
 1

IP PUCK Implementation and Verification

Oriol Pallarés Valls

Polytechnic Institute of Catalunya

Mentor: Thomas C. O’Reilly

Summer 2013

 2

Keywords: IP PUCK; Zeroconf; Sensor Modeling Language (SensorML); Sensor

Interface Description (SID); Compliance tool

ABSTRACT

Sensor networks are the most common systems for studying and analyzing our

environment. Each sensor in the network generates its own information, which is

transferred to the processing systems and to other sensor networks through a

communication network. The information of each sensor can be processed in

order to give global information of an environment.

More than 90% of oceanographic instruments have serial interface, so they are not

designed for IP network operation (K. & Edward, 2009). There are few standard

communication or data exchange format for oceanographic instruments, beyond

NMEA and recently, OGC PUCK

The necessity of a reliable and universal system and the lack of standards on this

field make PUCK IP standard completely essential (Song & Lee, 2007).

PUCK implementation makes interoperability between marine instruments and

services easy to achieve. With this standardization, each new instrument that is

installed can be auto configured and made ready to work. Perhaps the most

analogous standard to OGC PUCK is USB. When a USB device is plugged into a

laptop, the laptop automatically downloads and installs the appropriate driver,

based on identifying information read from the device, Similarly, OGC PUCK

protocol provides this “plug and work” capability to any serial instrument.

This standard is been used by some manufacturers on its instruments with the

RS232 functionality. In order to provide this “plug and work” functionality to

any system inside a local network the IP PUCK standard has been created, which

provides Sensor Web Enablement (SWE) capability to the serial instrument. For

this reason it is important to provide a compliance tool capable of detecting if the

manufactured instrument is completely compliant with IP PUCK protocol

standard or RS232-PUCK protocol.

 3

INTRODUCTION

Underwater sensor networks are formed by different nodes, capable to acquire

real time data and to interoperate between them to create a whole instrumentation

network. These sensors are powered and data connected through the main

network to other networks or final users. So one of the main properties of a

network should be the ease to scalability, making possible to a user plug a new

instrument to it and use the data streams directly, without the necessity to

configure anything. The instrument should automatically get an IP address and

start to work: “plug and work”.

After the physical connection of a new sensor, a PC can be connected to the

network with IP PUCK service discovery tool, based on Zeroconf technology

(Williams, 2002), and automatically discover all the PUCK services connected to

the network. This tool provides a human readable name for each instrument, from

which can be extracted the IP and the IP PUCK port to start TCP/IP

communication. Once the connection is performed, electronic datasheet and

PUCK payload can be read, providing instrument capabilities and communication

protocol in a standard way.

In this way all the necessary information for starting work automatically is

provided, and it is not necessary for human intervention to do this configuration

process, avoiding possible set-up errors.

These network utilities are useful for interconnecting different instruments in a

network and allow them to exchange data, using the same standardized

communication protocol. Because of the datasheet and PUCK payload of each

instrument, different data types can be unified to the same data format. Moreover

these standards provides the possibility of adding data servers capable of storage

or publication on the internet of all the underwater sensor network information, in

spite adding instruments that are completely unknown by the server, because

Zeroconf tool will discover the instrument, and IP PUCK protocol will provide

the communication capability between the sensor and the server, figure 1.

 4

Figure 1 Workbench

All these situations that were presented illustrate the main capabilities of adding

PUCK protocol to an instrument. PUCK protocol simplifies and automates the

connection of a sensor to a network that formerly was done by an electrical

engineer, adapting the data format and programming the communication protocol

in order to connect all the nodes of the network, adding the possibility of some

human errors, which are now eliminated.

PUCK protocol is an OGC defined standard; each instrument with PUCK

capabilities has to be tested in order to ensure its full compliance. Testing can be

done manually with different tools in order to test if the system works properly, or

running an automated compliance tool, which design is the goal of this internship.

