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ABSTRACT 

Remotely operated vehicles (ROVs) have provided the marine science community with 

vast and invaluable volumes of raw video data. Manually annotating large quantities of 

this data is labor intensive and time-consuming, thus the induction of a tool to aid this 

process. AVEDac is a tool to analyze video data such as the Eye-in-the-Sea autonomous 

deep-sea viewing platform, which adopts a discreet approach in monitoring the behavior 

of deep-sea organisms. This study will look at calibrating the AVED classifier to detect 

deep-sea squid and fast-moving events within the sporadically instances of visual noise 

unique to the EITS data set. Critical analysis of the classifying performance will also 

scrutinized in the form of developing receiver operating characteristic (ROC) curves for 

each image class. Results showed that squid was incorrectly detected through miss-

classification of another class. The results from the ROC curves indicate that further 

testing is needed to evaluate the accuracy of the classifier. Conclusively, AVEDac is still 

in its infancy in terms of achieving the desired goal of utilizing such automated 

applications to aid manual annotation. 
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1. INTRODUCTION 

Remotely operated vehicles (ROVs) have provided the marine science community with 

vast and invaluable volumes of raw video data. Manually annotating large quantities of 

this data is labor intensive and time-consuming, thus the induction of a tool to aid this 

process.  

The initial Automated Visual Event Detection and Classification (AVEDac) system was 

developed by the Monterey Bay Aquarium Research Institute (MBARI) and is a tool to 

analyze specially processed video data collected by the institutes’ ROVs (Edgington et al, 

2006). In addition, AVEDac has been modified to analyze data from autonomous video 

monitoring applications such as EITS - powered by underwater cabled-observatories such 

as the Monterey Accelerated Research System (MARS) at MBARI (Cline et al, 2009). 

The Eye-in-the-sea (EITS) experiment was designed by Ocean Research and 

Conservation Association’s (ORCA) Dr. Edith Widder and was recently deployed at the 

MARS site in the fall of 2009.  

EITS is an autonomous deep-sea viewing platform and adopts a discreet approach in 

monitoring the behavior of deep-sea organisms. In contrast to the widely accepted notion 

of disturbance caused by bright white lights from ROVs, EITS uses far-red illumination 

(695nm) that is considered to be beyond the visible spectrum of most deep-sea fishes – 

implementing a low profile method (Raymond & Widder, 2007). The viewing platform 

comprises of an intensified video camera in order to compensate for the rapidly absorbed 

red light that can be positioned in view of a bait box or an optical lure intended to attract 

deep-sea organisms. This report will only refer to data collected from the optical lure 

(termed electronic jelly) source. 

The electronic jelly (e-jelly) was programmed to generate 3 distinctive display patterns 

based on deep-sea bioluminescent model organisms. The pinwheel display sequence 

mimics patterns produced by Scyphozoan Atolla wyvillei (Haeckel, 1880); the dim LED 

and single repetitive flash sequences simulate bacterial and Ostracod species respectively. 

Results from pinwheel display analysis show that the presence of deep-sea squid 

Dosidicus gigas (Orbigny, 1985) may exhibit distinct antagonistic behavioral responses 

to the e-jelly. Data was recorded using conventional methods of annotation through use 
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of a spreadsheet. There is insufficient evidence to suggest any significant ecological 

relationship between D. gigas and A. wyvillei, however recent documented behavioral 

studies in squid demonstrate similar aggressive tendencies towards blue-light sources in 

situ (Kubodera et al, 2007).  

This study aims to train AVEDac to detect squid interactions within a sub-set of the EITS 

data with respect to the remaining 2 luminescent display patterns produced by the e-jelly. 

The primary objective of using AVEDac in this study involves analyzing large subsets of 

data in order to evaluate the current status of utilizing such automated annotation tools in 

comparison to human annotation. Studies have shown the benefits of using such 

machines to help identify and understand the biology of organisms that we may use for 

food resources or other commercial exploits (Aguzzi et al, 2009; Costa et al, 2008) and to 

aid in taxonomical classification (Culverhouse et al, 2003). Testing of the autonomous 

Batch Classification feature will also be included in the analyses. Results from this study 

will be used to document notable differences in the behavior of squid under 2 different 

artificial luminescent displays in situ. 

 

2. MATERIALS AND METHODS 

2.1 Workflow for EITS data 

Digital video collected from the EITS camera system is transmitted back to shore via 

high-powered Ethernet connectivity and stored as 5-minute individual clips on the RAID 

server. The individual clips undergo a continual processing sequence before a designated 

user can utilize the data within the AVEDac user interface. 

To manage the workflow for EITS, a mass workload management system called Condor 

is used. Condor provides scheduled queuing for mass volumes of data to be processed. 

