
1

A Low Cost, Underwater CO2 Sensor For Education And Research

Miguel Uzcategui, University Of The District Of Columbia

Mentor: Ken Johnson

Summer 2013

2

INDEX

1. INTRODUCTION... 4

2. COMPONENTS... 6

Microcontroller .. 6

RTC plug (clock)... 6

Memory plug.. 7

UART plug... 8

Relays.. 8

Air pump.. 8

CO2 sensor (Telaire 6615F).. 9

Temperature and humidity Sensor (Sensirion SHT21).................. 10

Nafion tubing.. 10

Teflon AF tube.. 11

3. EXPERIMENTS... 12

Determining the equilibration rate of the Teflon AF..................... 12

Power consumption.. 14

Pricing.. 16

4. RESULTS.. 17

Test tank.. 17

Harbor... 17

5. TUTORIAL.. 20

Assembling the Jeenode... 20

Assembling the circuitry together... 20

3

Battery pack... 23

Housing... 24

Tubing layout.. 26

Code... 27

User Interface.. 30

6. CONCLUSION... 31

7. REFERENCES.. 32

8. APPENDIX..33

Appendix A.. 34

Appendix B... 37

Appendix C... 51

4

Abstract: Due to the increasing concern on how CO2 is affecting the seas, and lakes; an

underwater CO2 sensing module was developed to fulfill this task . It works by using Teflon AF

tubing to equilibrate the pCO2 that is underwater. The sensor used was a Telaire 6615 which is

a flow through dual channel sensor that communicates to a microcontroller using UART

protocol. By putting the device on the Moss Landing harbor, it was determined that the sensor

system works in an accurate way, where there was a constant fluctuation of pCO2 between 470

ppm and 530 ppm which is correlated to the tide. The conclusion of this project, is that a

reliable, low cost underwater CO2 sensing module can be built using Teflon AF as an

equilibrator, in the future it is hoped that the sensing module could serve for future small

researches or simply for education.

INTRODUCTION

 In the present, humanity have started to realize how important is the chemistry of the

water for all the living species on earth. Carbon dioxide plays an important role in the chemistry

of our seas, lakes, and rivers (NASA). Many studies are being done to produce better sensors or

better algorithms that will detect underwater carbon dioxide levels more efficiently and with

more precision (ATABEK) (Ning, Li and Li). The reason of all this studies is simple, to have a

better understanding of how carbon dioxide affects life underwater. Some species are more

suited to live in an environment with more carbon dioxide than others. Different concentrations

of carbon dioxide could trigger different answers to a common stimulus among different species

(Damage to Marine Ecosystems as CO2 Emissions Rise). Another reason to study CO2 , could be

on how CO2 changes affect the metabolism of respiration and photosynthesis in different

underwater plants.

5

The objective of this project is to develop a low cost, easy to build, underwater, and low

power consumption carbon dioxide sensor. It is not intended to be a high precision sensing

device, but is good enough so that some undergraduate or masters researches could use it to get

good data on carbon dioxide concentration that could help them on their respective researches. It

could also be used by anybody with low technical skills who just want to conduct a small

research for self-benefit.

 In order to measure CO2 concentration underwater, the sensor will be introduced on a

water tight housing, where a small Teflon AF tubing is going to be in touch with the water and

going into the sensor. The Teflon AF tubing serves as an equilibrator of Carbon dioxide,

meaning that the same partial pressure of CO2 that it is underwater will diffuse through the

Teflon AF tubing due to its special capabilities (Dasgupta).

The need of developing radio communications to the sensing module was necessary. This was

because, as said before, the sensor will be put in a water tight housing; therefore, the less it is

taken out of that housing the better. This is to avoid any human error that will damage the

housing while opening and closing it, thus getting water in the sensor and the microcontroller

when put into the water.

 A complete explanation about the CO2 sensing mote and the Teflon AF tubing will be

addressed on the following sections.

6

COMPONENTS

Microcontroller (Jeenode): The Jeenode is a microcontroller based on the Arduino concept

that is designed for low power consumption. It has 4 ports in which you can connect any device

using the I2C protocol (Wikipedia, I2C), or also have analog and Digital pins for devices that do

not use I2C protocol. The voltage supply is from 3.3 to 17V. The key about the Jeenode is that is

designed for low power consumption. The Jeenode consumes 9mA when is in normal operation

and 0.8mA (Jeelabs, Jeenode SMD) while it is on Sleepy state; while the Arduino consumes 50

to 500mA while awake, depending on how is running, and 10 mA while it is on sleeping mode

(Mitchell).

Figure 1 (pin out and port description of the Jeenode)

 RTC plug(Clock): The clock plug is a Jeenode plug that works with the real time chip

DS1340. It has a little battery backup so it keeps working after disconnected from the

7

power source. It runs using an I2C bus running at 3.3V. So it can be connected in any

Jeenode port. (Jeelabs, RTC plug)

Figure 2 (picture of the RTC plug along with the Pinout description.)

 Memory plug: The memory plug is a small board with 1 to 4 EPROM memory chips,

each of them have a capacity of 128 Kbytes. It could have up to 512Kbytes of memory;

however for this project 2 memory chips are used, which means there is up to 256

Kbytes in memory. The memory plug uses an I2C bus with 3.3V to interface with any

device or any of the four Jeenode ports. It is designed on a way that each memory chip is

composed of pages and directories. Each memory chip has 1000 pages with a capacity of

256 bytes per page. (Jeelabs, Memory plug). There is no file system for reading or

writing; therefore all the readings and writings have to be done manually by the user. The

best way to do it, is by setting up a directory on page 0 byte 0 and save the number of

page and the number of byte where you are at. So the next time an operation needs to be

done, the memory can know the location where it has to go.

8

Figure 3 (picture of the memory plug along with the Pinout description.)

 UART plug: The UART plug just adds a serial port to the system. It is based on the

SC16IS740 chip. It can be interconnected with any devices that needs an UART protocol

to communicate up to a baud rate of 230400. It runs using an I2C bus running at 3.3V.

So it can be connected in any Jeenode port (Jeelabs, UART plug).