This compliance tool verifies IP PUCK compliance. This way, human error

neither affects instrument installation nor instrument PUCK test compliance. It

provides test reliability each time that a manufacturer needs to verify its new

instrument PUCK capabilities.

This project has been built upon Dan Mihai’s (2010 MBARI Intern) IP PUCK

software (Mihai Toma, 2010). It was developed on an LM3S9B96 Luminary

evaluation board in order to adapt serial instrument communication to IP PUCK

protocol communication. During this internship this IP PUCK software has been

 5

completed in order to make it fully compliant OGC IP PUCK specification

(O´Reilly, 2009), and has been developed the IP PUCK v1.4 compliance tool

based on MBARI engineer Bob Herlien’s RS232 PUCK compliance tool, as will

be presented on next chapters.

MATERIALS AND METHODS

Instrument Platform

This smart Ethernet instrument is implemented on the Stellaris Luminary

LM3S9B96 microcontroller. This development kit was described on Daniel Mihai

Toma “Interoperable Marine Monitoring System” MBARI Summer internship

2010 (Mihai Toma, 2010). The Cortex M-3 processor makes it fast and easy to

program (Sadasivan, 2010), which in conjunction with its peripherals makes this

development kit perfect for IP PUCK development (del Rio, et al., 2009).

Figure 2 Stellaris LM3S9B96 Microcontroller Development Kit (DK-LM3S9B96)

 6

IP PUCK

Using the same platform and taking as background the software presented on

(Mihai Toma, 2010), some new capabilities have been added to this ‘C’ code.

(Mihai Toma, 2010) project was performed before the PUCK standard final

release (O'Reilly, 2011), making some modifications on that previous IP PUCK

software necessary to bring it into PUCK standard compliance.

In the previous version all PUCK commands were implemented, except the

timeout specification and the unique client connection permission, which are parts

of the IP PUCK specification (O'Reilly, 2011); these must be implemented in

order to be in compliance of the IP PUCK specification.

As mentioned, all the necessary commands to deal with the PUCK information

appropriately were implemented. So the automated configuration process, called

“plug-and-work”, was completely functional on the start of this internship, and a

PC connected to the PUCK host board through Ethernet could retrieve instrument

information using PUCK commands, figure 3.

Figure 3 Application retrieve the IP PUCK payload

In table 1 are described all the commands implemented on the Luminary board

that we will define as PUCK host. These commands permit the PUCK

communication protocol, and the access to the PCUK memory allocated in the

microSD slot available on the PUCK host, figure 4.

 7

Figure 4 IP PUCK Implementation on Luminary microcontroller

Table 1 IP PUCK Command Summary

Command Description

PUCKRM Read from PUCK memory

PUCKWM Write to PUCK memory

PUCKFM End PUCK write session

PUCKEM Erase PUCK memory

PUCKGA Get address of PUCK internal memory pointer

PUCKSA Set address of PUCK internal memory pointer

PUCKSZ Get the size of the PUCK memory

PUCKTY Query PUCK type

PUCKVR Get PUCK protocol version string

PUCK Null command

According to OGC PUCK Protocol Standard Version 1.4 (O'Reilly, 2011);

besides to these commands, IP PUCK also defines other requirements, such as

timeout and single client connection.

Only one client connection is allowed at any time on PUCK host port. This

means that if a PC is connected to PUCK host, only it can interoperate with the

PUCK host. After finishing the communication the PUCK client should free the

PUCK port connection in order to allow other users to connect to it. This is a

security requirement, because if more than one client is connected to the host then

race conditions could occur. An example of race condition is when one client

points to a memory direction in order to read its information, but before the

reading the other client changes this pointer position, then the first client has done

a bad reading but no error is detected.

In order to avoid this situation only one client can be connected on the same time,

leaving incoming connections in a wait queue.

 8

Then if the client does not close the connection or it is blocked, there is a security

timeout to prevent PUCK host to be used only by one client in case of inactivity.

