pitch oscillation in the figure, beginning at
375 seconds, and again at 506 seconds, has a period of 21 seconds. Corresponding elevator
oscillations are visible in the bottom strip.

The top strip of Figure 17 shows an equilibrium roll angle of −4.5◦. The vehicle rolls to
near zero when it makes its first turn to starboard, but then rolls to about −10◦ during the
turn to port. There is concern that roll angles much larger than this will couple Sway/Yaw
with Heave/Pitch.

The bottom strip of Figure 18 shows that the vehicle achieves approximately a ±5◦ turn
rate for rudder deflections of 10◦. The linear Sway/Yaw model in Equation 39 predicts
4.5◦/second. The nonlinear terms may be significant at this turn rate.

Figure 19 shows the three components of velocity as measured by the DVL, that is, ~vDV L◦ .
The DVL is not located at the vehicle midpoint, but is just aft the RF/GPS antenna. See
Figure 2. Substituting ~r B◦DV L◦ in Equation 18 instead of ~r B◦R◦ , and using steady-state
values from Equation 39 gives a predicted value of 0.37 meters/second. The measured value
from the second strip is 0.40.

4 Conclusions and Future Work

We have described the equations of motion, both nonlinear and linear, for the MBARI
AUV. Eigenvalues and linear step responses were computed and shown to be in reasonable
agreement with measured data.

In evaluating the linear equations against the data, we found that the stepper motor rate
limit caused significant oscillations in the pitch controller. The analytic models were brought
into agreement with the data by including a second-order roll-off to model the rate limit.

Some exciting topics for future work are:
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1. Modify the control architecture in Figures 7 and 8 to include full-state feedback. In-
vestigate using the DVL to measure the three states u, v, w (= ~v B◦).

2. Derive an observer or possibly a Kalman filter to estimate biases and ocean currents.
This estimator may also need to propagate ~v B◦ between updates as it is unlikely that
the DVL will be able to sample at the control system rate of 5 Hz.

3. Investigate a low-power, cruise mode of control, which samples and actuates at a much
lower rate.

4. Analyze vehicle performance at low-speeds and with a significant roll angle.

5. Analyze Heave/Pitch and Sway/Yaw coupling caused by the RF/GPS antenna. This
and the preceding item require the full 12 state coupled linear equations.
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A Numerical Values

A.1 Mass Properties and Stability Derivatives for Simulation

DORADO556 PARAMETERS

-- Mass Properties --

1089.814286 : (mass) Mass, kg.

2154.307591 : (Izz) Inertia about (principal) z axis, kg-m^2.

36.677779 : (Ixx) Inertia about (principal) x axis, kg-m^2.

5.554800 : (len) Length, Meters.

18.224409 : (len) Length, feet.

0.533400 : (dia) Diameter, Meters.

21.000000 : (dia) Diameter, Inches.

-2.777400 : (xR) Distance from CG to CP of ring, Meters.

-2.853600 : (xP) Distance from CG to pivot point, Meters.

0.120877 : (xG) x CG offset, Meters.

0.000000 : (yG) y CG offset, Meters.

0.006500 : (zG) z CG offset, Meters.

0.120877 : (xB) x CB offset, Meters.

0.000000 : (yB) y CB offset, Meters.

0.000000 : (zB) z CB offset, Meters.

-0.076200 : (xPcp) Dist from pivot to ring CP, Meters.

-3.000000 : (xPcp) Dist from pivot to ring CP, In.

0.063500 : (aR) Dist from c.l. to rudder actuator base, m

0.063500 : (rR2) Dist from c.l. to rudder actuator pivot, m

0.025400 : (rR1) Body x Dist from Tailc. Pivot to Rudder Act. Pvt, m

-- Vehicle Control System --

0.200000 : (Ts) Control System Sampling Interval, Sec.

3.000000 : (vel) Forward speed, knots.

52.000000 : (Tp) Thrust, Newtons.

0.560000 : (Kph) Heading position gain, unitless.

1.600000 : (Krh) Heading rate gain, seconds.