Figure 4 (picture of the UART plug along with the Pinout description)

 Relay plug: The relay plug is as the name says two simple relays that can be switched

on and off when desired. It connects to the Jeenode by using one of the Jeenode ports

(Jeelabs, Relay plug).

Figure 5 (picture of the relay plug along with the Pinout description)

 Air pump: It is a diaphragm pump created by "KNF" which works with a supply voltage

of 6V. It possesses two tubing exits and it does not allow any flow of air from the outside

to enter in the main chamber of the pump. For more information, look at the datasheet

9

that is on the website listed in the "Work Cited" part of the paper. (KNF)

Figure 6 (picture of the air pump)

 CO2 sensor: For this project, the sensor that is being used is the GE Telaire T6615F

which is a dual channel sensor. The sensor works by shining a beam of infrared light, one

of the channels measures the reference light that was shined while the other one measures

the amount of infrared light that gets back (GE). Then, using Beer-Lambert Law

(Wikipedia, Beer_Lambert Law) the concentration of CO2 can be known. The Telaire

6615F comes with an tight air housing, with two little tubing exits, which does not allow

any air to diffuse into the sensor, except by the air that is coming through the tubing. It

communicates using UART protocol (Wikipedia, Universal asynchronous

receiver/transmitter) with a supply voltage (Vin) of 5V.

10

Figure 7 (picture of the Telaire T6615F along with the Pinout description)

 Temperature and humidity Sensor (Sensirion SHT21): It is a sensor developed by

Sensirion, as the name says it measures the temperature and the humidity on the air. It

works using I2C protocol with a SDA and SCL to do the communications with the

microcontroller. It has a supply voltage (Vin) of 5V. (Sensirion)

Figure 8 (top-down view of SHT21 sensor)

 Nafion Tubing: In simpler terms Nafion is a Teflon backbone with occasional side

chains of another fluorocarbon. The side chain terminates in a sulfonic acid (-SO3H). It

works as a water absorbing trap. It can absorb water in its liquid and vapor phase. Each

sulfonic acid group can absorb up to 13 molecules of water, which are transported

through the membranes of the tubing to the outside of the tubing. (Pure)

11

Figure 9 (Picture of Nafion tubing)

 Teflon AF tubing: The Teflon AF tubing is a type of tubing made out of Teflon AF-

2400. This type of material is permeable to many materials, specially to CO2 (Dasgupta).

It is made out of small membranes which allows the partial pressure of CO2 to

equilibrate; therefore, it could act as an equilibrator in an aquatic medium. For this

project a 1.6mm OD and 1.0 mm ID was used (Biogeneral).

Figure 10 (Teflon AF tubing)

12

Teflon® AF Gas Permeability, cB *

Gas Teflon® AF 2400 PTFE

CO2 280,000 1200

O2 99,000 420

H2 220,000 980

N2 49,000 140

* cB = centiBarrer = 10
-8

 x (cm
2
 - cm) / (cm - Hg - sec - cm

2
)

Figure 11 (Permeability of Teflon AF 2400 tubing to different materials)

EXPERIMENTS

 Determining the equilibration rate of the Teflon AF

 The whole Idea of the project is to create a sensor that can measure CO2 underwater. In

order to do that, it has to be tested if the Teflon AF tubing equilibrates underwater. A series of

experiments were done with different concentrations of CO2 ; first in air and finally underwater,

to see if the tubing truly equilibrates, and if it does, find out the rate of equilibration.

 The experiment setup was a glass flask with three tubing ports and one plastic cap that

can seal completely the inside of the flask. The Teflon AF equilibration tube is placed in the

flask and connected to the sensor, and the air pump through two of the ports, the gas supply

goes into the last port. The idea was to create a closed loop between the pump, the sensor and

the testing environment. The supply was on for a certain amount of time. When turned off the

flask was closed so no air could go in or out. Air circulated through the air pump, next to the

13

sensor and then to the flask again. The pump was left running the whole time through the

experiment.

Figure 12(Experiment setup)

 Equilibration time on air

FIgure 13 (Equilibration in air of the Teflon AF tubing, first graph time constant 9.81 min,

second graph time constant is 4.3 min)

0

100

200

300

400

500

600

700

10:04 10:33 11:02 11:31

400 to 600 ppm

400 to 600
ppm

0

50

100

150

200

250

300

350

400

13:26 13:55 14:24 14:52

400 to 200 ppm

400 to 200
ppm

14

 Equilibration time on water

Figure 14(Equilibration in Water of Teflon AF, first graph has a time constant of 4.73 min,

Second graph has a time constant of 3.73min, Third graph has a time constant of 8.17

ppm/min)

0

50

100

150

200

250

300

350

14:24 14:52 15:21 15:50 16:19

300 to 0 ppm

300 to 0
ppm

0

50

100

150

200

250

300

350

400

13:12 14:24 15:36

350 to 200 ppm

350 to 200
ppm

0

100

200

300

400

500

600

700

10:04 10:19 10:33 10:48 11:02

400 to 600 ppm

400 to 600
ppm

15

 Power consumption: In order to measure how much time the circuit can run with

batteries, first the mAh consumption of the circuit has to be found. A power meter was

used in order to look at the amount of power and current that the circuit consumes at each

state. The circuit setup used for this experiment is as follows.

Figure 15 (Circuit to connect the power meter to the sensing module)

After measuring all the devices, the results were as follows:

 Pump consumption: 111mA

 CO2 Sensor while awake (lights on): 0.145 mA

 Microcontroller +SHT21+ 7805 Voltage regulator+ CO2 Sensor (sleep

 mode)=38.3 mA

Knowing how much time each of the stages consume, it would be possible to calculate the total

consumption of the sensing module for each possible time scenario. Nevertheless, the total

power consumption calculated for this experiment was done for a time cycle of an hour. Where

16

the pump will be turning on for 5 seconds every 3 minutes, the sensor will be in sleep mode for

50 minutes, and finally the sensor will wake up to warm up for 10 minutes and then do a reading.

In order to know the power consumption in mAh of each state knowing the amount of seconds

the state will be effective, all what is needed to do is multiply by 1 hour, multiply by the number

of seconds the stage will be on, and finally divide by 3600 s.