This is realized by a two minutes timer. In case that the connected client does not

send any PUCK command to the host, and there is not any function in process,

then automatically the host sends a timeout message to the client and a connection

reset petition. After this reset the host waits for the ACK of the client and closes

the TCP connection. If the client is blocked and no ACK is received the

connection is aborted.

After programming these two mechanisms, the entire IP PUCK stack is properly

programmed on the PUCK host evaluation board. On the next figure is presented

the timeout function execution and how is it integrated to (Mihai Toma, 2010)

PUCK program. It is in application layer because we only want to reset timeout

timer in case that a real PUCK command is received, so the PUCK application

has to check it out. Then if any frame is detected, but PUCK frames, timer follow

counting, due to it may be due a failure on the client.

Figure 5 IP PUCK API on lwIP with PUCK timeout specification

 9

Compliance tool

IP PUCK v.1.4 defined on (O'Reilly, 2011), is a defined communication standard.

All the instruments IP PUCK compliant must accomplish all the statements

defined on this article. To ensure global PUCK functionality some reliable

system must be developed in order to check if the connected instrument performs

all the IP PUCK functions as it is defined. Then if this test is passed, the

manufacturer can assume that the instrument is fully PUCK v.1.4 compliant.

Before the start of this internship some compliance tools were implemented for

RS232 PUCK, such as Bob Herlien’s command line tool or Joaquin del Río

LabVIEW compliance tool, but none of them could test IP PUCK completely as

defined on the stack. So the main goal of this MBARI summer internship has

been the design and development of this compliance tool.

For the design of the compliance tool, PUCK v.1.3 compliance tool has been used

as background. There are some different functions between v.1.3 serial PUCK

and v.1.4 IP PUCK, but the main flowchart is pretty similar. In the next figure is

shown a block diagram of the RS-232 PUCK compliance tool, and then how it is

modified in order to test all IP PUCK capabilities. In figure 6 , the main functions

that are used in both PUCK tools, serial and IP are highlighted in blue. They are

defined as general compliance tools in the PUCK specification. In orange we

have RS-232 specific functions, which have been removed in order to port this

tool to IP PUCK compliance. Finally in green are shown the IP PUCK specific

functions that are replacing the orange ones.

 10

Figure 6 Serial PUCK compliance tool block diagram (left), IP PUCK compliance tool block diagram

(right)

The compliance tool firmware has been developed in C programming language,

due to its portability to other platforms and the facility and versatility of use. It

includes a Make file so it can be compiled in any POSIX platform.

The project has been designed using the Eclipse environment, taking the same

Make file that is used to compile over a POSIX platform to specify how to derive

the target program and build it

Eclipse allows you to develop any kind of program with an easy and helpful user

interface; in this case the kind of program is a C-language project using the

specified make file on the project wizard.

The project contains all the source and header files in order to be compiled with

the make files. It is not necessary to compile it with Eclipse environment;

compilation can be done directly with the Make file, inside the project folder just

calling ‘make’ function in a Linux environment.

 11

Also included in the folder is a source file to write PUCK payload just in case of

any failure and PUCK memory has to be recovered. This last program is not

compiled in the Make file, so it should be compiled separately.

All source and header files are following the structure mentioned in picture 5.

Now are described all of them in detail, explaining its functions and which ones

have been modified for this IP PUCK v1.4 compliance tool.

 Figure 7 Project structure

In the “cmdTest” folder are defined all the necessary functions in order to test

proper functionality of PUCK commands defined in Table 2. In order to do it,

PUCK host is polled with all the functions not related with memory writings or

readings, because it will be done in future tests, and is checked if the received

response is what should be expected on a PUCK v1.4 instrument, if the test is

performed with the DEBUG log option, then the responses are prompted to the

command line, this way the user can check out if they are correct.

In the “config” file is parsed the configuration file in order to check all the

possible input parameters for the compliance tool utility, such as instrument port,

PUCK port, maximum softbreak tries, etc.