This is achieved by submitting the clips into an 8-node, 16 CPU Beowulf cluster (Cline et 

al, 2008).  Once processed, the individual clips are saved and stored as metadata XML 

files which can then be imported into the AVEDac user interface for annotation. This 

workflow is represented in Figure 1. 
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Due to time constraints, only 0-40 minutes of each hour from the sub-set data 16th – 24th 

March 2010 was processed through AVEDac in single 5-minute clips (n=1292). This 

excluded day’s 19th, 21st and 23rd where only 0-20 minutes was processed (when e-jelly 

was switched off). Due to technical errors, the first and last day of the data set (16th and 

24th) have only a partially completed data set. 

 

 

 

Figure 1. Eye-in-the-Sea/AVED workflow (taken from Cline et al, 2007) from collection of raw data from 

autonomous lander system to user importing processed XML files. 

 

 

2.2 Basic Fundamental Parameters of AVEDac 

 
AVEDac uses a neuromorphic vision algorithm (based on human vision) to detect events 

within the raw video data collected by ROVs. Events that may be regarded as 

“interesting” are determined by the potential event being tracked across several frames 

using linear Kalman filters (Cline et al, 2008). 

For the purpose of this study, AVEDac was specifically calibrated to regard likely events 

with rapid motion by fast-moving organisms (such as deep-sea squid) as “interesting” to 
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maximize detection of species of interest. An event can vary in duration from a single 

frame to the entire length of the processed clip. 

 

2.2.1 Image/Training libraries 

Image libraries for organisms and classes of interest were predominantly created using 

previously analyzed images from the EITS pinwheel display sequence from February 

2010. In this study, 5 initial distinct classes were used to classify the un-annotated March 

2010 sub-set. The image classes were composed of Rattails, Rockfish, Squid, ‘Noise’ and 

‘Unknown organisms’. The latter class refers to organisms or organic material not of 

particular interest for the purpose of this investigation (such as micro-fauna on the 

benthos and drifting POM). 

The inclusion of ‘Noise’ as a class in the training library was used to test the plasticity of 

the AVEDac classification tool. The EITS data set has periodical instances of visual noise 

and ‘drop-outs’ (caused by technical errors with the digital video encoder) that may 

reduce the overall effectiveness of the classifier. To account for this, a separate ‘Noise’ 

class was included in the training library to act as a potential filter for later batch 

classifications of unanalyzed portions of data. This filtering concept however is largely 

dependent on the accuracy of the classifier. 

Training libraries are composed of groups of user-defined image classes for AVEDac to 

relay against un-annotated data. The training library compiles every image from the 

assigned classes and is compared to an un-annotated event by the classifier. In this study 

2 training libraries were tested, one containing all 5 initial classes (‘Dominator’) and the 

second with 6 classes (‘Re-vamp’). Re-vamp is a modified version of Dominator and 

includes the insertion of a Sea anemone class. In principal the two libraries share the 

same images, however images deemed potentially poor quality or ‘destitute’ in the Re-

vamp library were removed. It is important that the annotator carried out this procedure. 

In order to verify the quality of the image classes, each class is tested against a training 

library. This preliminary analysis tests against a 10% sample of randomly selected 
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images within the class and results are compiled in a confusion matrix (later described). 

In this study all 7 classes were tested and demonstrated 90-100% accuracy. 

 

2.3 Batch Classifier 

Each training library was created using the appropriate image classes and was run against 

the March data set (per day-directory). Each directory was imported from the EITS-

processed server and run against one training library at a time. The probability threshold 

for this experiment was set to 80%. The autonomous batch classifier has an in-built 

feature that exports the output results in an Excel table format, stating the number of 

predicted classes per 5-minute clip. 

In addition to the user defined image classes, the batch classifier automatically inserts a 

default ‘Unknown’ column into the results table. This functions as a bin for events that 

are regarded as unidentifiable by the classifier with respect to the pre-determined group 

of images within the training library. 

 

2.4 Classifier Accuracy 

In order to assess the validity of the output results generated by the batch classifier, 

human annotation was utilized as comparative measure. An annotator labeled a 

randomized portion (n=60) of the total data set and then allowed commencement of the 

AVEDac classifier. Only the Revamp training library was used for this part of the study. 

Thus, the construction of a confusion matrix table was an appropriate visualization tool 

for comparing the two methods of annotation. The classification probability thresholds 

were altered to determine the variance in accuracy under different conditions (20%, 50%, 

80% and 95%). The same labeled data set was used at all times. 