 Pump consumption:

 Sensor while awake (lights on):

 4

 Microcontroller +SHT21+ 7805 Voltage regulator+ Sensor (sleep

 mode):

Total power consumption= 47.42mA.h

If the module is operated with 6 D cell batteries which have an average energy of 17000 mA.h. It

would be possible to run it for 14.5 days . Nevertheless, it is recommended to replace the

batteries every 13.5 days in order to be sure that the batteries have not started to discharge,

therefore causing the circuit to not run properly.

 Pricing:

Jeenode $27

RTC plug $15

Relay plug $14

UART plug $11

Memory plug $9.50

Telaire 6615 $115

SHT21 $40

Air pump $290

7805 voltage regulator $2

17

Switch $4

Teflon AF $300

Nafion tubing $90

PVC endcap $1

PVC tubing $1

PVC pipe locker $3

Cooper nickel tube $5

Total $927

RESULTS

 Test tank: The module was put in a big tank of around 10 meters of deepness. After 12

hours in the test tank, this are the results that were collected

Figure 16 (Results from the test tank)

As visible, the CO2 seems to be correlated with the humidity; therefore, a comparison

between CO2 and humidity was done. After comparing them, the plot looks as follows.

15

20

25

30

35

40

45

50

400

450

500

550

600

650

700

14:24 19:12 0:00 4:48

CO2 ppm

Time (local)

CO2

Humidity

18

Figure 17 (CO2)

It seems these two parameters have a linear correlation; therefore a humidity correction

needs to be done. The CO2 values will be readjusted to zero humidity using the slope of

2.6 ppm/%humidity (Figure17).

Figure 18 (Results from the test tank (humidity corrected))

y = 2.6393x + 395.43
R² = 0.9537

420

430

440

450

460

470

480

490

500

510

520

0 10 20 30 40 50

CO2 vs Humdity

CO2 vs Humdity

300

320

340

360

380

400

420

440

460

14:24 19:12 0:00 4:48

CO2 ppm

Time (local)

CO2 test tank

19

 Harbor: The module was put in the Moss Landing, CA harbor for 24 hours. The data

collected was first humidity corrected as it was done on the test tank results, and

afterwards, it was analyzed in the three following ways.

450

480

510

540

9:36 14:24 19:12 0:00 4:48 9:36 14:24

CO2 ppm

Time (GMT
-7)

17

17.5

18

18.5

19

19.5

450

470

490

510

530

550

12:00 16:48 21:36 2:24 7:12 12:00

CO2 ppm

Time (GTM-7)

CO2 and temperature

CO2

Temperature

20

Figure 19 (Results from the Moss Landing harbor)

TUTORIAL

 In this tutorial, it will be demonstrated how to build your own CO2 module and how to

make it work underwater. All the steps are shown, from building the module, how to calibrate

the sensor if it goes out of calibration, how to build the water tight housing, and how to hookup

all the tubing necessary to measure CO2 .

 Assembling the Jeenode: As described before, the Jeenode has different ports for

connecting different devices. Solder the following devices in the following ports: RTC

plug in Port 1, Relay plug in Port 2, Uart plug in Port 3, and Memory plug in Port 4

(remember to connect the right pins with the right holes of the devices, just make sure

the names of the holes are the same as the names on the Jeenode). Remember to connect

the communication antenna (simply a wire) on the hole that says "A" besides the RF12

board

 Assembling the circuitry together: The final circuit is divided into two sub circuits.

0

0.5

1

1.5

2

450

470

490

510

530

550

12:00 0:00 12:00

CO2 ppm

Time (GTM-7)

CO2 and tide
CO2

Tide

21

 Power lines: first, make sure that all the devices in the circuit are getting the voltage

that they need to operate. A 7805 voltage regulator will be used, in order to provide the 5

volts that the Jeenode, the Telaire CO2 sensor and the SHT21 need to properly function. In

addition, add an electrolytic capacitor of 100 uF from the power of the Jeenode to ground,

this will help the circuit to properly function when the batteries get a little low. The power

line circuit looks as follows. Before assembling this circuit please read the section

about "battery pack" where more details will be explained about how to use the 7805

5V regulator

Figure 20 (Block diagram of the circuit for the power lines)

 Communication lines: The communication lines are the lines that are made so

that the microcontroller (the Jeenode) can communicate with the Telaire sensor

and the SHT21. The Telaire sensor uses UART protocol in order to

communicate with the microcontroller; therefore, it has to have an TX and RX

22

connection with the microcontroller. The SHT21 uses I2C protocol in order to

communicate with the microcontroller; therefore, it has to have an SDA and SCL

connection with the microcontroller. The communication line is as follows.

Figure 21(Block diagram of the circuit for the communication lines)

When everything is assembled, the end result should be something looking as follows:

23

Figure 22 (Actual CO2 sensor module)

 Battery pack: Since the module is using a 7805 5 Volts regulator, a voltage greater than

7.5V and less than 20V has to be used in order to have a good regulation. The supply

voltage will be 9V to allow the circuit to keep working even when the batteries start

getting discharged. This will give us a 1.5V offset of discharge until the circuit stops

working. The 7805 requires special circuitry in order to work, it just needs two

capacitors. There are different circuits that can be used to do a 5V regulation with the

7805 regulator; nevertheless, this was the circuit used for this project:

24

Figure 23(7805 5V regulation circuit)

 Housing: The CO2 sensing module and battery pack are designed to go inside A PVC

tube. The sensing module is attached to a PVC endcap through screw holes so it could be

stable, and it does not bend too much (If bended too much , the sensing module board

could break). There are also two barb fittings that are used as entrance and exit of the

tubing system for the CO2 module.

 The outside of the endcap has a copper nickel tube in which Teflon AF tubing can go

inside. The cooper nickel tube is going to go attached with the endcap with two swage

locks . The last component on the outside are two compression fittings through which the

Teflon AF is going to go in and out of the system.