0.000000 : (Kvh) Sway rate (v) gain, rad/(meters/sec).

0.016000 : (Kih) Original Heading integral gain, 1/sec.

0.000000 : (Kwp) Sway (Waypoint) gain, rad/meter.

0.000000 : (Kiwp)Sway (Waypoint) integral gain, rad/sec/m.

0.750000 : (Kpp) Pitch position gain, unitless.

1.500000 : (Krp) Pitch rate gain, seconds.

0.010000 : (Kip) Pitch integral gain, 1/sec.

0.011000 : (Kpd) Depth position gain, rad/meter.

0.000500 : (Kid) Depth integral gain, rad/meter/sec.

38



-- Tailcone --

15.000000 : (maxDeltaR) Max. Rudder Deflection, Deg.

2400.000000 : (maxActDisp) Max Act. Displacement, counts.

1200.000000 : (maxActRate) Max Actuator Displacement Rate, Counts/Sec

240.000000 : (maxActDispTs) Max Act. Displacement in one Ts, Counts/sample

1.150000 : (ampsAct) Actuator current, full on, amps.

-- Control Surface Hydrodynamic Properties --

0.129677 : (TotalArea) Area of ring and struts, M^2.

278.303019 : (YdeltaRFixed) Sway force due to fixed rudder.

277.751689 : (YdeltaR) Sway force coeff. due to rudder deflection.

- Fins or Struts -

0.010161 : (StrutArea) Control surface Area, Meters^2.

15.750000 : (StrutArea) Control surface Area, Inches^2.

0.049063 : (LinCtrlArea) Equivalent control surface area, Meters^2.

76.047727 : (LinCtrlArea) Equivalent control surface area, Inches^2.

6.280000 : (dCl) Coeff. of lift slope.

0.810000 : (Cdc) Crossflow drag coefficient

0.012000 : (Cd0) Constant component of drag coeff.

3.111111 : (Ar) Ring/strut aspect ratio.

0.900000 : (Ef) Oswald efficiency factor.

- Ring -

0.048387 : (RingArea) Control surface Area, Meters^2.

75.000000 : (RingArea) Control surface Area, Inches^2.

4.800000 : (dClR) Coeff. of lift slope.

0.810000 : (CdcR) Crossflow drag coefficient

0.010000 : (Cd0R) Constant component of drag coeff.

4.260000 : (ArR) Ring/strut aspect ratio.

0.900000 : (EfR) Oswald efficiency factor.

-- Fuselage Hydrodynamic Properties --

- Added Mass -

Yvdot =-1043.590806; // Yvdot, kg.

Zwdot =-1043.590806; // Zwdot, kg.

Xudot = -26.209663; // Xudot, kg.

Mqdot =-1907.084102; // Mqdot, kg-m^2.

Nrdot =-1907.084102; // Nrdot, kg-m^2.

Kpdot = 0.000000; // Kpdot, kg-m^2.

Kvdot = 0.000000; // Kvdot, kg-m.

Mwdot = 114.059185; // Mwdot, kg-m.

Zqdot = 114.059185; // Zqdot, kg-m.

Nvdot = -114.059185; // Nvdot, kg-m.

Yrdot = -114.059185; // Yrdot, kg-m.

Ypdot = 0.000000; // Ypdot, kg-m.
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- Stability Derivatives -

Kpabp = -0.311429; // Kp|p| , kg-m^2

Nuv = -885.121594; // Nuv , kg

Nur = -490.416429; // Nur , kg-m

Xvv = -67.911429; // Xvv , kg/m

Xww = -67.911429; // Xww , kg/m

Xvr = 1043.590806; // Xvr , kg

Xwq =-1043.590806; // Xwq , kg

Xrr = 114.059185; // Xrr , kg-m

Xqq = 114.059185; // Xqq , kg-m

Yuv = -138.000394; // Yuv , kg/m

Yur = 82.771766; // Yur , kg

Nrabr =-2850.198251; // Nr|r| , kg-m^2

Mqabq =-2850.198251; // Mq|q| , kg-m^2

Nvabv = 486.816877; // Nv|v| , kg

Ywp = 1043.590806; // Ywp , kg-m

Yrabr = 0.000000; // Yr|r| , ?