 

2.5 Data analyses 

Evaluating the output of results required comparison of total events correctly/incorrectly 

labeled by the classifier. These values were prepared in Excel (the default format output 
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of the batch classifier) and run through a confusion matrix function in MATLAB. A 

Receiver operating characteristic (ROC) curve was determined per class (using the values 

from a confusion matrix) to illustrate the varied discriminatory thresholds of the 

classifier. ROC curves graphically plot the true positive rate (sensitivity) against the false 

positive rate (1-specificity) as outlined below: 

 

§ True Positive Rate (TPR) = TP/(TP+FN) 

§ Specificity = TN/(TN+FP) 

§ False Positive Rate (FPR) = 1-Specificity 

 

Where TP, FP, TN and FN represent True positive, False positive, True negative and 

False negative respectively. Original confusion matrices are not included in this study. 

 

 

3. RESULTS 

3.1 Batch classification 

The results from the batch classifier show occurrences of all 5/6 classes within the March 

data set (n= >31,000) across both training libraries. The classifier detected 548 events of 

predicted squid when trained with the Dominator library and 317 events with Re-vamp 

(see Table 1). In comparison to the large number of detections of Noise, it is apparent that 

the predicted occurrences of squid are notably lower than other classes. Both training 

libraries predict a large percentage of the data set to be Noise (Dominator – 40% and Re-

vamp – 64%, see Table 2). 

There is little difference in the number of ‘Unknown’ and ‘Squid’ classified events in 

between two training libraries. However the results also indicate a clear discrepancy in 

values upon alteration of a training library. There is a reduction in percentage values for 

events per class when trained with the Re-vamp library such as Rattail and Rockfish (see 

Table 2). 
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Table 1. Results of the classifier showing the sum of all classified events assigned to appropriate classes for 

March data set between two training libraries ‘Dominator’ and ‘Re-vamp’. Total N = >31,000. 

 

 

 

Table 2. Percentage composition of events per class. Values taken from Table 1. 

 

 

3.2 Accuracy of Classification  

 
The randomized data set was found to have 7 clips with no detected events, thus reducing 

the sub-set sample (N=53). There were annotator-labeled events containing classes which 

were not constituted in the training library. As this section of the study focuses on testing 

the accuracy of the classifier, it was deemed appropriate to remove these ‘alien classed’ 

events from the data set, further reducing the total number of events (N=1066) between 

the 53 clips. 

 

Training 

library 
Unknown Noise Rattail Rockfish Squid 

Unknown 

org. 

Sea 

anemone 

Dominator 6293 12628 5945 1016 548 4777  

Re-vamp 6509 19923 764 380 317 2299 1038 

Training 

library 
Unknown Noise Rattail Rockfish Squid 

Unknown 

org. 

Sea 

anemone 

Dominator 20.3% 40.7% 19.1% 3.3% 1.3% 15.4%  

Re-vamp 20.9% 64.3% 2.5% 1.2% 1% 7.4% 3.3% 



 9 

Table 3. Percentage accuracy of classifier under varying probability thresholds (20, 50, 80 and 95) of 

labeled event sub-set (N=1066) using Re-vamp training library. 

 
 

There were no detections of ‘squid’ or ‘unknown’ classes within the sub-set sample 

therefore no critical analysis on these classes can be drawn. ‘Noise’ was classified with 

the highest accuracies (55-78% accuracy) and ‘Rattail’ and ‘Rockfish’ indicating 

consistent classified accuracy (60-20% respectively) under increasing probability 

thresholds. With the exception of ‘Sea anemone’ and ‘Rattail’, all classes show to have 

reducing accuracies under increasing probability thresholds.  

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Unknown Noise Rattail Rockfish Squid Unknown 
org. 

Sea 
anemone 

PT20 N/A 78.21% 60% 20% N/A 21.94% 32% 
PT50 N/A 75.62% 60% 20% N/A 20.38% 52% 
PT80 N/A 68.09% 60% 20% N/A 15.05% 32% 
PT95 N/A 55.51% 60% 6.67% N/A 9.40% 46% 
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Figure 2. ROC curves representing the accuracy of classification for each class under probability 
thresholds 20%, 50%, 80% and 95%. Data points were calculated using values from confusion matrices. 
 
 

The ROC curves in Figure 2 display trade-offs between true positive rates and false 

positive rates. With the exclusion of ‘Noise’, all classes show a similar trend with false 

positive rates less than 10%. ‘Noise’ displays high true positive values but also displays 

high false positive rates irrespective of varying probability thresholds. ‘Rattail’ and ‘Sea 

anemone’ show high true positive rates however, as already mentioned,  ‘Rattail’ displays 

consistent 60% classification accuracy with little variance in false positive rate against 

increasing probability thresholds. 