25

Figure 24 (Endcap design)

26

Figure 25 (Assembled endcap)

Figure 26(PVC tubing and PVC pipe union)

 Tubing layout: From Figure 21, it is visible that the Teflon AF tubing is going to go inside

of the Cooper nickel tubing, get out of it and go into the compression fittings. It is

27

recommendable that at least two loops are made inside of the cooper nickel tubing, the more

surface area there is of tubing, then the faster the equilibration process. For the inside part of

the endcap, is no longer necessary to use more Teflon AF since no equilibration is going to

take place inside the housing. After the barb Fittings, it is recommendable to use Tygon

tubing. Do not forget about using the Nafion tubing before going into the sensor, as water

vapor could interfere with CO2 measurements. Silica gel dryers packs must be placed inside

the pressure housing to reduce humidity on the outside of the Nafion to dry the gas inside.

9

Figure 27 (Tubing layout)

 Code: The code is made so it can be as user friendly as possible. It is subdivided into

three main codes, one for the transmitter, one for the CO2 sensing module, and one for

the calibration and sensor functionality. The complete code of the transmitter and the CO2

28

sensing module can be found in appendix A and B respectively. For looking at the code

of the sensor calibration and functionality, please visit appendix C.

 CO2 sensing module: This code is composed of mainly three functions: read_Save(),

load_Memory (char buf) , erase_Memory, and rf12_Interrupt(). The read_Save() part of the

code, as the name says, it just reads data and saves it into the memory. It works using cycles

predefined by the user, where the user can specified the pumping rate and the amount of

minutes between each measurement (notice that before a measurement can be done, the

sensor has to warm up at least 10 minutes, that timing system is already included in the

code). If the user wants to control the timing of the pump and sensor the following lines

have to be changed

Figure 28 (Code example of cycle timing)

 Transmitter: The transmitter could be just another Jeenode or a Jeelink (same as a Jeenode

with the only difference that is more compact and no plugs can be attached to it). The

transmitter is set up so when the user enters a "1" through the serial port, the Sensing module

will start to send the data loaded into memory to the transmitter, and then resume normal

operation. If the user enters a "2", the sensing module will erase the data inside the memory.

29

 Sensor calibration and functionality: The sensor calibration and functionality code is just

used when the sensor wants to be calibrated, turn the ABC logic off, or test the functionality.

In order to tell the sensor to do either calibration or turn off the ABC logic, some lines have

to be commented or uncommented; this lines are shown in Figure 25. If the sensor has to be

calibrated, the gas concentration has to be introduced. In the code the setup is to do it at 200

ppm. nevertheless, if the concentration has to be changed, the last two lines of the command

shown in Figure 26 have to be changed into the number that was to be input in hexadecimal

notation.

Figure 29

Figure 30

Example: The setup for the calibration is 200 ppm which is represented as 00C8 in

hexadecimal; therefore the last two lines of Figure 26 are

uart.wrtie(0x00);

30

uart.write(0xC8);

If the number wants to be changed two 400, the hexadecimal representation would be: 0190;

therefore, the last two lines of code in Figure 26 would be as follows:

uart.wrtie(0x01);

uart.write(0x90);

Note: After the calibration process is done, weird data will start appearing on the serial

monitor, please wait one minute after the calibration process, and simply turn off the sensor,

next time it is turned on, it should be calibrated.

 User interface: A LabView user interface has been created in order to send the radio

transmission commands as easy as possible. The LabView interface comes with real time

charts that will allow the visualization of data in real time. The data is also imported to an

Excel file if wanted. If the user interface wants to be used, all what it has to be done is open

the executable file named CO2 _sensing_module.exe. Nevertheless, sending the serial

commands through the Arduino environment is also a good solution.

31

Conclusion

 In this paper it was proved that a reliable, low power, low cost underwater CO2 sensing

module could be built in an easy way. All the parts can be easily obtained online at not with an

elevated price, if compared to the professional CO2 sensing modules that are already on the sea.

In order to assemble the module some technical skills are needed. Nevertheless, the tutorial

presented on this paper is made to be as explicative as possible.

 The results from this project showed that Teflon AF is an excellent CO2 equilibrator on

air and underwater. How fast equilibrates is going to be proportional to the flow of air that has

through it, how long the tubing is, and how big the diameter is. For underwater research, it has to

be evaluated and tested the amount of pressure it can withstand , in order to know how deep it

could be taken. In addition a better algorithm and hardware could be developed in order to make

the sensing module as low power consuming as possible.

 To conclude, it has to be said that this project serves as the base for a better platform that

will allow better readings of CO2 with a longer battery life period. More research has to be done

in order to find a better sensor that can detect CO2 with more precision and less consumption of

power. However, the project presented on this paper fulfills the objective of being easy to build

so it can be used for education and little research projects.

32

REFERENCES

ATABEK, SINAN. CO2 sensors. n.d. document. 1 August 20123.

Biogeneral. Teflon® AF Tubing and Membrane. n.d. BIOGENERAL. Web page. 2 August 13.

<http://www.biogeneral.com/teflon.html (picture and table of Teflon AF tubing)>.

Damage to Marine Ecosystems as CO2 Emissions Rise. n.d. Save the seas Foundation. web page. 1

August 2013.

<http://saveourseas.com/articles/damage_to_marine_ecosystems_as_co2_emissions_rise>.

Dasgupta, Purnendu. High-Sensitivity GAs Sensor Based on Gas-Permeable Liquid Core Waveguides And

Long-Path Absorbance Detection. Lubbock, 1998. Document.

GE. Telaire 6615. n.d. GE, Measurment & Control. 1 August 2013. <http://www.ge-

mcs.com/download/co2-flow/920-474D-LR.pdf>.

Jeelabs. Jeenode SMD. n.d. Jeelbas. Web page. 1 August 2013.

<http://jeelabs.net/projects/hardware/wiki/JeeNode_SMD>.

—. Memory plug. n.d. Web page. 1 August 2013.

<http://jeelabs.net/projects/hardware/wiki/Memory_Plug>.

—. Relay plug. n.d. Web page. 1 August 2013. <http://jeelabs.net/projects/hardware/wiki/Relay_Plug>.

—. RTC plug. n.d. Web page. 1 August 2013. <http://jeelabs.net/projects/hardware/wiki/RTC_Plug>.

—. UART plug. n.d. Web page. 1 August 2013. <http://jeelabs.net/projects/hardware/wiki/UART_Plug>.