Yvabv = -920.141796; // Yv|v| , kg/m

Zwabw = -920.141796; // Zw|w| , kg/m

Mwabw = -486.816877; // Mw|w| , kg

Zqabq = 0.000000; // Zq|q| , ?

Muq = -490.416429; // Muq , kg-m

Muw = 885.121594; // Muw , kg

Mpr = 1907.084102; // Mpr , kg-m^2

Npq =-1907.084102; // Npq , kg-m^2

Zuq = -82.771766; // Zuq , kg

Zuw = -138.000394; // Zuw , kg/m

Zvp =-1043.590806; // Zvp , kg

A.2 Expanded List of Stability Derivatives

The table below shows all nonzero coefficients that are used in simulations. Inertal quantities
are all found analytically from the shape of the body, assuming it is the same density as
water. Some adjustments have been incorporated , since the entrained water is not likely
to move as a rigid body. Added mass properties are found from analytical results for basic
shapes such as spheroids, cylinders, and plates, combined with strip theory. Munk moment
and viscous lift and drag force coefficients were collected from [12], [2], [1], [8], [9], [18], [19].

Body Propulsor Appendages Total

l [m]: 5.554800

m [kg]: 1089.814286 0.200000 3.100000 1093.114286
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xCB [m]: 0.120877 -1.877400 -2.777400 0.112961