 

4. DISCUSSION 

The AVED classifier detected few instances of squid within the time frame 16th-24th 

March 2010. However through critical analysis from the raw video data, it was apparent 

there were no squid interactions with the e-jelly irrespective of the results from the batch 

classifier. Consequently, there is no data to evaluate any variance in behavior under 

different luminescent displays. The high instances of events in Table 1 within the 8-9 day 

time frame would suggest an active period around the e-jelly in terms of regarded 

interesting events. Accordingly, this could imply reasoning into adopting such 

automation tools that would reduce the need for time-consuming manual annotations. 

However there are other factors that need to be addressed before vindicating this notion. 

It was observed that there were large portions of the data that were composed of 

relatively short or single frame events as opposed to long, continuous events. With 
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respect to the Noise class that contributed around half of the total event detections, most 

if not all of the events classed as Noise were brief and fragmented. There were occasions 

where a potential continuous event displayed by a mobile organism would be broken into 

shorter fragments, which may be due to forced errors by Noise to the tracking filter. 

Conversely, the miss-classifications of Noise as other classes also significantly increase 

the number of events per class. 

The use of two different training libraries illustrated a change in the number of predicted 

classes per class. ‘Rattail’ showed a decrease by 16.6% with the insertion of an additional 

class. It is difficult to suggest an appropriate solution to this change in class composition; 

other than the notion of providing an additional class allows more option for classifier. 

The increased percentage of Noise and decreased percentage of the other classes may 

verify this. 

Another challenging concept faced in this study was evaluating the accuracy of the 

classifier. Table 3 indicates what may be regarded as good accuracy in classifying Noise, 

however the ROC curves (Figure 2) suggest that moreover there are high rates of false 

detections. It is difficult to quantify this with respect to the general low abundances of 

actual mobile organisms (e.g. Rattail) in comparison to the high counts of Noise in the 

particular sub-set of data used. This implies random, larger and multiple data sets should 

be used for future evaluation. This issue is also apparent in both Table 3 and Figure 2 

where the classification accuracy for Rattail is saturated (60%) for all 4-probability 

thresholds tested.  

Table 3 indicates that the increasing probability thresholds reduce the overall accuracy of 

classification (with the exception of Sea anemone which does not follow any trend). As 

this study is the first instance of testing such applications, it is unjust to provide any 

tangible explanation without comparison to further tests. 

It important to consider the quality of images used for training AVEDac. While it is 

apparent that Noise had a significant influence in this data set, furthermore there were 

numerous misclassifications between the other faunal classes (Rockfish, Rattail, Squid 

etc). As the ultimate goal of this application focuses on the ability to distinguish between 

genus, class, species etc in a marine habitat, it is imperative to understand what common 
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feature an array of organisms may have that lead to high numbers of false positive 

classifications. In context with this study, one may presume the monochrome video 

quality may hinder the effectiveness of discriminating between classes. In addition, there 

were instances of the event area detected potentially being undersized therefore difficult 

for effective classification. A solution to this problem may lie within narrowing the 

parameters in the Gaussian algorithm further to regard certain sizeable areas to be 

interesting (if seeking to detect specific megafauna). However with many of the proposed 

solutions mentioned, they can only be justified upon further testing. 

 

 

CONCLUSIONS/RECOMMENDATIONS 

The results of this study infer autonomous classification to show variance in accuracy, 

there is evidence to suggest tools such as AVEDac may be useful for certain data sets. 

The data used in this study showed to have excessive volumes of noise throughout and 

proved to be one of the greatest challenges. One may speculate the difference in results 

from both the batch classifier and accuracy testing if a cleaner, less-noisy data set was 

implemented. Changes in methods would provide a better platform to suitably assess the 

accuracy of the classifier. Testing with the addition/removal of images within class 

libraries would expose the features needed for optimum performance of Bayesian 

classifier. Increasing the randomized sample size for comparing human and classifier 

annotations would augment the feasibility of the end results. In addition, increasing 

repetitions with different randomized sub-sets would improve validity in testing for 

accuracy from a confusion matrix. In order to reduce bias during the human annotation 

step, the user should only refer to the event thumbnail image when labeling the event 

instead of viewing the entire event through the event player. The latter method gives the 

annotator the advantage of putting the event in context before making the final decision 

to classify the event. Testing with enlargement or reduction of training libraries with new 

or less classes would furthermore aid in understanding the optimal features that increase 

the classifiers performance. 
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In conclusion, the results of this study indicate there is no meticulous direct method to 

achieve reliable autonomous classification. Although AVEDac is still in its infancy in 

terms of achieving the desired objective, this study has exposed certain conceptual 

features that require further investigation. 
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