KNF. Micro Diaphragm Gas Sampling Pump. 2013. THOMAS. Web Page. 5 August 2013. <http://www.gd-

thomas.com/product.aspx?id=13052&tp=p>.

Mitchell, Alan. Alan Mitchell Building Energy Use Monitoring and Analysis. n.d. 1 August 2013.

<http://alanbmitchell.wordpress.com/2011/10/02/operate-arduino-for-year-from-batteries/>.

NASA. Effects of changing the Carbon Cycle. n.d. Web. 1 August 2013.

<http://earthobservatory.nasa.gov/Features/CarbonCycle/page5.php>.

Ning, Liu, et al. Development of a CO2 chemical sensor and sensor strategy for CO2 monitoring in carbon

sequestration. n.d. Web document. 1 August 2013.

<http://baervan.nmt.edu/research_groups/carbon_sequestration_membrane_technology/page

s/Publications/B-1.pdf>.

33

Pure, Perma. Perma Pure FAQs. n.d. Perma Pure LLC. Web page. 2 August 2013.

<http://www.permapure.com/support/faqs/.>.

Sensirion. SHT21 - Digital Humidity Sensor (RH&T). n.d. Sensirion. Web page. 2 August 2013.

<http://www.sensirion.com/en/products/humidity-temperature/humidity-sensor-sht21/>.

Wikipedia. Beer_Lambert Law. n.d. Web document. 5 8 2013.

<http://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law>.

—. I2C. n.d. Web document. 05 August 2013. <http://en.wikipedia.org/wiki/I%C2%B2C>.

—. Universal asynchronous receiver/transmitter. n.d. Web document. 5 8 2013.

<http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter>.

34

APPENDIX

 Appendix A

#include <JeeLib.h>

// set up the timer for the radio communications

MilliTimer sendTimer;

//global variables

byte needToSend;

void setup()

{

 Serial.begin(9600);

 rf12_initialize(1,RF12_915MHZ,1);

}

void loop()

{

 send_Command();

}

/**

 * Function name: send_Command()

 * type: void

 * input parameters: NULL

 * output parameter: NULL

 * Description: Sends a command, wait for response of the node, and then

 * make an action according to the command receicved. If a 1

 * is sent, loading of the memory will take place. If a 2 is

 * sent, deletion of the memory will take place.

 * Creators: MBARI

 **/

void send_Command()

{

 boolean out=true;

 boolean receiveCommand=true;

 uint8_t buf[1];

 char reading[1];

 uint8_t data[12];

 while(receiveCommand)

 {

 if(Serial.available())

 {

 reading[0]=Serial.read();

 if(reading[0]=='1'||reading[0]=='2')

 {

 reading[0]-=48;

 receiveCommand=false;

35

 }

 }

 }

 while(out)

 {

 if (rf12_recvDone() && rf12_crc == 0) // received good data if true

 {

 buf[0]=rf12_data[0];

 if(buf[0]==1)

 {

 while(1)

 {

 if (rf12_recvDone() && rf12_crc == 0) // received good data if

true

 {

 for (byte i = 0; i < rf12_len; ++i)

 {

 data[i]=rf12_data[i];

 }

 if(data[0]==50)

 {

 Serial.println("memory empty");

 }

 else

 {

 transform(data);

 }

 }

 }

 }

 else if(buf[0]==2)

 {

 Serial.println("memory erased");

 }

 out=false;

 }

 else

 {

 if (sendTimer.poll(10))

 {

 needToSend = 1;

 }

 if (needToSend && rf12_canSend())

 {

 rf12_sendStart(2,&reading,1);

 needToSend = 0;

 }

 }

 }

}

/**

 * Function name: transform(char [])

36

 * type: void

 * input parameters: uint8_t a[]: array of n bytes which will be loaded

 * output parameter: NULL

 * Description: Transform an arry of 1 byte integers into something that

looks

 * like mm//dd//yy h:m:s CO2 ppm= xxx temperature= xx.xx

 * humidity= xx.x

 * Creators: MBARI

 **/

void transform(uint8_t a[])

{

 int buffer[11];

 char string[80];

 for(int i=0;i<6;i++) //get the time form the clock

 {

 buffer[i]= (int)a[i];

 }

 buffer[6]=((a[6] &0xff)<<8) | (a[7] &0xff); //merge the two bytes of co2

 for(int i=8;i<12;i++) // get the values for temperature and humidity

 {

 buffer[i-1]=int(a[i]);

 }

 sprintf(string,"%02d/%02d/%02d %02d:%02d:%02d CO2 ppm= %02d

temperature= %02d.%02d humidity= %02d.%02d",

buffer[0],buffer[1],buffer[2],buffer[3],buffer[4],buffer[5],buffer[6],buff

er[7],buffer[8],buffer[9],buffer[10]);

 Serial.print(string);

 Serial.println();

 delay(1);

}

37

 Appendix B

#include <Wire.h>

#include <JeeLib.h>

#include <LibHumidity.h>

// sets up the clock port and the clock module

PortI2C myport (1 /*, PortI2C::KHZ400 */);

DeviceI2C rtc (myport, 0x68);

//sets up the port of the relay

Port relays (2);

//sets up the port of the uart and the uart module

PortI2C i2cBusUart (3);

UartPlug uart (i2cBusUart, 0x4D);

//sets up the port of the memory and the memory module

PortI2C i2cBusMem (4);

MemoryPlug mem (i2cBusMem);

MemoryStream stream (mem);

//sets up the Sensirion sensor for temperature and humidity

LibHumidity humidity_Temp = LibHumidity(0);

MilliTimer sendTimer; //setup the time for the radio communications

// must be defined in case we're using the watchdog for low-power waiting

ISR(WDT_vect) {

 Sleepy::watchdogEvent();

}

//global variables

char bufData[12];//buffer for the data is going to go into the memory

void setup()

{

 Serial.begin(9600);

 uart.begin(19200);

 // initialize the radio for this node

 rf12_initialize(2, RF12_915MHZ, 1);

 //initialize the relays

 relays.digiWrite(0);

 relays.mode(OUTPUT);

 relays.digiWrite2(0);

 relays.mode2(OUTPUT);