zCB [m]: -0.391700

Ix [kg m^2]: 36.677779

Iy [kg m^2]: 2154.307591

Iz [kg m^2]: 2154.307591

Xudot [kg]: -26.209663 -0.400000 0.000000 -26.609663

Xvdot [kg]: 0.000000 0.000000 0.000000 0.000000

Xwdot [kg]: 0.000000 0.000000 0.000000 0.000000

Xpdot [kg m]: 0.000000 0.000000 0.000000 0.000000

Xqdot [kg m]: 0.000000 0.000000 0.000000 0.000000

Xrdot [kg m]: 0.000000 0.000000 0.000000 0.000000

Yvdot [kg]: -1043.590806 -15.000000 -1.300000 -1059.890806

Ywdot [kg]: 0.000000 0.000000 0.000000 0.000000

Yqdot [kg m]: 0.000000 0.000000 0.000000 0.000000

Ypdot [kg m]: -0.520000 -0.520000 0.000000 0.000000

Zwdot [kg]: -1043.590806 -15.000000 0.000000 -1058.590806

Zpdot [kg m]: 0.000000 0.000000 0.000000 0.000000

Zqdot [kg m]: 71.457236 -2.440949 114.059185 -40.161000

Zrdot: [kg m]: 0.000000 0.000000 0.000000 0.000000

Kpdot [kg m^2]: 0.000000 -0.041040 -0.185000 -0.226040

Kqdot [kg m^2]: 0.000000 0.000000 0.000000 0.000000

Krdot [kg m^2]: 0.976380 0.976380 0.000000 0.000000

Mwdot [kg m]: 73.898185 0.000000 114.059185 -40.161000

Mqdot [kg m^2]: -1907.084102 -107.527061 0.000000 -2014.611163

Mrdot [kg m^2]: 0.000000 0.000000 0.000000 0.000000

Nrdot [kg m^2]: -1907.084102 -107.527061 -4.583255 -2019.194419

Ypdot,Kvdot [kg m]: 0.000000 0.000000 -0.520000 0.000000

Nvdot,Yrdot [kg m]: -114.059185 40.161000 2.440949 -71.457236

Zqdot,Nwdot [kg m]: 114.059185 -40.161000 -2.440949 71.457236

Npdot,Krdot [kg m^2]: 0.000000 0.000000 0.976380 0.976380

Xuu [kg/m]: -25.502857 0.000000 2.000000 -23.502857

Xvv [kg/m]: -67.911429 -0.240000 -0.490000 -68.641429

Xww [kg/m]: -67.911429 0.000000 -0.490000 -68.401429

Xpr [kg m]: 0.520000 0.520000 -0.000000 -0.000000

Xqw [kg]: -1058.590806 0.000000 -1043.590806 -15.000000

Xqq [kg m]: 114.059185 0.000000 -3.779836 110.279349

Xrv [kg]: 1059.890806 1.300000 1043.590806 15.000000

Xrr [kg m]: 114.059185 0.450576 -3.779836 110.729925

Xdrdr [kg/m]: -0.490000

Xdsds [kg/m]: -0.490000

Yv [kg/m]: -138.000394 -40.750000 -190.540000 -369.290394

Yv|v| [kg/m]: -920.141796 0.000000 0.000000 -920.141796
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Yp [kg]: 0.000000 -15.961775 0.000000 -15.961775

Ypw [kg m]: 1073.590806 15.000000 1043.590806 15.000000

Yp|p| [kg m]: 0.000000 0.000000 0.000000 0.000000

Yqp [kg m^2]: -33.737185 40.161000 -114.059185 40.161000

Yr [kg]: 82.771766 76.504050 529.205796 688.481612

Ydr [kg/m]: 190.540000

Zw [kg/m]: -138.000394 0.000000 -190.540000 -328.540394

Zw|w| [kg/m]: -920.141796 0.000000 0.000000 -920.141796

Zpv [kg]: -1073.590806 -15.000000 -1043.590806 -15.000000

Zpp [kg m]: 0.000000 0.000000 0.000000 0.000000

Zpr [kg m]: -33.737185 40.161000 -114.059185 40.161000

Zq [kg]: -82.771766 0.000000 -190.540000 -273.311766

Zds [kg]: -190.540000

Kv [kg]: 0.000000 -15.961775 0.000000 -15.961775

Kv|v| [kg]: 0.000000 0.000000 0.000000 0.000000

Kvw [kg]: 1.300000 1.300000 0.000000 0.000000

Kvq [kg m s]: -2.440949 -2.440949 0.000000 0.000000

Kwr [kg]: 2.440949 2.440949 0.000000 0.000000

Kp [kg m]: 0.000000 -7.150000 -2.960000 -10.110000

Kpw [kg m s]: 0.520000 0.520000 -0.000000 -0.000000

Kp|p| [kg m^2]: -0.311429 0.000000 0.000000 -0.311429

Kqr [kg m^2]: -4033.805582 -4.583255 -3814.168204 -215.054123

Kr [kg m]: 0.000000 29.966636 0.000000 29.966636

Mw [kg]: 885.121594 0.000000 -529.205796 355.915798

Mw|w| [kg]: -486.816877 0.000000 0.000000 -486.816877

Mpv [kg m s]: 73.898185 -0.000000 114.059185 -40.161000

Mpr [kg m^2]: 2019.112339 4.542215 1907.084102 107.486021

Mq [kg m]: -490.416429 0.000000 1469.816178 979.399749

Mq|q| [kg m^2]: -2850.198251 0.000000 0.000000 -2850.198251

Mrv [kg m s]: 0.520000 0.520000 -0.000000 -0.000000

Nv [kg]: -885.121594 76.504050 529.205796 -279.411748

Nvq [kg m]: -0.000000 -0.000000 -0.000000 -0.000000

Nv|v| [kg]: 486.816877 0.000000 0.000000 486.816877

Nwp [kg m]: 33.737185 -40.161000 114.059185 -40.161000

Np [kg m]: 0.000000 29.966636 0.000000 29.966636

Np|p| [kg m^2]: 0.000000 0.000000 0.000000 0.000000

Nqp [kg m^2]: -2121.912185 -107.342061 -1907.084102 -107.486021

Nr [kg m]: -490.416429 -143.628703 -1469.816178 -2103.861310

Nr|r| [kg m^2]: -2850.198251 0.000000 0.000000 -2850.198251

}
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