 12

In the “imTest” instrument mode test are handled the functions that allows the

user to communicate with the instrument port in order to verify the possibility of

direct connection to the instrument and communicate with it with its own protocol

and framing.

In the “memTest” source file is performed the memory test. This is composed by

different writings and readings to the microSD data in order to verify it is not

corrupted. This file has been modified from the previous v1.3 PUCK compliance

tool. The main reason for modifying this test has been that in IP PUCK it is not

possible to leave an invalid datasheet, due to the mDNS function use datasheet

information to provide a human readable name that is used by Zeroconf utility to

discover the server as was explained on (Mihai Toma, 2010). So if datasheet

memory is modified by the memory test, as it was done on the previous version,

the mDNS cannot assign a service name properly and it makes impossible to

discover the service, what makes PUCK useless.

So the flowchart for the memory test is, first of all make a PUCK memory

backup, in order to do this, memory size is polled to PUCK and after reading all

the memory it is saved in a file. Then is performed a walking 1’s and 0’s test,

what completely modify the whole memory values. Walking 0’s or 1’s test

consist on writing this values to certain memory positions and then check if they

have changed or not. After this memory checking test a functional test is

performed, where are written different values to random memory positions and

then is checked if the value is properly wrote and read.

Once this tests are finished all memory has been checked, so then it is checked a

datasheet write and read, where the read datasheet has to meet the stored datasheet

properties. If this test is passed too then the memory test is passed and the

program proceeds to restore again the PUCK memory as it was before the

memory test. It is done with the backup information stored in a file.

 13

The “power” source file have not been modified from the previous version. This

function checks if the memory is volatile or not. It’s done by resetting the

microcontroller and checking if the memory is containing the same information

that it had before the power off and power on.

The “puckio” file contains the functions to talk to PUCK. This file has been

slightly modified, in order to change the destination framing socket, from serial

socket to TCP socket.

The “PuckModeTest” contains the timeout function. This function checks if after

two minutes of inactivity time the PUCK host sends a timeout frame and closes

the TCP connection.

“puckVerify” is the main function of the compliance tool, where are handled all

the mentioned functions and is implemented the block diagram of figure 6. This

file has been modified in order to call the IP functions instead of the serial test

functions.

The functions “readFile” and “writeFile” are in charge of memory backup

mentioned on the memory test paragraph. They need the pointer to the name of

the file to backup and the socket to get the information to be saved and restored.

The “tcp” function replaces the “udp” function. This code opens the socket to the

TCP I/O port and implements the read/write functions to be called by all the other

parts of the program. All the changes mentioned until now were due to the PUCK

stack necessities. This last modification is needed by the program in order to be

able to communicate through the TCP socket.

Finally the “ZeroconfBrowser.c” file contains the required functions to discover,

resolve and identify the IP of a service. For realize these operations we are

working with Bonjour browser, which is an apple application, able to discover all

 14

the TCP/IP services that are running Zero configuration firmware in a Local Area

Network, providing to the user the name or description to identify each

instrument. Zeroconf functionality on PUCK host is described in (Mihai Toma,

2010).

For the compliance tool is needed a Zeroconf browser (Williams, 2002) in order

to verify the proper functionality of the Zeroconf server on the host. The browser

is handled by the “bonjour browser” daemon that is running in background since

we installed this apple firmware. Then for making the API work with the rest of

C code, it is performed a DNS service discovery operation, using apple’s provided

library, and then the results are received asynchronously.

This means that you initiate a DNS-SD action such as browsing and provide the

address of a callback function. When there is a response, the callback function is

called and the appropriate information is passed to it. The same process is

repeated for resolving the address and for getting its IP.