38

 //uncomment the next two lines when you wat to use the memory for the

first time

 //this will start the directory to the page 0 adress 0

 //after compiling and running it for 2 seconds comment them again and

compile the code again

 //int buf[2]={0,0};

 //mem.save(0,0,buf,4);

 //uncomment he following line to set up the date and time for the clock

for the first time

 //run the code for the 1 seconds comment the following line again and

compile

 //setDate (13,8,9,10,03,0);

 /*while(1)

 {

 if(Serial.read()=='1')

 {

 char buf[12];

 load_Memory(buf);

 }

 }*/

 delay(10000);

 Serial.end();

}

void loop()

{

 read_Save();

}

/**

 * Function name: read_Save(void)

 * type: void

 * input parameters: void

 * output parameter: NULL

 * Description: function that records a Co2 value from the telaire sensor

 * and stores it into memory

 * Creators: MBARI

 **/

void read_Save()

{

 boolean cycle=true;

 int co2Value=0;

 int pumpingCounter=3; // number of minutes until the pump turn on

 int pumpRunTime=5000; //number of miliseconds for which the pump will

run

 int timeForMeasurements=20;

 boolean idle=true; //number of minutes it will pass before the reading

happens

 // the sensor will turn on 10 minutes before that in order to warm up

 int counter=0;

 byte time[6];

 int i=0;

39

 //send the Telair to sleep

 relays.digiWrite2(1);//turn on the sensor

 delay(10000);

 Telaire_IdleMode(idle);

 //clearing the memory data array

 for(int j=0;j<12;j++)

 {

 bufData[j]=NULL;

 j++;

 }

 while(cycle)

 {

 //check for communication

 rf12_sleep(-1);

 rf12_recvDone();

 receive_Command();

 rf12_sleep(1);

 rf12_sleep(0);

 //sleep for n number of seconds if the pump does not turn on during

the iteration

 if(pumpingCounter!=3)

 {

 Sleepy::loseSomeTime(pumpRunTime);

 }

 // turn the pump on for n number of seconds

 else if(pumpingCounter==3)

 {

 relays.digiWrite(1);

 Sleepy::loseSomeTime(pumpRunTime);

 relays.digiWrite(0);

 pumpingCounter=0;

 }

 Sleepy::loseSomeTime((word)(60000-pumpRunTime));

 counter++;

 pumpingCounter++;

 if(counter==timeForMeasurements-10)

 {

 Telaire_IdleMode(!idle);

 }

 if(counter==timeForMeasurements)

 {

 Serial.begin(9600);

 delay(20);

 co2Value=read_Co2();

 while((co2Value>2000||co2Value<=0)&&i<=10)

40

 {

 co2Value=read_Co2();

 if(i==10)

 {

 co2Value=1;

 }

 i++;

 delay(10000);

 }

 float temp=get_Temperature();

 delay(20);

 float humidity=get_Humidity();

 //getting the date and time in the buffer for the memory

 getDate(time);

 bufData[0]=time[1];

 bufData[1]=time[2];

 bufData[2]=time[0];

 bufData[3]=time[3];

 bufData[4]=time[4];

 bufData[5]=time[5];

 delay(20);

 Serial.print(time[1]);

 Serial.print("/");

 Serial.print(time[2]);

 Serial.print("/");

 Serial.print(time[0]);

 Serial.print(" ");

 Serial.print(time[3]);

 Serial.print(":");

 Serial.print(time[4]);

 Serial.print(":");

 Serial.print(time[5]);

 Serial.print(" ");

 Serial.print(co2Value);

 Serial.print(" ");

 Serial.print(temp);

 Serial.print(" ");

 Serial.print(humidity);

 Serial.println();

 saved(bufData);

 delay(10);

 cycle=false;

 counter=0;

 Serial.end();

 }

 }

}

/**

 * Function name: load_Memory(char [])

41

 * type: void

 * input parameters: char a[]: array of n bytes which will be loaded

 * output parameter: NULL

 * Description: Loads the the information that is on memory and transmit

 * it thorugh radio communications to a base station.

 * Creators: MBARI

 **/

void load_Memory(char a[]) //function for loading characters in a fast way

{

 int finish[2];

 int remember[2]={

 1,0 };

 if(mem.isPresent())

 {

 mem.load(0,0,finish,4);

 delay(20);

 if(finish[0]!=0 && finish[1]!=0)

 {

 while((remember[0]!=finish[0])||(remember[1]!=finish[1]))

 {

 mem.load(remember[0],remember[1],a,12);

 delay(50);

 send_Radio(a,12);

 delay(1);

 transform(a);

 if(remember[1]<243)

 {

 remember[1]+=12;

 }

 if(remember[1]>243)

 {

 remember[0]+=1;

 remember[1]=0;

 }

 }

 }

 else

 {

 Serial.println("memory empty");

 uint8_t checkDeletion[1]={50};

 rf12_sendStart(1,checkDeletion,1);

 }

 }

}

/**

 * Function name: erase_Memory()

 * type: void

 * input parameters: void

 * output parameter: NULL

 * Description: Erases the memory.resets the directory making the memory

 * to start overriding previous values every time it saves

 * new data

42

 * Creators: MBARI

 **/

void erase_Memory()

{

 int erase[2]={0,0};

 if(mem.isPresent())

 {

 mem.save(0,0,erase,4);

 Serial.println("memory erased");

 }

}

/**

 * Function name: receive_Command()

 * type: void

 * input parameters: NIULL

 * output parameter: NULL

 * Description: Checks if there is any radio communication command

 * from the basen station and takes and action according

 * to the command

 * Creators: MBARI

 **/

void receive_Command()

{

 uint8_t buf[1];

 char buffer[12];

 byte InfoReceived=0;

 byte needToSend=0;

 int i=0;

 boolean out=true;

 Serial.begin(9600);

 delay(20);

 while(i<50 && out)//i<2000 && out

 {

 i++;

 if (rf12_recvDone() && rf12_crc == 0) // received good data if true

 {

 buf[0]=rf12_data[0];

 InfoReceived=1;

 needToSend=1;

 }

 if(needToSend && rf12_canSend() && InfoReceived)

 {

 rf12_sendStart(1, buf,1);

 InfoReceived=0;

 needToSend = 0;

 out=false;

 if(buf[0]==1)

 {

 load_Memory(buffer);

43

 }

 if(buf[0]==2)

 {

 erase_Memory();

 }

 }

 }

 Serial.end();

 delay(20);

}

/**

 * Function name: read_Co2(void)

 * type: int

 * input parameters: void

 * output parameter: int

 * Description: tells tehe sensor to start doing measurments and store

 * the two bytes in a varible called co2value

 * Creators: MBARI

 **/

int read_Co2()

{

 byte buf[56];

 byte i=0;

 int co2Value;

 uart.write(0xFF);

 uart.write(0xFE);

 uart.write(0x02);

 uart.write(0x02);

 uart.write(0x03);

 delay(20);

 // put he two bit answer from the sensor into a buffer

 while(uart.available())

 {

 buf[i]=uart.read();

 i++;

 }

 //save the two bits of Co2 into memory buffer

 bufData[6]=buf[3];

 bufData[7]=buf[4];

 // do a bitwise operation to acomodate the two bits

 // and make them an integer

 co2Value=0;

 co2Value|=buf[3] & 0xFF;

 co2Value=co2Value<<8;

 co2Value|=buf[4] & 0xFF;

 return co2Value;

}

/**

44

 * Function name: get_Temp(void)

 * type: float

 * input parameters: void

 * output parameter: float

 * Description: tells the Sensirion sensor to start doing measurements

 * of temperature, after that it divides the integer and

 * float part of the number in two bytes so they can be

 * stored into memory. The function uses the library

 * LibHumidity from www.moderndevices.com in order to control

 * the sensor

 * Creators: MBARI

 **/

float get_Temperature()

{

 float temp;

 byte tempInt;

 byte tempFloat;

 /* get the measurement of temperature and divides them into an

 integer part and a float part*/

 temp=humidity_Temp.GetTemperatureC();

 tempInt=floor(temp);

 tempFloat=(temp*100)-(tempInt*100);

 //get the date into memroy

 bufData[8]=tempInt;

 bufData[9]=tempFloat;

 return temp;

}

/**

 * Function name: get_Humidity(void)

 * type: float

 * input parameters: void

 * output parameter: float

 * Description: tells the Sensirion sensor to start doing measurements

 * of humidity, after that it divides the integer and

 * float part of the number in two bytes so they can be

 * stored into memory. The function uses the library

 * LibHumidity from www.moderndevices.com in order to control

 * the sensor

 * Creators: MBARI

 **/

float get_Humidity()

{

 float humidity;

 byte humidityInt;

 byte humidityFloat;

 /* get the measurement of humidity and divides them into an

 integer part and a float part*/

 humidity=humidity_Temp.GetHumidity();

 humidityInt=floor(humidity);

45

 humidityFloat=(humidity*100)-(humidityInt*100);

 //get the date into memroy

 bufData[10]=humidityInt;

 bufData[11]=humidityFloat;

 return humidity;

}

/**

 * Function name: bind2bcd(byte)

 * type: byte

 * input parameters: byte val

 * output parameter: val + 6 * (val / 10);

 * Description:

 * Creators: Jeelabs.

 */

static byte bin2bcd (byte val)

{

 return val + 6 * (val / 10);

 delay(1);

}

/**

 * Function name: bcd2bcd(byte)

 * type: byte

 * input parameters: byte val

 * output parameter: val - 6 * (val >> 4);

 * Description:

 * Creators: Jeelabs

 */

static byte bcd2bin (byte val)

{

 return val - 6 * (val >> 4);

 delay(1);

}

/***

 * // Function name: setDate(byte, byte, byte, byte, byte)

 * type: static void

 * input parameters: byte yy: year

 * byte mm:month

 * byte dd: day

 * byte h: hour

 * byte m: minutes

 * byte s: seconds

 * output parameter: NULL

 * Description: This function is used in order to setup a specific day in

the format yy/mm/dd h:m:s

 * Compile it once in order to set up the clock. Erase the call of this

function from the code.

46

 * Finally compile again in order to make the clock to start running

indepedently.

 * Creators: Jeelabs

**

 */

static void setDate (byte yy, byte mm, byte dd, byte h, byte m, byte s)

{

 rtc.send();

 rtc.write(0);

 rtc.write(bin2bcd(s));

 rtc.write(bin2bcd(m));

 rtc.write(bin2bcd(h));

 rtc.write(bin2bcd(0));

 rtc.write(bin2bcd(dd));

 rtc.write(bin2bcd(mm));

 rtc.write(bin2bcd(yy));

 rtc.write(0);

 rtc.stop();

}

/**

 * Function name: getDate (void)

 * type: static void

 * input parameters: bye* buf: byte array in which the date and time would

be introduced

 * output parameter: NULL

 * Description: get the date and time from the clock and puts it into

 * the byte array specified

 * Creators: MBARI

 **/

static void getDate (byte* buf)

{

 rtc.send();

 rtc.write(0);

 rtc.stop();

 rtc.receive();

 buf[5] = bcd2bin(rtc.read(0));

 buf[4] = bcd2bin(rtc.read(0));

 buf[3] = bcd2bin(rtc.read(0));

 rtc.read(0);

 buf[2] = bcd2bin(rtc.read(0));

 buf[1] = bcd2bin(rtc.read(0));

 buf[0] = bcd2bin(rtc.read(1));

 rtc.stop();

}

/**

 * Function name:saved(char[])

 * type: void

47

 * input parameters: char a[]= array whcih will be saved into memory

 * output parameter: NULL

 * Description: saves the input array into the memory. The way it works is

 * by checking the directory of the memory which is at location

 * [0,0] if there is nothing in memory start saving on adress [1,0]

 * if there is something on memory start saving where you left off

 * Creators: MBARI

 **/

void saved(char a[])

{

 int remember[2];

 if(mem.isPresent())

 {

 mem.load(0,0,remember,4);

 delay(10);

 if(remember[0]==0 && remember[1]==0)

 {

 mem.save(1,0, a,12);

 delay(10);

 remember[0]=1;

 remember[1]+=12;

 mem.save(0,0,remember,4);

 delay(10);