Here is presented an example of browsing on the command line for a Puck._tcp

service:

C:\Users\xxxx>dns-sd -B _puck._tcp

Browsing for _puck._tcp

Timestamp A/R Flags if Domain Service Type Instance Name

10:26:40.493 Add 2 11 local. _puck._tcp. MBARI_test_

To demonstrate this project functionality, Luminary PUCK host was connected to

the PC. Applying the mentioned modifications to (Mihai Toma, 2010) project, in

order to make it fully compliant with PUCK v1.4. The serial port used on the

compliance tool v1.3 is translated to a TCP connection as explained above. And

then the PUCK TCP service is discovered by the software using Zeroconf

firmware, which allows to start the test to the server chosen by the user.

 15

There are several different parameters that can be passed to

the compliance tool in order to change its behavior, such as

serial port, log file name, softbreak tries, etc. It can be

done through the command line, when the launch command

is called, or with a configuration file. After launching the

compliance tool it follows the flowchart presented in figure

8.

Figure 8 Compliance tool flowchart

It is a command line user interface so after running all the tests it will display how

many tests have been successful and how many have failed, this way it is possible

to detect if the connected instrument is PUCK compliant.

On the next chapter are shown the results of one test and what should be expected

after running all the test mentioned on figure 8.

 16

RESULTS

Automatic PUCK compliance test

Using the compliance tool and the IP PUCK protocol with Zeroconf for the

Ethernet instrument implementation on the Luminary micro, the IP PUCK

compliance verification tool was achieved. The Luminary development kit was

used as IP instrument, and a laptop for running the compliance tool on a Linux OS

To test the implementation, the IP instrument was connected to the compliance

tool, running on a Ubuntu OS virtual machine, through Ethernet connection,

figure 9. This compliance tool was executed without any special parameter, such

as port or IP. This way all the necessary connection constants were auto

discovered by the Zeroconf firmware.

Figure 9 Compliance tool and IP PUCK connection

When the compliance tool starts, it prompts the user with the Zeroconf discovered

services on the network. Then the user is asked to select one device on the list,

this way the compliance tool can detect if the service is properly discovered on

the network as it should be.

Selecting the desired service to test, “bonjour browser” discovers its port and IP to

establish TCP/IP connection, if all this information is retrieved properly, the first

test is considered passed. If some of these fields are wrong then the connection

cannot be done and the program aborts with error message. Here is attached the

 17

compliance tool received information on the command line, with the Zeroconf test

details.

INFO - Using TCP communication xxx.xxx.xx.xx:xxxx

INFO - Check options complete OK

INFO - init Keyboard OK

INFO - Zeroconf Test

INFO - #server interfaceIndex, name, type, domain

INFO - ADD 0 2 MBARI_test_._puck._tcp.local.

INFO - Introduce the #server of the device to test:

INFO - 0 selected

INFO - MBARI_test_._puck._tcp.local.

INFO - RESOLVE: MBARI_test_._puck._tcp.local. is at MBARI_test_.local.:1541

INFO - PUCK IP 134.89.12.252

INFO - Zeroconf Test passed

INFO - Connection open to IP:134.89.12.252 and port:1541 OK

Once Zeroconf test is passed and the TCP connection done is performed the

command test. If compliance tool is executed with all the log information

displayed can be seen how the command test executes all the PUCK functions

that do not affect memory writings or readings. The expected output should be

like that:

INFO - Command Test

DEBUG - setPuckMode()

DEBUG - setPuckMode() - already in PUCK mode!

DEBUG - cmdTest(): now in PUCK mode

DEBUG - PUCKTY returned type 0

DEBUG - cmdTest: response to PUCKTY: 0002

DEBUG - cmdTest: response to PUCKVR: MBARI PUCK REV 1.4

DEBUG - Got expected response to bogus command

INFO - Command Test Passed

Then is performed exclusive access test, which has to result in a failed connection

due to PUCK only allows one connection per time as the stack defines. The next

text shows the results obtained by the compliance tool, and as it was expected the

PUCK host only allows one connection, so this test is passed too:

INFO - Exclusive PUCK host access Test

 It can take up to one minute...

DEBUG - Can't open more than 1 TCP connections to PUCK host (null).