 }

 else

 {

 if(remember[1]<243)

 {

 mem.save(remember[0],remember[1],a,12);

 delay(10);

 remember[1]+=12;

 }

 if (remember[1]>243)

 {

 remember[0]+=1;

 remember[1]=0;

 mem.save(remember[0],remember[1],a,12);

 remember[1]+=12;

 }

 mem.save(0,0,remember,4);

 delay(10);

 }

 }

}

/**

 * Function name: send_Radio(char a[], int length)

 * type: void

 * input parameters: char a[]: array which will be transmitted

 * int length: length of the array to be transmitted

 * output parameter: NULL

48

 * Description: sends an array of n length through radio communications

 * to a base station

 * Creators: MBARI

 **/

void send_Radio(char a[], int length)

{

 delay(10);

 while (!rf12_canSend()) // wait until sending is allowed

 {

 rf12_recvDone(); // processes any incoming data, it all happens "in

the background"

 }

 rf12_sendStart(1,a, length); // sends the data out

}

/**

 * Function name: transform(char [])

 * type: void

 * input parameters: char a[]: array of n bytes which will be loaded

 * output parameter: NULL

 * Description: Transform an arry of characters into something that looks

 * like mm//dd//yy h:m:s CO2 ppm= xxx temperature= xx.xx

 * humidity= xx.x

 * Creators: MBARI

 **/

void transform(char a[])

{

 int buffer[11];

 char string[80];

 for(int i=0;i<6;i++) //get the time form the clock

 {

 buffer[i]= (int)a[i];

 }

 buffer[6]=((a[6] &0xff)<<8) | (a[7] &0xff); //merge the two bytes of co2

 for(int i=8;i<12;i++) // get the values for temperature and humidity

 {

 buffer[i-1]=int(a[i]);

 }

 sprintf(string,"%02d/%02d/%02d %02d:%02d:%02d CO2 ppm= %02d

temperature= %02d.%02d humidity= %02d.%02d",

buffer[0],buffer[1],buffer[2],buffer[3],buffer[4],buffer[5],buffer[6],buff

er[7],buffer[8],buffer[9],buffer[10]);

 Serial.print(string);

 Serial.println();

 delay(1);

}

/**

 * Function name: Telaire-IdleMode(boolean mode)

 * type: void

49

 * input parameters: boolean mode,

 * output parameter: NULL

 * Description: Indicates wheter the sensor is

 going to go in Idle mode or not. True=Idle mode,

 False=wake up

 * Creators: MBARI

 **/

void Telaire_IdleMode(boolean mode)

{

 boolean out=true;

 byte buf[3];

 //if true the Telaire will go into sleep mode

 if(mode==true)

 {

 while(out)

 {

 int i=0;

 uart.write(0xFF);

 uart.write(0xFE);

 uart.write(0x02);

 uart.write (0xB9);

 uart.write (0X01);

 while(uart.available())

 {

 buf[i]=uart.read();

 i++;

 }

 if((buf[0]==255)&&(buf[1]==250)&&(buf[2]==0))

 {

 out=false;

 }

 }

 }

 //if not true, the Telair will wake up

 if(mode==false)

 {

 while(out)

 {

 int i=0;

 uart.write(0xFF);

 uart.write(0xFE);

 uart.write(0x02);

 uart.write (0xB9);

 uart.write (0X02);

 while(uart.available())

 {

 buf[i]=uart.read();

 i++;

 }

 if((buf[0]==255)&&(buf[1]==250)&&(buf[2]==0))

 {

50

 out=false;

 }

 }

 }

}

51

 Appendix C

//uncomment the following line to calibrate the sensor

//Calibrate_Telair();

}

void loop()

{

 //read CO2 every 10 seconds

 int co2=read_Co2();

 Serial.print("CO2 ppm=");

 Serial.println(co2);

 delay(10000);

}

/**

 Function name: read_Co2(void)

 type: int

 input parameters: void

 output parameter: int

 Description: tells tehe sensor to start doing measurments and store

 the two bytes in a varible called co2value

 Creators: MBARI

**/

int read_Co2()

{

 byte buf[56];

 byte i=0;

 int co2Value;

 uart.write(0xFF);

 uart.write(0xFE);

 uart.write(0x02);

 uart.write(0x02);

 uart.write(0x03);

 delay(20);

 // put he two bit answer from the sensor into a buffer

 while(uart.available())

 {

 buf[i]=uart.read();

 i++;

 }

 // do a bitwise operation to acomodate the two bits

 // and make them an integer

 co2Value=0;

 co2Value|=buf[3] & 0xFF;

 co2Value=co2Value<<8;

 co2Value|=buf[4] & 0xFF;

 return co2Value;

52

}

/**

 Function name: Abc_Logic_Off()

 type: void

 input parameters: NULL

 output parameter: NULL

 Description:Tells the sensor to turn off the ABC logic (self calibration

 process)

 Creators: MBARI

**/

void Abc_Logic_Off()

{

 byte buf[10]={};

 boolean out =true;

 while(out)

 {

 int i=0;

 uart.write(0xFF);

 uart.write(0xFE);

 uart.write(0x02);

 uart.write(0xB7);

 uart.write(0x02);

 delay(20);

 // put he two bit answer from the sensor into a buffer

 while(uart.available())

 {

 uart.read();

 }

 delay(20);

 //check if the abc logic was turned of

 uart.write(0xFF);

 uart.write(0xFE);

 uart.write(0x02);

 uart.write(0xB7);

 uart.write(0x00);

 delay(20);

 // put he two bit answer from the sensor into a buffer

 while(uart.available())

 {

 buf[i]=uart.read();

 i++;

 }

 Serial.println(buf[3]);

 if(buf[3]==0x01)

 {

 Serial.println("ABC logic on");

 }

 if(buf[3]==0x2)

 {

 Serial.println("ABC loigc turned off");

 out=false;

53

 }

 else if((buf[3]<1||buf[3]>2))

 {

 Serial.println("error reading ABC logic status");

 }

 }

}

/**

 Function name: Check_Abc_Logic()

 type: void

 input parameters: NULL

 output parameter: NULL

 Description:Tells the sensor chek for the ABC logic status

 Creators: MBARI