INFO - Exclusive PUCK host access Passed

 18

After that, following the program flowchart presented previously, compliance tool

executes memory test. With the DEBUG log option can be seen how it is writing

and reading the memory in order to checkout if its fully compliant with IP PUCK

test specifications:

DEBUG - Backup memory done

INFO - Memory backup on file

INFO - Memory Test

DEBUG - Attempt up to 1 PUCK softbreaks

DEBUG - setPuckMode()

DEBUG - setPuckMode() - already in PUCK mode!

DEBUG - memTest - PUCKSZ returned 261

DEBUG - writeChunk(), got 20 from getPuckResponse()

INFO - Walking 1's memory test

DEBUG - testMem() startAddr=96, endAddr=165

DEBUG - Writing 21 bytes to address 96

DEBUG - Writing 31 bytes to address 117

DEBUG - Writing 17 bytes to address 148

INFO - Walking 1's memory test Passed

INFO - Walking 0's memory test

DEBUG - testMem() startAddr=96, endAddr=165

DEBUG - Writing 32 bytes to address 96

DEBUG - Writing 31 bytes to address 128

DEBUG - Writing 6 bytes to address 159

INFO - Walking 0's memory test Passed

INFO - Functional memory test

DEBUG - testMem() startAddr=96, endAddr=165

DEBUG - Writing 22 bytes to address 96

DEBUG - Writing 32 bytes to address 118

DEBUG - Writing 15 bytes to address 150

INFO - Functional memory test Passed

INFO - Memory Test Passed

DEBUG - Attempt up to 3 PUCK softbreaks

DEBUG - setPuckMode()

DEBUG - setPuckMode() - already in PUCK mode!

DEBUG - Erase PUCK memory...

DEBUG - Restore memory done

DEBUG - Attempt up to 3 PUCK softbreaks

DEBUG - setPuckMode()

DEBUG - setPuckMode() - already in PUCK mode!

INFO - Datasheet memory test Passed

DEBUG - Compare Datahseet data OK

DEBUG - Attempt up to 3 PUCK softbreaks

DEBUG - setPuckMode()

DEBUG - setPuckMode() - already in PUCK mode!

 19

DEBUG - Erase PUCK memory...

DEBUG - Restore memory done

INFO - Data restored on PUCK memory

After testing all the functionalities specified for IP PUCK firmware, compliance

tool proceeds to check if PUCK host is still reachable, by sending a PUCK null

command and waiting PUCKRDY response. After that no more commands are

sent during two minutes, waiting for the PUCK timeout functionality. This was

explained on Materials and Methods chapter, and is one of the new functionalities

that has been programmed during this internship to provide full IP PUCK

compliance.

On the screen should be displayed a simple timer, decreasing each 5 seconds, this

way the user does not think that the program is blocked. After the two minutes is

displayed that the test is passed, which means that the PUCKTMO frame has been

received:

INFO - PUCK timeout test

DEBUG - setPuckMode()

DEBUG - setPuckMode() - already in PUCK mode!

INFO - 120 seconds before PUCK mode timeout

INFO - 115 seconds before PUCK mode timeout

INFO - 110 seconds before PUCK mode timeout

INFO - 105 seconds before PUCK mode timeout

INFO - 100 seconds before PUCK mode timeout

.

.

.

INFO - 10 seconds before PUCK mode timeout

INFO - 5 seconds before PUCK mode timeout

INFO - PUCK timeout test Passed

Now the PUCK TCP connection is closed by the PUCK host, so is proceeded to

test the native instrument port connection and then is displayed the information of

the passed and failed tests. In this case, the IP PUCK instrument was fully IP

PUCK v1.4 compliant, so no errors were detected as can be seen on the command

line:

 20

INFO - Instrument connection test

INFO - Connection open to IP:134.89.12.252 and port:8760 OK

INFO - Instrument connection test Passed

INFO - puckVerify: 8 tests passed, 0 tests failed

return value=0

Following this steps, an IP PUCK instrument can be verified if it is completely

compliant with the defined stack. If an error occurs during the test, it is prompted

with an ERROR log message, independently of the chosen log mode, and it

causes a return value different than 0, which means that the connected instrument

is not fully compliant, on the command line will be prompted the failed test and

the reason of this failure

 21

CONCLUSIONS/RECOMMENDATIONS

An IP PUCK v1.4 instrument has been developed on a Luminary evaluation kit

board. It was built on a previous (Mihai Toma, 2010) project, and after some

modifications have completed IP PUCK development on a low power instrument

platform.

Also has been designed a compliance tool capable of verificaton of the connected

instrument as IP PUCK v1.4 compliant. This provides a reliable compliance tool

for the manufacturers who need to provide PUCK capabilities to its instruments.

For future work it would be a good approach to unify RS232 PUCK compliance

tool with IP PUCK compliance tool. This way the user can select which kind of

instrument is going to be tested and the compliance tool could modify its behavior

to perform the desired verification.

 22

ACKNOWLEDGEMENTS

I am grateful to Kent Headley, Duane Edgington, Daniel Mihai Toma, Joaquín del

Río, Antoni Manuel, and especially Tom O´Reilly, whose encouragement,

supervision and support for the duration of the program enabled me to develop the

project.

I would also like to offer my thanks to my coordinators, George Matsumoto and

Linda Kuhnz. Without them this research would not have been possible, and their

tolerance, good humor, and insight added much.

I am grateful to the many interns who participated in the MBARI 2013 summer

internship.

Lastly, I offer my regards to all of those who supported me in any respect during

the completion of the project, and especially to David and Lucile Packard

foundation, which makes this internship program possible.

 23

References:

del Rio, J., Auffret, Y., Daniel, T. M., Shahram, S., André, X., Stéphane, B., et al. (2009).

Smart sensor interface for sea bottom observatories. Instrumentation Viewpoint, 96-98.

K., W., & Edward, N. (2009). Coupling Wireless Sensor Networks and the Sensor

Observation Service. Bridging the Interoperability Gap.

Mihai Toma, D. (2010). Interoperable Marine Monitoring System. MBARI internship.

O´Reilly, T. (2009). MBARI. Retrieved from http://www.mbari.org/pw/puck.htm

O'Reilly, T. (2011). OGC® PUCK Protocol Standard Version 1.4. Open Geospatial

Consortium.

Sadasivan, S. (2010). ARM . Retrieved 2010, from

http://www.arm.com/files/pdf/IntroToCortex-M3.pdf

Song, E., & Lee, K. (2007). Smart Transducer Web Services Based on the IEEE 1451.0

Standard. Sensor Systems.

Williams, A. (2002). Zeroconf. Retrieved from Zero Configuration Networking:

http://files.zeroconf.org/draft-ietf-zeroconf-reqts-12.txt

 24

Annex I

Work time

The implementation of the IP PUCK v1.4 compliant on the Luminary

microcontroller has been done in approximately 2.5 weeks

The implementation of the compliance tool v1.4 has been done in approximately

4 weeks.

 25

Annex II

Workbench setup

PUCK Host:

1. Plug Luminary board to the laptop through ICDI USB.

2. Code Sourcery project on “PUCKcode” folder. To open it on the Code Sourcery

environment with the Luminary libraries, select this folder as workspace on the

prompted window after launching the program.

3. This workspace will auto configure the desired board. In this case LM3S9B96.

4. The board can be programmed with the “Run” button on Code Sourcery, or directly

writing the .bin file with the “LM flash programmer”, which is a free tool provided

on www.ti.com/stellaris

PUCK verification tool:

1. On the folder “PUCK_v14/src” there is the “Make file project” in order to

compile it under a POSIX platform

2. It can be launched with the command “./puckVerify –p [instrument port]”

http://www.ti.com/stellaris

